CRAN Package Check Results for Maintainer ‘Pavel N. Krivitsky <pavel at statnet.org>’

Last updated on 2026-02-15 07:51:18 CET.

Package ERROR WARN NOTE OK
ergm 4 1 3 6
ergm.count 14
ergm.ego 14
ergm.multi 14
ergm.rank 14
latentnet 3 11
piecemeal 14
rle 1 13
statnet.common 14
tergm 5 9

Package ergm

Current CRAN status: ERROR: 4, WARN: 1, NOTE: 3, OK: 6

Version: 4.11.0
Flags: --no-vignettes
Check: tests
Result: ERROR Running ‘requireNamespaceTest.R’ [3s/3s] Running ‘testthat.R’ [367s/202s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # File tests/testthat.R in package ergm, part of the Statnet suite of packages > # for network analysis, https://statnet.org . > # > # This software is distributed under the GPL-3 license. It is free, open > # source, and has the attribution requirements (GPL Section 7) at > # https://statnet.org/attribution . > # > # Copyright 2003-2025 Statnet Commons > ################################################################################ > library(testthat) > library(statnet.common) Attaching package: 'statnet.common' The following objects are masked from 'package:base': attr, order, replace > library(ergm) Loading required package: network 'network' 1.20.0 (2026-02-06), part of the Statnet Project * 'news(package="network")' for changes since last version * 'citation("network")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4.11.0 (2025-12-22), part of the Statnet Project * 'news(package="ergm")' for changes since last version * 'citation("ergm")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4 is a major update that introduces some backwards-incompatible changes. Please type 'news(package="ergm")' for a list of major changes. Attaching package: 'ergm' The following object is masked from 'package:statnet.common': snctrl > > test_check("ergm") Starting 2 test processes. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 2 > test-basis.R: 3 > test-basis.R: 4 5 > test-basis.R: 6 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 11 12 > test-basis.R: 13 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 3 > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 4 5 > test-basis.R: 6 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 14 > test-basis.R: 15 > test-basis.R: 16 . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: Unable to match target stats. Using MCMLE estimation. > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-bridge-target.stats.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: Optimizing with step length 1.0000. > test-bridge-target.stats.R: The log-likelihood improved by 0.0219. > test-bridge-target.stats.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-bridge-target.stats.R: Finished MCMLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 5 > test-bridge-target.stats.R: 6 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 10 11 12 > test-bridge-target.stats.R: 13 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: > test-bridge-target.stats.R: This model was fit using MCMC. To examine model diagnostics and check > test-bridge-target.stats.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-bridge-target.stats.R: 2 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: 1 2 3 > test-basis.R: 4 5 6 > test-basis.R: 7 > test-bridge-target.stats.R: 3 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 12 > test-basis.R: 13 14 > test-basis.R: 15 16 . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-bridge-target.stats.R: 4 > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-bridge-target.stats.R: 5 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-basis.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-bridge-target.stats.R: Using 16 bridges: 1 > test-basis.R: 2 3 > test-basis.R: 4 5 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 10 > test-basis.R: 11 > test-bridge-target.stats.R: 2 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 3 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-bridge-target.stats.R: 4 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-bridge-target.stats.R: 13 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: 1 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-bridge-target.stats.R: 14 > test-basis.R: 8 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 13 14 > test-basis.R: 15 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Iteration 1 of at most 60: > test-checkpointing.R: Saving state in '/home/hornik/tmp/scratch/RtmpOzSvFD/filea291749b2cca1_001.RData'. > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-checkpointing.R: 1 > test-bridge-target.stats.R: 7 > test-checkpointing.R: Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0213. > test-checkpointing.R: Step length converged once. Increasing MCMC sample size. > test-checkpointing.R: Iteration 2 of at most 60: > test-checkpointing.R: Saving state in '/home/hornik/tmp/scratch/RtmpOzSvFD/filea291749b2cca1_002.RData'. > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-checkpointing.R: 1 > test-bridge-target.stats.R: 11 > test-checkpointing.R: Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0238. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-checkpointing.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: 12 > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-bridge-target.stats.R: 13 > test-checkpointing.R: Using 16 bridges: 1 > test-bridge-target.stats.R: 14 > test-checkpointing.R: 2 > test-checkpointing.R: 3 > test-bridge-target.stats.R: 15 > test-checkpointing.R: 4 5 6 > test-checkpointing.R: 7 > test-bridge-target.stats.R: 16 > test-checkpointing.R: 8 > test-checkpointing.R: 9 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-checkpointing.R: 10 11 > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-checkpointing.R: 12 > test-checkpointing.R: 13 > test-checkpointing.R: 14 15 > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-checkpointing.R: 16 > test-checkpointing.R: . > test-bridge-target.stats.R: Using 16 bridges: 1 > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Resuming from state saved in '/home/hornik/tmp/scratch/RtmpOzSvFD/filea291749b2cca1_002.RData'. > test-checkpointing.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-checkpointing.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: 6 > test-checkpointing.R: The log-likelihood improved by 0.0145. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-checkpointing.R: Fitting the dyad-independent submodel... > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-bridge-target.stats.R: 7 > test-checkpointing.R: Using 16 bridges: > test-checkpointing.R: 1 2 3 > test-checkpointing.R: 4 > test-bridge-target.stats.R: 8 > test-checkpointing.R: 5 > test-checkpointing.R: 6 > test-checkpointing.R: 7 8 > test-checkpointing.R: 9 > test-bridge-target.stats.R: 9 > test-checkpointing.R: 10 11 > test-checkpointing.R: 12 13 > test-checkpointing.R: 14 15 > test-checkpointing.R: 16 > test-bridge-target.stats.R: 10 > test-checkpointing.R: . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-constrain-degrees-edges.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constrain-degrees-edges.R: Iteration 1 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:5.2e-06 > test-constrain-degrees-edges.R: 1 > test-constrain-degrees-edges.R: The log-likelihood improved by 0.05768. > test-constrain-degrees-edges.R: Iteration 2 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:3.7e-03 > test-constrain-degrees-edges.R: 1 > test-constrain-degrees-edges.R: The log-likelihood improved by 0.09813. > test-constrain-degrees-edges.R: Finished CD. > test-constrain-degrees-edges.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-degrees-edges.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondInDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-blockdiag.R: > test-constrain-blockdiag.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-constrain-blockdiag.R: * 'news(package="ergm.count")' for changes since last version > test-constrain-blockdiag.R: * 'citation("ergm.count")' for citation information > test-constrain-blockdiag.R: * 'https://statnet.org' for help, support, and other information > test-constrain-blockdiag.R: > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-constrain-dind.R: Iteration 1 of at most 60: > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: 1 > test-constrain-dind.R: Optimizing with step length 1.0000. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: The log-likelihood improved by 0.0020. > test-constrain-dind.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constrain-dind.R: Finished MCMLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Fitting the dyad-independent submodel... > test-constrain-dind.R: Bridging between the dyad-independent submodel and the full model... > test-constrain-dind.R: Setting up bridge sampling... > test-constrain-dind.R: Using 16 bridges: 1 > test-constrain-dind.R: 2 3 > test-constrain-dind.R: 4 > test-constrain-dind.R: 5 > test-constrain-dind.R: 6 > test-constrain-dind.R: 7 > test-constrain-dind.R: 8 > test-constrain-dind.R: 9 10 > test-constrain-dind.R: 11 > test-constrain-dind.R: 12 > test-constrain-dind.R: 13 14 > test-constrain-dind.R: 15 > test-constrain-dind.R: 16 . > test-constrain-dind.R: Bridging finished. > test-constrain-dind.R: > test-constrain-dind.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-dind.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: 1 > test-drop.R: Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by 0.0001. > test-drop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Fitting the dyad-independent submodel... > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Using 16 bridges: 1 > test-drop.R: 2 3 > test-drop.R: 4 > test-drop.R: 5 > test-drop.R: 6 > test-drop.R: 7 8 > test-drop.R: 9 > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-drop.R: 10 11 > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: 12 13 > test-drop.R: 14 > test-drop.R: 15 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-drop.R: 1 > test-drop.R: Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by 0.0068. > test-drop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Fitting the dyad-independent submodel... > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-drop.R: Using 16 bridges: 1 > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: 2 3 > test-drop.R: 4 > test-drop.R: 5 6 7 > test-drop.R: 8 > test-drop.R: 9 10 11 > test-drop.R: 12 > test-drop.R: 13 > test-drop.R: 14 > test-drop.R: 15 > test-drop.R: 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Evaluating network in model. