The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines

An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.

Version: 1.6.1
Depends: R (≥ 4.1.0)
Imports: caret, dplyr, e1071, glmnet, kernlab, MLmetrics, randomForest, rlang, rpart, stats, utils, xgboost
Suggests: assertthat, doFuture, forcats, foreach, future, future.apply, furrr, ggplot2, knitr, progress, progressr, purrr, rmarkdown, rsample, testthat, tidyr
Published: 2023-08-21
DOI: 10.32614/CRAN.package.mikropml
Author: Begüm Topçuoğlu ORCID iD [aut], Zena Lapp ORCID iD [aut], Kelly Sovacool ORCID iD [aut, cre], Evan Snitkin ORCID iD [aut], Jenna Wiens ORCID iD [aut], Patrick Schloss ORCID iD [aut], Nick Lesniak ORCID iD [ctb], Courtney Armour ORCID iD [ctb], Sarah Lucas ORCID iD [ctb]
Maintainer: Kelly Sovacool <sovacool at umich.edu>
BugReports: https://github.com/SchlossLab/mikropml/issues
License: MIT + file LICENSE
URL: https://www.schlosslab.org/mikropml/, https://github.com/SchlossLab/mikropml
NeedsCompilation: no
Citation: mikropml citation info
Materials: README NEWS
CRAN checks: mikropml results

Documentation:

Reference manual: mikropml.pdf
Vignettes: Introduction to mikropml
mikropml paper

Downloads:

Package source: mikropml_1.6.1.tar.gz
Windows binaries: r-devel: mikropml_1.6.1.zip, r-release: mikropml_1.6.1.zip, r-oldrel: mikropml_1.6.1.zip
macOS binaries: r-release (arm64): mikropml_1.6.1.tgz, r-oldrel (arm64): mikropml_1.6.1.tgz, r-release (x86_64): mikropml_1.6.1.tgz, r-oldrel (x86_64): mikropml_1.6.1.tgz
Old sources: mikropml archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mikropml to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.