The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

kernlab: Kernel-Based Machine Learning Lab

Kernel-based machine learning methods for classification, regression, clustering, novelty detection, quantile regression and dimensionality reduction. Among other methods 'kernlab' includes Support Vector Machines, Spectral Clustering, Kernel PCA, Gaussian Processes and a QP solver.

Version: 0.9-33
Depends: R (≥ 2.10)
Imports: methods, stats, grDevices, graphics
Published: 2024-08-13
DOI: 10.32614/CRAN.package.kernlab
Author: Alexandros Karatzoglou [aut, cre], Alex Smola [aut], Kurt Hornik ORCID iD [aut], National ICT Australia (NICTA) [cph], Michael A. Maniscalco [ctb, cph], Choon Hui Teo [ctb]
Maintainer: Alexandros Karatzoglou <alexandros.karatzoglou at gmail.com>
License: GPL-2
Copyright: see file COPYRIGHTS
NeedsCompilation: yes
Citation: kernlab citation info
In views: Cluster, MachineLearning, NaturalLanguageProcessing, Optimization
CRAN checks: kernlab results

Documentation:

Reference manual: kernlab.pdf
Vignettes: kernlab - An S4 Package for Kernel Methods in R (source, R code)

Downloads:

Package source: kernlab_0.9-33.tar.gz
Windows binaries: r-devel: kernlab_0.9-33.zip, r-release: kernlab_0.9-33.zip, r-oldrel: kernlab_0.9-33.zip
macOS binaries: r-release (arm64): kernlab_0.9-33.tgz, r-oldrel (arm64): kernlab_0.9-33.tgz, r-release (x86_64): kernlab_0.9-33.tgz, r-oldrel (x86_64): kernlab_0.9-33.tgz
Old sources: kernlab archive

Reverse dependencies:

Reverse depends: CVST, DRR, DTRlearn2, Iscores, kappalab, kebabs, kfda, KPC, omada, PPInfer, svmpath
Reverse imports: ABPS, ADImpute, ampir, AnimalSequences, aweSOM, bootcluster, BPRMeth, brainKCCA, branchpointer, calibrateBinary, classmap, clusterExperiment, CondIndTests, CondiS, DA, DMTL, DynTxRegime, Ecume, ehymet, finnts, flevr, fmf, fpc, fPortfolio, gecko, GeneGeneInteR, GeneralisedCovarianceMeasure, geomod, ggscidca, gkmSVM, GreedyExperimentalDesign, kernelFactory, kerntools, KnowSeq, kpcaIG, kpcalg, KRMM, ks, lsirm12pl, MachineShop, microsynth, mikropml, mildsvm, mixtools, nlcv, oddstream, OmicSense, PCDimension, personalized, pheble, PIUMA, PLORN, plsRcox, PredCRG, pRoloc, promor, qrjoint, QuESTr, randomMachines, REMP, RISCA, Rmagpie, rminer, robCompositions, ROI.plugin.ipop, rres, RSSL, S4DM, scAnnotatR, scPCA, scRecover, ssMutPA, survivalsvm, SVMMaj, Synth, tboot, TDApplied, tsensembler, TSGS, tsiR, visaOTR, wearables
Reverse suggests: aum, BiodiversityR, breakDown, bundle, butcher, caret, colorspace, CompareCausalNetworks, condvis2, dials, diceR, dismo, evclust, evtree, fastml, FCPS, flowml, fscaret, gamclass, GAparsimony, healthyR.ts, HPiP, iForecast, isotree, loon, mistral, mistyR, MLInterfaces, mlr, mlr3cluster, mlr3pipelines, mlrMBO, MLSeq, modeltime, MSCMT, parsnip, pdp, pmml, rattle, recipes, RStoolbox, sand, Semblance, shipunov, soilassessment, spectralGraphTopology, ssc, SSLR, stacks, SuperLearner, superMICE, supervisedPRIM, swag, tidyAML, tidysdm, tune, vcd, viralmodels, WeightSVM
Reverse enhances: clue, prediction

Linking:

Please use the canonical form https://CRAN.R-project.org/package=kernlab to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.