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-drop.R: Initializing unconstrained Metropolis-Hastings proposal: > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: 'ergm:MH_SPDyad'. > test-drop.R: Initializing model... > test-drop.R: Model initialized. > test-drop.R: Using initial method 'MPLE'. > test-drop.R: Initial parameters provided by caller: None. > test-drop.R: number of free parameters: 7 > test-drop.R: number of fixed parameters: 0 > test-drop.R: Observed statistic(s) triangle and kstar5 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Fitting initial model. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Density guard set to 10000 from an initial count of 3 edges. > test-drop.R: > test-drop.R: Iteration 1 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -5.244530e-01 2.592560e-01 -3.147987e-01 -9.254589e-01 2.322348e-12 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Back from unconstrained MCMC. > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-drop.R: New interval = 512. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -3.399177 -1.395062 -4.641975 -3.370370 2.170829 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 Optimizing with step length 0.9524. > test-constraints.R: All terms are either offsets or extreme values. No optimization is performed. > test-constraints.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 1.5314. > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 2 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -7.679134e-01 3.298974e-01 -4.787791e-01 -1.324882e+00 9.046976e-10 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: Using 16 bridges: 1 > test-constraints.R: 2 > test-constraints.R: 3 > test-constraints.R: 4 > test-constraints.R: 5 > test-constraints.R: 6 > test-constraints.R: 7 > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 256. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.2427984 0.4115226 -0.1934156 -0.5020576 -0.2889661 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-constraints.R: 8 > test-drop.R: The log-likelihood improved by 0.2272. > test-drop.R: Distance from origin on tolerance region scale: 4.992214 (previously Inf). > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 3 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -1.0610706 1.2599949 -0.5094541 -1.4594441 0.1742152 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: 9 > test-constraints.R: 10 > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 > test-constraints.R: 14 > test-constraints.R: 15 > test-drop.R: Back from unconstrained MCMC. > test-constraints.R: 16 > test-drop.R: New interval = 128. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.4855967 -0.3621399 -0.6090535 -0.5209768 0.5709312 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: Starting MCMC s.e. computation. > test-drop.R: The log-likelihood improved by 0.0416. > test-drop.R: Distance from origin on tolerance region scale: 0.9245623 (previously Inf). > test-constraints.R: . > test-drop.R: Estimated covariance matrix of the statistics has nullity 1. Effective parameter number adjusted to 4. > test-drop.R: Test statistic: T^2 = 10.41146, with 4 free parameter(s) and 238.9876 degrees of freedom. > test-drop.R: Convergence test p-value: 0.0387. Not converged with 99% confidence; increasing sample size. > test-drop.R: 99% confidence critical value = 13.77129. > test-drop.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-drop.R: Finished MCMLE. > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-drop.R: Evaluating log-likelihood at the estimate. Initializing model to obtain the list of dyad-independent terms... > test-constraints.R: > test-drop.R: Fitting the dyad-independent submodel... > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constraints.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-constraints.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constraints.R: Iteration 1 of at most 60: > test-constraints.R: Convergence test P-value:1.1e-05 > test-constraints.R: 1 The log-likelihood improved by 0.07919. > test-constraints.R: Iteration 2 of at most 60: > test-constraints.R: Convergence test P-value:3.7e-02 > test-constraints.R: 1 The log-likelihood improved by 0.01687. > test-constraints.R: Iteration 3 of at most 60: > test-constraints.R: Convergence test P-value:7e-01 > test-constraints.R: Convergence detected. Stopping. > test-constraints.R: 1 The log-likelihood improved by 0.0006029. > test-constraints.R: Finished CD. > test-constraints.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Dyad-independent submodel MLE has likelihood -11.02185 at: > test-drop.R: [1] -2.639057 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 > test-drop.R: [8] 0.000000 > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Initializing model and proposals... > test-drop.R: Model and proposals initialized. > test-drop.R: Using 16 bridges: Running theta=[-2.0110138, -Inf, 1.4621780,-0.4923718, -Inf,-0.9527669, 0.1279654, 0.0000000]. > test-drop.R: Running theta=[-2.0515328, -Inf, 1.3678439,-0.4606058, -Inf,-0.8912980, 0.1197096, 0.0000000]. > test-constraints.R: Iteration 1 of at most 60: > test-drop.R: Running theta=[-2.0920517, -Inf, 1.2735099,-0.4288399, -Inf,-0.8298292, 0.1114537, 0.0000000]. > test-drop.R: Running theta=[-2.1325706, -Inf, 1.1791758,-0.3970740, -Inf,-0.7683604, 0.1031979, 0.0000000]. > test-drop.R: Running theta=[-2.17308956, -Inf, 1.08484175,-0.36530808, -Inf,-0.70689155, 0.09494207, 0.00000000]. > test-drop.R: Running theta=[-2.21360850, -Inf, 0.99050769,-0.33354216, -Inf,-0.64542272, 0.08668623, 0.00000000]. > test-drop.R: Running theta=[-2.2541274, -Inf, 0.8961736,-0.3017762, -Inf,-0.5839539, 0.0784304, 0.0000000]. > test-drop.R: Running theta=[-2.29464637, -Inf, 0.80183956,-0.27001032, -Inf,-0.52248506, 0.07017457, 0.00000000]. > test-drop.R: Running theta=[-2.33516531, -Inf, 0.70750549,-0.23824440, -Inf,-0.46101623, 0.06191874, 0.00000000]. > test-drop.R: Running theta=[-2.37568425, -Inf, 0.61317143,-0.20647848, -Inf,-0.39954740, 0.05366291, 0.00000000]. > test-drop.R: Running theta=[-2.41620318, -Inf, 0.51883736,-0.17471256, -Inf,-0.33807857, 0.04540708, 0.00000000]. > test-drop.R: Running theta=[-2.45672212, -Inf, 0.42450329,-0.14294664, -Inf,-0.27660974, 0.03715124, 0.00000000]. > test-drop.R: Running theta=[-2.49724105, -Inf, 0.33016923,-0.11118072, -Inf,-0.21514091, 0.02889541, 0.00000000]. > test-drop.R: Running theta=[-2.53775999, -Inf, 0.23583516,-0.07941480, -Inf,-0.15367208, 0.02063958, 0.00000000]. > test-drop.R: Running theta=[-2.57827893, -Inf, 0.14150110,-0.04764888, -Inf,-0.09220325, 0.01238375, 0.00000000]. > test-drop.R: Running theta=[-2.618797861, -Inf, 0.047167033,-0.015882960, -Inf,-0.030734415, 0.004127916, 0.000000000]. > test-drop.R: . > test-drop.R: Bridge sampling finished. Collating... > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-constraints.R: 1 Optimizing with step length 1.0000. > test-constraints.R: The log-likelihood improved by 0.0263. > test-constraints.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constraints.R: Finished MCMLE. > test-constraints.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constraints.R: Using 16 bridges: 1 2 > test-constraints.R: 3 > test-constraints.R: 4 > test-constraints.R: 5 > test-constraints.R: 6 > test-constraints.R: 7 > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-proposal-unload.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-proposal-unload.R: * 'citation("ergm.count")' for citation information > test-ergm-proposal-unload.R: * 'https://statnet.org' for help, support, and other information > test-ergm-proposal-unload.R: > test-constraints.R: 8 > test-constraints.R: 9 > test-constraints.R: 10 > test-constraints.R: 11 > test-constraints.R: 12 13 14 > test-constraints.R: 15 > test-constraints.R: 16 > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-constraints.R: > test-constraints.R: This model was fit using MCMC. To examine model diagnostics and check > test-constraints.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm-san.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-ergm-term-doc.R: > test-ergm-term-doc.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-term-doc.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-term-doc.R: * 'citation("ergm.count")' for citation information > test-ergm-term-doc.R: * 'https://statnet.org' for help, support, and other information > test-ergm-term-doc.R: > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (binary, valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: ctriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ctriad (binary) > test-ergm-term-doc.R: Cyclic triples > test-ergm-term-doc.R: > test-ergm-term-doc.R: localtriangle(x) (binary) > test-ergm-term-doc.R: Triangles within neighborhoods > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1) (binary) > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: opentriad (binary) > test-ergm-term-doc.R: Open triads > test-ergm-term-doc.R: > test-ergm-term-doc.R: threetrail(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: threepath(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Three-trails > test-ergm-term-doc.R: > test-ergm-term-doc.R: triangle(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: triangles(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangles > test-ergm-term-doc.R: > test-ergm-term-doc.R: tripercent(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangle percentage > test-ergm-term-doc.R: > test-ergm-term-doc.R: ttriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ttriad (binary) > test-ergm-term-doc.R: Transitive triples > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 31 matching ergm terms: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Found 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Definitions for term(s) b2factor : > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network: This term adds multiple network statistics to the model, one for each of (a subset of) the > test-ergm-term-doc.R: unique values of the attr attribute. Each of these statistics > test-ergm-term-doc.R: gives the number of times a node with that attribute in the second mode of > test-ergm-term-doc.R: the network appears in an edge. The second mode of a bipartite network > test-ergm-term-doc.R: object is sometimes known as the "event" mode. > test-ergm-term-doc.R: Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected, binary, valued > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3factor' were found. Try searching with search='b3factor'instead. > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Found 50 matching ergm terms: > test-ergm-term-doc.R: B(formula, form) (valued) > test-ergm-term-doc.R: Wrap binary terms for use in valued models > test-ergm-term-doc.R: > test-ergm-term-doc.R: Curve(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrise(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrize(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Impose a curved structure on term parameters > test-ergm-term-doc.R: > test-ergm-term-doc.R: Exp(formula) (valued) > test-ergm-term-doc.R: Exponentiate a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: For(...) (valued) > test-ergm-term-doc.R: A for operator for terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: I(formula) (valued) > test-ergm-term-doc.R: Substitute a formula into the model formula > test-ergm-term-doc.R: > test-ergm-term-doc.R: Label(formula, label, pos) (valued) > test-ergm-term-doc.R: Modify terms' coefficient names > test-ergm-term-doc.R: > test-ergm-term-doc.R: Log(formula, log0=-1/sqrt(.Machine$double.eps)) (valued) > test-ergm-term-doc.R: Take a natural logarithm of a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: Prod(formulas, label) (valued) > test-ergm-term-doc.R: A product (or an arbitrary power combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: S(formula, attrs) (valued) > test-ergm-term-doc.R: Evaluation on an induced subgraph > test-ergm-term-doc.R: > test-ergm-term-doc.R: Sum(formulas, label) (valued) > test-ergm-term-doc.R: A sum (or an arbitrary linear combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiff(attr, pow=1, form="sum") (valued) > test-ergm-term-doc.R: Absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiffcat(attr, base=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Categorical absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: atleast(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values greater than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: atmost(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values less than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: attrcov(attr, mat, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate by attribute pairing > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: cdf(min = NULL, max = NULL, by = NULL, margin = 0.1, nmax = 100) (valued) > test-ergm-term-doc.R: Empirical cumulative distribution function (unnormalized) of > test-ergm-term-doc.R: the network's dyad values > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalties(threshold=0) (valued) > test-ergm-term-doc.R: Cyclical ties > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Cyclical weights > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: edgecov(x, attrname=NULL, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: edges (valued) > test-ergm-term-doc.R: nonzero (valued) > test-ergm-term-doc.R: Number of edges in the network > test-ergm-term-doc.R: > test-ergm-term-doc.R: equalto(value=0, tolerance=0) (valued) > test-ergm-term-doc.R: Number of dyads with values equal to a specific value (within tolerance) > test-ergm-term-doc.R: > test-ergm-term-doc.R: greaterthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly greater than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) > test-ergm-term-doc.R: Number of dyads whose values are in an interval > test-ergm-term-doc.R: > test-ergm-term-doc.R: mm(attrs, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Mixing matrix cells and margins > test-ergm-term-doc.R: > test-ergm-term-doc.R: mutual(form="min",threshold=0) (valued) > test-ergm-term-doc.R: Mutuality > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecov(attr, form="sum") (valued) > test-ergm-term-doc.R: nodemain(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of undirected dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodefactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of in-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeifactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodematch(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: match(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Uniform homophily and differential homophily > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of out-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeofactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: receiver(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Receiver effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: sender(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Sender effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: smallerthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly smaller than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: sociality(attr=NULL, base=1, levels=NULL, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Undirected degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: sum(pow=1) (valued) > test-ergm-term-doc.R: Sum of dyad values (optionally taken to a power) > test-ergm-term-doc.R: > test-ergm-term-doc.R: transitiveweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Transitive weights > test-ergm-term-doc.R: Found 4 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: DiscUnif(a,b) > test-ergm-term-doc.R: Discrete Uniform reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: StdNormal > test-ergm-term-doc.R: Standard Normal reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: Unif(a,b) > test-ergm-term-doc.R: Continuous Uniform reference > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found 1 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: Definitions for term(s) Bernoulli : > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference: Specifies each > test-ergm-term-doc.R: dyad's baseline distribution to be Bernoulli with probability of > test-ergm-term-doc.R: the tie being 0.5 . This is the only reference measure used > test-ergm-term-doc.R: in binary mode. > test-ergm-term-doc.R: Keywords: binary, discrete, finite, nonnegative > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'Cernoulli' were found. Try searching with search='Cernoulli'instead. > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrees > test-ergm-term-doc.R: Preserve the receiver degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found 17 matching ergm terms: > test-ergm-term-doc.R: ChangeStats(fix, check_dind = TRUE) > test-ergm-term-doc.R: Specified statistics must remain constant > test-ergm-term-doc.R: > test-ergm-term-doc.R: Dyads(fix=NULL, vary=NULL) > test-ergm-term-doc.R: Constrain fixed or varying dyad-independent terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: blockdiag(attr) > test-ergm-term-doc.R: Block-diagonal structure constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: blocks(attr=NULL, levels=NULL, levels2=FALSE, b1levels=NULL, b2levels=NULL) > test-ergm-term-doc.R: Constrain blocks of dyads defined by mixing type on a vertex attribute. > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise(p01, p10) > test-ergm-term-doc.R: A soft constraint to adjust the sampled distribution for > test-ergm-term-doc.R: dyad-level noise with known perturbation probabilities > test-ergm-term-doc.R: > test-ergm-term-doc.R: egocentric(attr=NULL, direction="both") > test-ergm-term-doc.R: Preserve values of dyads incident on vertices with given attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixallbut(free.dyads) > test-ergm-term-doc.R: Preserve the dyad status in all but the given edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixedas(fixed.dyads, present, absent) > test-ergm-term-doc.R: Fix specific dyads > test-ergm-term-doc.R: > test-ergm-term-doc.R: hamming > test-ergm-term-doc.R: Preserve the hamming distance to the given network (BROKEN: Do NOT Use) > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: observed > test-ergm-term-doc.R: Preserve the observed dyads of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Definitions for term(s) b1degrees : > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks: For bipartite networks, preserve the degree for the first mode of each vertex of the given > test-ergm-term-doc.R: network, while allowing the degree for the second mode to vary. > test-ergm-term-doc.R: Keywords: bipartite > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3degrees' were found. Try searching with search='b3degrees'instead. > test-ergm-term-doc.R: Found 2 matching ergm proposals: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: Found 5 matching ergm proposals: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: DistRLE > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Found 0 matching ergm proposals: > test-ergm-term-doc.R: Found 18 matching ergm proposals: > test-ergm-term-doc.R: BDStratTNT > test-ergm-term-doc.R: TNT proposal with degree bounds, stratification, and a blocks constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegree > test-ergm-term-doc.R: MHp for degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeDist > test-ergm-term-doc.R: MHp for degreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeMix > test-ergm-term-doc.R: MHp for degree mix constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegree > test-ergm-term-doc.R: MHp for idegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegreeDist > test-ergm-term-doc.R: MHp for idegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegree > test-ergm-term-doc.R: MHp for odegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegreeDist > test-ergm-term-doc.R: MHp for odegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingConstantEdges > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoiseTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Definitions for proposal(s) randomtoggle : > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Reference: Bernoulli Class: cross-sectional > test-ergm-term-doc.R: May Enforce: .dyads bd changestats > test-ergm-term-doc.R: > test-ergm-term-doc.R: No proposals named 'mandomtoggle' were found. Try searching with search='mandomtoggle'instead. > test-ergm-term-doc.R: > test-ergm-term-doc.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-term-doc.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-term-doc.R: * 'citation("ergm.count")' for citation information > test-ergm-term-doc.R: * 'https://statnet.org' for help, support, and other information > test-ergm-term-doc.R: > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-ergm.bridge.llr.R: 2 > test-ergmMPLE.R: Starting maximum pseudolikelihood estimation (MPLE): > test-ergmMPLE.R: Obtaining the responsible dyads. > test-ergmMPLE.R: Evaluating the predictor and response matrix. > test-ergm.bridge.llr.R: 3 > test-ergmMPLE.R: Maximizing the pseudolikelihood. > test-ergmMPLE.R: Finished MPLE. > test-ergmMPLE.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-ergm.bridge.llr.R: 10 > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: > test-ergm.bridge.llr.R: 11 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 12 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-gflomiss.R: 1 Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 7 > test-gflomiss.R: The log-likelihood improved by 0.0067. > test-gflomiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel... > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-gflomiss.R: Using 16 bridges: 1 > test-gflomiss.R: 2 > test-gflomiss.R: 3 > test-ergm.bridge.llr.R: 8 > test-gflomiss.R: 4 > test-gflomiss.R: 5 > test-ergm.bridge.llr.R: 9 > test-gflomiss.R: 6 > test-gflomiss.R: 7 > test-ergm.bridge.llr.R: 10 > test-gflomiss.R: 8 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-ergm.bridge.llr.R: 11 > test-gflomiss.R: 11 > test-gflomiss.R: 12 > test-ergm.bridge.llr.R: 12 > test-gflomiss.R: 13 > test-gflomiss.R: 14 > test-gflomiss.R: 15 > test-ergm.bridge.llr.R: 13 > test-gflomiss.R: 16 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 14 > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gflomiss.R: 1 Optimizing with step length 1.0000. > test-gflomiss.R: The log-likelihood improved by 0.0050. > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-gflomiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: 2 > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: 3 > test-gflomiss.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 4 > test-gflomiss.R: 2 > test-gflomiss.R: 3 > test-ergm.bridge.llr.R: 5 > test-gflomiss.R: 4 5 > test-gflomiss.R: 6 7 > test-ergm.bridge.llr.R: 6 > test-gflomiss.R: 8 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-gflomiss.R: 11 > test-ergm.bridge.llr.R: 7 > test-gflomiss.R: 12 > test-gflomiss.R: 13 14 > test-ergm.bridge.llr.R: 8 > test-gflomiss.R: 15 > test-gflomiss.R: 16 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gmonkmiss.R: odegree3 odegree4 odegree5 odegree6 > test-gmonkmiss.R: 1 5 7 5 > test-gmonkmiss.R: idegree2 idegree3 idegree4 idegree5 idegree6 idegree7 idegree8 idegree10 > test-gmonkmiss.R: 3 5 1 3 2 1 1 1 > test-gmonkmiss.R: idegree11 > test-gmonkmiss.R: 1 > test-ergm.bridge.llr.R: 11 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-ergm.bridge.llr.R: 12 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-ergm.bridge.llr.R: 13 > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-gmonkmiss.R: 1 Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.6245. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-gmonkmiss.R: 1 > test-ergm.bridge.llr.R: 4 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: 0.0005. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 5 > test-gmonkmiss.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-gmonkmiss.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-gmonkmiss.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gmonkmiss.R: Iteration 1 of at most 60: > test-gmonkmiss.R: Convergence test P-value:3.3e-34 > test-gmonkmiss.R: 1 The log-likelihood improved by 0.4205. > test-gmonkmiss.R: Iteration 2 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.8e-14 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.1501. > test-gmonkmiss.R: Iteration 3 of at most 60: > test-ergm.bridge.llr.R: 6 > test-gmonkmiss.R: Convergence test P-value:2e-04 > test-gmonkmiss.R: 1 The log-likelihood improved by 0.03536. > test-gmonkmiss.R: Iteration 4 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.6e-01 > test-gmonkmiss.R: 1 The log-likelihood improved by 0.007343. > test-gmonkmiss.R: Iteration 5 of at most 60: > test-gmonkmiss.R: Convergence test P-value:2.4e-01 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00569. > test-gmonkmiss.R: Iteration 6 of at most 60: > test-gmonkmiss.R: Convergence test P-value:9.9e-02 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00904. > test-gmonkmiss.R: Iteration 7 of at most 60: > test-gmonkmiss.R: Convergence test P-value:7.6e-01 > test-gmonkmiss.R: Convergence detected. Stopping. > test-gmonkmiss.R: 1 The log-likelihood improved by 0.001102. > test-gmonkmiss.R: Finished CD. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.4514. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.0105. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-ergm.bridge.llr.R: 16 > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-gmonkmiss.R: 1 Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.7035. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-gmonkmiss.R: 1 Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 7 > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 8 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-ergm.bridge.llr.R: 13 > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-gof.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gof.R: Iteration 1 of at most 60: > test-gof.R: Convergence test P-value:1.8e-266 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 1.541. > test-gof.R: Iteration 2 of at most 60: > test-gof.R: Convergence test P-value:2e-184 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 1.461. > test-gof.R: Iteration 3 of at most 60: > test-gof.R: Convergence test P-value:1.8e-38 > test-gof.R: 1 > test-ergm.bridge.llr.R: 2 > test-gof.R: The log-likelihood improved by 0.1713. > test-gof.R: Iteration 4 of at most 60: > test-gof.R: Convergence test P-value:5.5e-05 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.02153. > test-gof.R: Iteration 5 of at most 60: > test-gof.R: Convergence test P-value:3.3e-01 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.00457. > test-gof.R: Iteration 6 of at most 60: > test-gof.R: Convergence test P-value:4.4e-02 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.009062. > test-gof.R: Iteration 7 of at most 60: > test-gof.R: Convergence test P-value:4.6e-01 > test-gof.R: 1 > test-ergm.bridge.llr.R: 3 > test-gof.R: The log-likelihood improved by 0.003667. > test-gof.R: Iteration 8 of at most 60: > test-gof.R: Convergence test P-value:8.7e-01 > test-gof.R: Convergence detected. Stopping. > test-gof.R: 1 The log-likelihood improved by 0.001439. > test-gof.R: Finished CD. > test-gof.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gof.R: Iteration 1 of at most 2: > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-gof.R: 1 > test-ergm.bridge.llr.R: 9 > test-gof.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.2102. > test-gof.R: Estimating equations are not within tolerance region. > test-gof.R: Iteration 2 of at most 2: > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-gof.R: 1 > test-gof.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.0698. > test-ergm.bridge.llr.R: 14 > test-gof.R: Convergence test p-value: 0.0024. Converged with 99% confidence. > test-gof.R: Finished MCMLE. > test-gof.R: This model was fit using MCMC. To examine model diagnostics and check > test-gof.R: for degeneracy, use the mcmc.diagnostics() function. > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-ergm.bridge.llr.R: 15 > test-gof.R: > test-gof.R: Goodness-of-fit for > test-ergm.bridge.llr.R: 16 > test-gof.R: model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 124 167.55 196 0.98 > test-gof.R: nonzero 88 68 88.02 106 1.00 > test-gof.R: nodematch.sum.group.Loyal 49 33 51.56 74 0.78 > test-gof.R: nodematch.sum.group.Outcasts 20 9 19.55 32 0.98 > test-gof.R: nodematch.sum.group.Turks 59 39 58.04 74 0.96 > test-gof.R: > test-gof.R: Goodness-of-fit for cumulative distribution function > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: 0 218 200 217.98 238 1.00 > test-gof.R: 1 256 241 253.05 272 0.56 > test-gof.R: 2 276 271 279.42 290 0.48 > test-gof.R: 3 306 306 306.00 306 1.00 > test-gof.R: 4 306 306 306.00 306 1.00 > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-gof.R: > test-gof.R: Goodness-of-fit for model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 131 163.65 201 0.76 > test-gof.R: nonzero 88 70 86.60 106 0.82 > test-gof.R: nodematch.sum.group.Loyal 49 25 48.56 68 0.94 > test-gof.R: nodematch.sum.group.Outcasts 20 12 19.57 31 0.88 > test-gof.R: nodematch.sum.group.Turks 59 31 57.33 77 0.88 > test-gof.R: > test-gof.R: Goodness-of-fit for user statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: atmost.0 218 200 219.40 236 0.82 > test-gof.R: atmost.1 256 239 254.73 265 0.90 > test-gof.R: atmost.2 276 272 280.22 288 0.34 > test-gof.R: atmost.3 306 306 306.00 306 1.00 > test-gof.R: atmost.4 306 306 306.00 306 1.00 > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-metrics.R: 1 Optimizing with step length 0.4613. > test-metrics.R: The log-likelihood improved by 4.1429. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.8364. > test-metrics.R: The log-likelihood improved by 4.7215. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.1346. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.1129. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss-dep.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-miss-dep.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network > test-miss-dep.R: satisfies all constraints. > test-miss-dep.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss-dep.R: Iteration 1 of at most 60: > test-miss-dep.R: Convergence test P-value:4.6e-47 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 1.824. > test-miss-dep.R: Iteration 2 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0037. > test-metrics.R: Convergence test p-value: 0.0004. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss-dep.R: Convergence test P-value:1.5e-23 > test-miss-dep.R: 1 The log-likelihood improved by 0.6054. > test-miss-dep.R: Iteration 3 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: Convergence test P-value:1.1e-07 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.1283. > test-miss-dep.R: Iteration 4 of at most 60: > test-miss-dep.R: Convergence test P-value:3.3e-04 > test-miss-dep.R: 1 The log-likelihood improved by 0.05435. > test-miss-dep.R: Iteration 5 of at most 60: > test-miss-dep.R: Convergence test P-value:2.1e-01 > test-miss-dep.R: 1 The log-likelihood improved by 0.006185. > test-miss-dep.R: Iteration 6 of at most 60: > test-miss-dep.R: Convergence test P-value:4.1e-01 > test-miss-dep.R: 1 The log-likelihood improved by 0.002664. > test-miss-dep.R: Iteration 7 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4018. > test-metrics.R: The log-likelihood improved by 3.2780. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss-dep.R: Convergence test P-value:1.6e-01 > test-miss-dep.R: 1 The log-likelihood improved by 0.007694. > test-miss-dep.R: Iteration 8 of at most 60: > test-miss-dep.R: Convergence test P-value:1.9e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.006878. > test-miss-dep.R: Iteration 9 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.6020. > test-metrics.R: The log-likelihood improved by 3.4584. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss-dep.R: Convergence test P-value:7.8e-01 > test-miss-dep.R: Convergence detected. Stopping. > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.0003111. > test-miss-dep.R: Finished CD. > test-miss-dep.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss-dep.R: Iteration 1 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.2132. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0377. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: Post-burnin sample is constant; returning. > test-miss-dep.R: 1 Optimizing with step length 1.0000. > test-miss-dep.R: The log-likelihood improved by 0.0017. > test-miss-dep.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-miss-dep.R: Finished MCMLE. > test-miss-dep.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-miss-dep.R: Using 16 bridges: > test-miss-dep.R: 1 > test-miss-dep.R: 2 > test-metrics.R: 1 Optimizing with step length 0.4158. > test-miss-dep.R: 3 > test-metrics.R: The log-likelihood improved by 1.9115. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss-dep.R: 4 > test-miss-dep.R: 5 6 7 > test-miss-dep.R: 8 > test-miss-dep.R: 9 > test-metrics.R: 1 Optimizing with step length 0.4804. > test-miss-dep.R: 10 > test-metrics.R: The log-likelihood improved by 2.5519. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss-dep.R: 11 > test-miss-dep.R: 12 > test-miss-dep.R: 13 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss-dep.R: 14 > test-miss-dep.R: 15 > test-metrics.R: The log-likelihood improved by 2.9415. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss-dep.R: 16 . > test-miss-dep.R: Note: The constraint on the sample space is not dyad-independent. Null > test-miss-dep.R: model likelihood is only implemented for dyad-independent constraints > test-miss-dep.R: at this time. Number of observations is similarly poorly defined. This > test-miss-dep.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-miss-dep.R: AIC, BIC, etc.) is only valid between models with the same reference > test-miss-dep.R: distribution and constraints. > test-miss-dep.R: > test-miss-dep.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss-dep.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: n=20, density=0.1, missing=0.1 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.1226. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:3e-13 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2096. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-12 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1974. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-11 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.341. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1744. > test-miss.CD.R: Iteration 5 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-16 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6862. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.3e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.3025. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-19 > test-miss.CD.R: 1 The log-likelihood improved by 0.1888. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.3e-17 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2862. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-07 > test-miss.CD.R: 1 The log-likelihood improved by 0.2007. > test-miss.CD.R: Iteration 10 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03854. > test-miss.CD.R: Iteration 11 of at most 60: > test-miss.CD.R: Convergence test P-value:7.9e-05 > test-miss.CD.R: 1 The log-likelihood improved by 0.1259. > test-miss.CD.R: Iteration 12 of at most 60: > test-miss.CD.R: Convergence test P-value:7.9e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 The log-likelihood improved by 0.0004877. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: 1 2 > test-metrics.R: 3 4 5 6 7 > test-metrics.R: 8 9 10 11 Optimizing with step length 0.3934. > test-metrics.R: The log-likelihood improved by 4.1457. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-68 > test-miss.CD.R: 1 The log-likelihood improved by 0.7099. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-64 > test-miss.CD.R: 1 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss.CD.R: The log-likelihood improved by 0.5925. > test-miss.CD.R: Iteration 3 of at most 60: > test-metrics.R: The log-likelihood improved by 2.8651. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:9.6e-53 > test-miss.CD.R: 1 The log-likelihood improved by 0.6327. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:1.1e-37 > test-miss.CD.R: 1 The log-likelihood improved by 0.8025. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-30 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.583. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.6e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6591. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:6.2e-04 > test-miss.CD.R: 1 The log-likelihood improved by 0.05663. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.4e-01 > test-miss.CD.R: 1 The log-likelihood improved by 0.007268. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:9.1e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.3360. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-54 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.5854. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:4.4e-52 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6164. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:4.5e-46 > test-miss.CD.R: 1 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-miss.CD.R: The log-likelihood improved by 0.6486. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-32 > test-metrics.R: The log-likelihood improved by 0.0827. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 1.361. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:6.8e-14 > test-miss.CD.R: 1 The log-likelihood improved by 0.379. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-03 > test-miss.CD.R: 1 > test-metrics.R: Convergence test p-value: 0.0004. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: The log-likelihood improved by 0.05118. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.9e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03478. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:6.5e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.001186. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Network statistics: > test-miss.CD.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.CD.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.CD.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.CD.R: 0 0 0 0 0 0 0 > test-miss.CD.R: Correct estimate = -2.028148 > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.8e-283 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by 1.711. > test-miss.CD.R: Iteration 2 of at most 60: > test-metrics.R: 1 2 3 4 5 6 7 8 9 > test-metrics.R: 10 11 > test-metrics.R: Optimizing with step length 0.3701. > test-metrics.R: The log-likelihood improved by 2.3554. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:2.9e-233 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by 1.753. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:4.4e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 4 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 0.5218. > test-metrics.R: The log-likelihood improved by 2.9696. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-199 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:2e-201 > test-miss.CD.R: 1 2 > test-metrics.R: 1 2 3 Optimizing with step length 0.8048. > test-metrics.R: The log-likelihood improved by 1.8226. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-208 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:4.7e-207 > test-miss.CD.R: 1 2 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 8 of at most 60: > test-metrics.R: The log-likelihood improved by 0.2705. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:2.7e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:4.1e-205 > test-miss.CD.R: 1 2 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0012. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 10 of at most 60: > test-metrics.R: Convergence test p-value: 0.0099. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:1.4e-210 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 11 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-187 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 12 of at most 60: > test-miss.CD.R: Convergence test P-value:1.2e-199 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 13 of at most 60: > test-miss.CD.R: Convergence test P-value:6.6e-211 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 14 of at most 60: > test-metrics.R: 1 2 3 4 > test-metrics.R: 5 6 7 8 9 10 11 12 13 Optimizing with step length 0.4397. > test-metrics.R: The log-likelihood improved by 3.0119. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:2.2e-203 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 15 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-197 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 16 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 3 4 5 > test-metrics.R: 6 > test-metrics.R: 7 8 > test-metrics.R: 9 > test-metrics.R: 10 11 > test-metrics.R: 12 > test-metrics.R: Optimizing with step length 0.6225. > test-metrics.R: The log-likelihood improved by 3.6934. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:1e-201 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 17 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 18 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.0488. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:6.3e-210 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 19 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-213 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: 1 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 20 of at most 60: > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0821. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:2.6e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 21 of at most 60: > test-miss.R: n=20, density=0.1, missing=0.05 > test-miss.CD.R: Convergence test P-value:5.5e-202 > test-miss.CD.R: 1 2 > test-miss.R: Correct estimate = -2.118156 with log-likelihood -120.6883 . > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 22 of at most 60: > test-miss.CD.R: Convergence test P-value:7.2e-205 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 23 of at most 60: > test-miss.R: MPLE estimate = -2.118156 with log-likelihood -120.6883 OK. > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.CD.R: Convergence test P-value:3.5e-207 > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.CD.R: 1 2 > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 26 dyads is required. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Imputing 3 edges at random. > test-miss.CD.R: Iteration 24 of at most 60: > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 41 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 25 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-193 > test-miss.CD.R: 1 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 26 of at most 60: > test-miss.CD.R: Convergence test P-value:1.8e-212 > test-miss.CD.R: 1 > test-miss.CD.R: 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 27 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -49.45267 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 0.4099. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.5936. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.374066 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:8e-208 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 28 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-198 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 29 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:2.3e-204 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 30 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.36008 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 0.4981. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.2702. > test-miss.R: Distance from origin on tolerance region scale: 192.073 (previously 422.077). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.647302 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:2.5e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 31 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.CD.R: Convergence test P-value:9.4e-205 > test-miss.CD.R: 1 2 > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 32 of at most 60: > test-miss.CD.R: Convergence test P-value:2.8e-202 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 33 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -17.50766 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 3 4 5 Optimizing with step length 0.7736. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.0776. > test-miss.R: Distance from origin on tolerance region scale: 71.38353 (previously 259.1767). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.95412 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:3.3e-209 > test-miss.CD.R: 1 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 34 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.CD.R: Convergence test P-value:2.8e-201 > test-miss.CD.R: 1 2 > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -5.621399 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.3258. > test-miss.R: Distance from origin on tolerance region scale: 6.488425 (previously 62.9371). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 5 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.070021 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 35 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-206 > test-miss.R: Back from unconstrained MCMC. > test-miss.CD.R: 1 2 > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 36 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 32. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -1.853909 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.CD.R: Convergence test P-value:1.3e-192 > test-miss.CD.R: 1 2 > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0589. > test-miss.R: Distance from origin on tolerance region scale: 1.17581 (previously 10.81058). > test-miss.R: Test statistic: T^2 = 11.54078, with 1 free parameter(s) and 179.1884 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0008. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. Initializing model to obtain the list of dyad-independent terms... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 37 of at most 60: > test-miss.R: Fitting the dyad-independent submodel... > test-miss.CD.R: Convergence test P-value:5.1e-199 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 38 of at most 60: > test-miss.R: Dyad-independent submodel MLE has likelihood -120.6883 at: > test-miss.R: [1] -2.118156 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.CD.R: Convergence test P-value:1.7e-208 > test-miss.CD.R: 1 2 > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-2.133081, 0.000000]. > test-miss.R: Running theta=[-2.132118, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 39 of at most 60: > test-miss.R: Running theta=[-2.131155, 0.000000]. > test-miss.R: Running theta=[-2.130192, 0.000000]. > test-miss.R: Running theta=[-2.129229, 0.000000]. > test-miss.R: Running theta=[-2.128267, 0.000000]. > test-miss.R: Running theta=[-2.127304, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.126341, 0.000000]. > test-miss.R: Running theta=[-2.125378, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 40 of at most 60: > test-miss.R: Running theta=[-2.124415, 0.000000]. > test-miss.R: Running theta=[-2.123452, 0.000000]. > test-miss.R: Running theta=[-2.122489, 0.000000]. > test-miss.R: Running theta=[-2.121526, 0.000000]. > test-miss.R: Running theta=[-2.120563, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.1e-205 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.1196, 0.0000]. > test-miss.R: Running theta=[-2.118637, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.009575496) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.119005, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 41 of at most 60: > test-miss.R: Running theta=[-2.119968, 0.000000]. > test-miss.R: Running theta=[-2.120931, 0.000000]. > test-miss.R: Running theta=[-2.121894, 0.000000]. > test-miss.R: Running theta=[-2.122857, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-204 > test-miss.R: Running theta=[-2.12382, 0.00000]. > test-miss.R: Running theta=[-2.124783, 0.000000]. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.125746, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 42 of at most 60: > test-miss.R: Running theta=[-2.126709, 0.000000]. > test-miss.R: Running theta=[-2.127671, 0.000000]. > test-miss.R: Running theta=[-2.128634, 0.000000]. > test-miss.R: Running theta=[-2.129597, 0.000000]. > test-miss.R: Running theta=[-2.13056, 0.00000]. > test-miss.CD.R: Convergence test P-value:8.4e-196 > test-miss.R: Running theta=[-2.131523, 0.000000]. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.132486, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 43 of at most 60: > test-miss.R: Running theta=[-2.133449, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.007542247) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132854, 0.000000]. > test-miss.R: Running theta=[-2.131891, 0.000000]. > test-miss.R: Running theta=[-2.130928, 0.000000]. > test-miss.R: Running theta=[-2.129965, 0.000000]. > test-miss.R: Running theta=[-2.129002, 0.000000]. > test-miss.CD.R: Convergence test P-value:7.5e-206 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 44 of at most 60: > test-miss.R: Running theta=[-2.128039, 0.000000]. > test-miss.R: Running theta=[-2.127076, 0.000000]. > test-miss.R: Running theta=[-2.126113, 0.000000]. > test-miss.R: Running theta=[-2.125151, 0.000000]. > test-miss.R: Running theta=[-2.124188, 0.000000]. > test-miss.R: Running theta=[-2.123225, 0.000000]. > test-miss.R: Running theta=[-2.122262, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.9e-197 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.121299, 0.000000]. > test-miss.R: Running theta=[-2.120336, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 45 of at most 60: > test-miss.R: Running theta=[-2.119373, 0.000000]. > test-miss.R: Running theta=[-2.11841, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.006188692) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.118778, 0.000000]. > test-miss.R: Running theta=[-2.119741, 0.000000]. > test-miss.R: Running theta=[-2.120704, 0.000000]. > test-miss.R: Running theta=[-2.121667, 0.000000]. > test-miss.CD.R: Convergence test P-value:2.8e-211 > test-miss.CD.R: 1 > test-miss.R: Running theta=[-2.12263, 0.00000]. > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.123593, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 46 of at most 60: > test-miss.R: Running theta=[-2.124555, 0.000000]. > test-miss.R: Running theta=[-2.125518, 0.000000]. > test-miss.R: Running theta=[-2.126481, 0.000000]. > test-miss.R: Running theta=[-2.127444, 0.000000]. > test-miss.R: Running theta=[-2.128407, 0.000000]. > test-miss.R: Running theta=[-2.12937, 0.00000]. > test-miss.CD.R: Convergence test P-value:6.5e-203 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.130333, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 47 of at most 60: > test-miss.R: Running theta=[-2.131296, 0.000000]. > test-miss.R: Running theta=[-2.132259, 0.000000]. > test-miss.R: Running theta=[-2.133222, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005396227) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132626, 0.000000]. > test-miss.R: Running theta=[-2.131664, 0.000000]. > test-miss.CD.R: Convergence test P-value:4.7e-204 > test-miss.CD.R: 1 > test-miss.R: Running theta=[-2.130701, 0.000000]. > test-miss.R: Running theta=[-2.129738, 0.000000]. > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.128775, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 48 of at most 60: > test-miss.R: Running theta=[-2.127812, 0.000000]. > test-miss.R: Running theta=[-2.126849, 0.000000]. > test-miss.R: Running theta=[-2.125886, 0.000000]. > test-miss.R: Running theta=[-2.124923, 0.000000]. > test-miss.R: Running theta=[-2.12396, 0.00000]. > test-miss.CD.R: Convergence test P-value:5.7e-209 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.122997, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 49 of at most 60: > test-miss.R: Running theta=[-2.122035, 0.000000]. > test-miss.R: Running theta=[-2.121072, 0.000000]. > test-miss.R: Running theta=[-2.120109, 0.000000]. > test-miss.R: Running theta=[-2.119146, 0.000000]. > test-miss.R: Running theta=[-2.118183, 0.000000]. > test-miss.CD.R: Convergence test P-value:4e-201 > test-miss.CD.R: 1 2 > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 50 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-218 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 51 of at most 60: > test-miss.CD.R: Convergence test P-value:5.7e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 52 of at most 60: > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1728:32768 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 486 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 1.8539 5.6566 0.2566 0.4463 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -8.881 -1.881 2.119 5.119 14.119 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -2.129e-17 1.663e+00 1.067e-01 1.067e-01 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.8807 -1.3807 0.1193 1.1193 4.0693 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. 1.853909e+00 NA > test-miss.R: test stat. 4.040502e+00 1.632566e+01 > test-miss.R: P-val. 5.333689e-05 7.904382e-05 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 0.50229634 > test-miss.R: Lag 128 0.27968825 > test-miss.R: Lag 192 0.14989734 > test-miss.R: Lag 256 0.08553620 > test-miss.R: Lag 320 0.01488518 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.04999730 > test-miss.R: Lag 128 0.05488745 > test-miss.R: Lag 192 -0.03080175 > test-miss.R: Lag 256 0.03734623 > test-miss.R: Lag 320 0.01289319 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.4658741 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.6413056 > test-miss.R: Joint P-value (lower = worse): 0.5503774 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.CD.R: Convergence test P-value:2.5e-206 > test-miss.CD.R: 1 2 > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.2553269 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.7984706 > test-miss.R: Joint P-value (lower = worse): 0.5503774 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -2.133563 with log-likelihood -120.7039 OK. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 53 of at most 60: > test-miss.CD.R: Convergence test P-value:6e-198 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 54 of at most 60: > test-miss.R: Correct estimate = > test-miss.CD.R: Convergence test P-value:1.5e-204 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 55 of at most 60: > test-miss.R: -1.663142 with log-likelihood -79.82064 . > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.CD.R: Convergence test P-value:2.9e-195 > test-miss.CD.R: 1 > test-miss.R: MPLE estimate = -1.663142 with log-likelihood -79.82064 OK. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 56 of at most 60: > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.CD.R: Convergence test P-value:6.8e-200 > test-miss.CD.R: 1 2 > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 57 of at most 60: > test-miss.R: Imputing 8 dyads is required. > test-miss.R: Imputing 1 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 30 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:8e-207 > test-miss.CD.R: 1 > test-miss.CD.R: 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 58 of at most 60: > test-miss.CD.R: Convergence test P-value:3.6e-215 > test-miss.CD.R: 1 > test-miss.CD.R: 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 59 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:1.6e-199 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 60 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.15638 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 6 7 8 Optimizing with step length 0.5368. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 4.3000. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.146333 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:6.1e-198 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... Saving _problems/test-miss.CD-76.R > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -14.85185 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 3.2552. > test-miss.R: Distance from origin on tolerance region scale: 64.83604 (previously 323.1391). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.584689 > test-miss.R: Starting unconstrained MCMC... > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-miss.R: Back from unconstrained MCMC. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.600823 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1297. > test-miss.R: Distance from origin on tolerance region scale: 2.582218 (previously 84.20395). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.684393 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.2386831 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0011. > test-miss.R: Distance from origin on tolerance region scale: 0.02175454 (previously 2.583022). > test-miss.R: Test statistic: T^2 = 16.95471, with 1 free parameter(s) and 192.1073 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0001. > test-miss.R: Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Dyad-independent submodel MLE has likelihood -79.82064 at: > test-miss.R: [1] -1.663142 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-1.674863, 0.000000]. > test-miss.R: Running theta=[-1.674107, 0.000000]. > test-miss.R: Running theta=[-1.673351, 0.000000]. > test-miss.R: Running theta=[-1.672594, 0.000000]. > test-miss.R: Running theta=[-1.671838, 0.000000]. > test-miss.R: Running theta=[-1.671082, 0.000000]. > test-miss.R: Running theta=[-1.670326, 0.000000]. > test-miss.R: Running theta=[-1.66957, 0.00000]. > test-miss.R: Running theta=[-1.668813, 0.000000]. > test-miss.R: Running theta=[-1.668057, 0.000000]. > test-miss.R: Running theta=[-1.667301, 0.000000]. > test-miss.R: Running theta=[-1.666545, 0.000000]. > test-miss.R: Running theta=[-1.665789, 0.000000]. > test-miss.R: Running theta=[-1.665033, 0.000000]. > test-miss.R: Running theta=[-1.664276, 0.000000]. > test-miss.R: Running theta=[-1.66352, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005483681) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-1.663809, 0.000000]. > test-miss.R: Running theta=[-1.664565, 0.000000]. > test-miss.R: Running theta=[-1.665321, 0.000000]. > test-miss.R: Running theta=[-1.666078, 0.000000]. > test-miss.R: Running theta=[-1.666834, 0.000000]. > test-miss.R: Running theta=[-1.66759, 0.00000]. > test-miss.R: Running theta=[-1.668346, 0.000000]. > test-miss.R: Running theta=[-1.669102, 0.000000]. > test-miss.R: Running theta=[-1.669858, 0.000000]. > test-miss.R: Running theta=[-1.670615, 0.000000]. > test-miss.R: Running theta=[-1.671371, 0.000000]. > test-miss.R: Running theta=[-1.672127, 0.000000]. > test-miss.R: Running theta=[-1.672883, 0.000000]. > test-miss.R: Running theta=[-1.673639, 0.000000]. > test-miss.R: Running theta=[-1.674396, 0.000000]. > test-miss.R: Running theta=[-1.675152, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.2387 5.2156 0.3346 0.3867 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -9.2346 -4.2346 -0.2346 2.7654 11.7154 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 4.040e-17 1.007e+00 6.463e-02 6.463e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -1.2346 -0.7346 -0.2346 0.7654 2.7154 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.2386831 NA > test-miss.R: test stat. -0.6087923 0.3706280 > test-miss.R: P-val. 0.5426621 0.5433813 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.000000000 > test-miss.R: Lag 128 0.141730657 > test-miss.R: Lag 256 -0.008044799 > test-miss.R: Lag 384 0.039503814 > test-miss.R: Lag 512 0.016265240 > test-miss.R: Lag 640 0.025525909 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.03837238 > test-miss.R: Lag 128 0.06102163 > test-miss.R: Lag 192 0.01817600 > test-miss.R: Lag 256 -0.07663989 > test-miss.R: Lag 320 -0.02107378 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -1.387683 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.1652336 > test-miss.R: Joint P-value (lower = worse): 0.2706448 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.5702328 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.5685198 > test-miss.R: Joint P-value (lower = worse): 0.2706448 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -1.675241 with log-likelihood -79.81794 OK. > test-miss.R: Correct estimate = -3.157 with log-likelihood -8.355963 . > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: MPLE estimate = -3.157 with log-likelihood -8.355963 OK. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: 'ergm:MH_TNT'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 2 dyads is required. > test-miss.R: Imputing 0 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 2 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.942387 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.8416. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.729057 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -0.9012346 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1847. > test-miss.R: Distance from origin on tolerance region scale: 3.678483 (previously 39.20962). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -3.138904 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.05349794 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0008. > test-miss.R: Distance from origin on tolerance region scale: 0.01512904 (previously 4.293514). > test-miss.R: Test statistic: T^2 = 22.84874, with 1 free parameter(s) and 256.603 degrees of freedom. > test-miss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Dyad-independent submodel MLE has likelihood -8.355963 at: > test-miss.R: [1] -3.157 0.000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-3.11196, 0.00000]. > test-miss.R: Running theta=[-3.114866, 0.000000]. > test-miss.R: Running theta=[-3.117772, 0.000000]. > test-miss.R: Running theta=[-3.120678, 0.000000]. > test-miss.R: Running theta=[-3.123584, 0.000000]. > test-miss.R: Running theta=[-3.126489, 0.000000]. > test-miss.R: Running theta=[-3.129395, 0.000000]. > test-miss.R: Running theta=[-3.132301, 0.000000]. > test-miss.R: Running theta=[-3.135207, 0.000000]. > test-miss.R: Running theta=[-3.138113, 0.000000]. > test-miss.R: Running theta=[-3.141018, 0.000000]. > test-miss.R: Running theta=[-3.143924, 0.000000]. > test-miss.R: Running theta=[-3.14683, 0.00000]. > test-miss.R: Running theta=[-3.149736, 0.000000]. > test-miss.R: Running theta=[-3.152642, 0.000000]. > test-miss.R: Running theta=[-3.155548, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 3584:65536 > test-miss.R: Thinning interval = 256 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.05350 1.39509 0.08949 0.08949 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.05761 -1.05761 -0.05761 0.94239 2.94239 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 9.838e-19 2.335e-01 1.498e-02 1.763e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -0.05761 -0.05761 -0.05761 -0.05761 0.94239 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.05349794 NA > test-miss.R: test stat. -0.58650248 0.3476007 > test-miss.R: P-val. 0.55753790 0.5559932 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 256 -0.07640761 > test-miss.R: Lag 512 0.04674441 > test-miss.R: Lag 768 -0.08703223 > test-miss.R: Lag 1024 -0.01273911 > test-miss.R: Lag 1280 0.08918131 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 128 0.01440843 > test-miss.R: Lag 256 -0.06163854 > test-miss.R: Lag 384 -0.05752332 > test-miss.R: Lag 512 0.09381586 > test-miss.R: Lag 640 0.16935966 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 1.222791 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.2214088 > test-miss.R: Joint P-value (lower = worse): 0.530107 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 0.899493 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.3683901 > test-miss.R: Joint P-value (lower = worse): 0.530107 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -3.110507 with log-likelihood -8.357166 OK. > test-miss.R: Network statistics: > test-miss.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.R: 0 0 0 0 0 0 0 > test-miss.R: Correct estimate = -2.028148 > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Iteration 1 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 > test-miss.R: 4 > test-miss.R: 5 6 7 8 9 > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 2 of at most 5: > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-miss.R: 1 2 3 4 5 6 7 8 9 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 3 of at most 5: > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: 1 2 3 > test-miss.R: 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 4 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 4 5 6 7 8 Optimizing with step length 1.0000. > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 5 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 4 5 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Estimating equations did not move closer to tolerance region more than 1 time(s) in 4 steps; increasing sample size. > test-miss.R: MCMLE estimation did not converge after 5 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Using 16 bridges: 1 > test-miss.R: 2 > test-miss.R: 3 4 > test-miss.R: 5 > test-miss.R: 6 7 8 > test-miss.R: 9 > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: 12 > test-miss.R: 13 > test-miss.R: 14 > test-miss.R: 15 16 > test-miss.R: . > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-offset.R: Obtaining the responsible dyads. > test-mple-offset.R: Evaluating the predictor and response matrix. > test-mple-offset.R: Maximizing the pseudolikelihood. > test-mple-offset.R: Finished MPLE. > test-mple-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-offset.R: Iteration 1 of at most 60: > test-mple-offset.R: 1 > test-mple-offset.R: Optimizing with step length 1.0000. > test-mple-offset.R: The log-likelihood improved by 0.0040. > test-mple-offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-mple-offset.R: Finished MCMLE. > test-mple-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-mple-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-target.R: [1] 350 50 250 > test-mple-target.R: Structural check: > test-mple-target.R: Mean degree: 1.4 . > test-mple-target.R: Average degree among nodes with degree 2 or higher: 2.25 . > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-target.R: Iteration 1 of at most 60: > test-networkLite.R: Loading required package: networkLite > test-mple-cov.R: Estimating Bootstrap Standard Errors using 500 simulated networks. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 > test-networkLite.R: 4 5 6 7 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 2 > test-networkLite.R: 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-networkLite.R: Convergence test p-value: 0.0019. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 > test-networkLite.R: 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-nodrop.R: 1 Optimizing with step length 1.0000. > test-nodrop.R: The log-likelihood improved by 0.0005. > test-nodrop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-networkLite.R: Convergence test p-value: 0.0019. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nodrop.R: 1 Optimizing with step length 0.2247. > test-nodrop.R: The log-likelihood improved by 2.2822. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-nodrop.R: 1 > test-networkLite.R: 1 Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nodrop.R: Optimizing with step length 0.2817. > test-nodrop.R: The log-likelihood improved by 2.4734. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-nodrop.R: Iteration 1 of at most 2: > test-nodrop.R: 1 Optimizing with step length 0.2675. > test-nodrop.R: The log-likelihood improved by 3.3752. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.3098. > test-nodrop.R: The log-likelihood improved by 2.4783. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: Convergence test p-value: 0.0247. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nonident-test.R: 1 > test-nonident-test.R: Optimizing with step length 1.0000. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: Convergence test p-value: 0.0085. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: 1 > test-networkLite.R: 2 3 4 5 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 10 11 12 13 > test-networkLite.R: 14 15 16 17 18 19 20 21 22 23 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nonident-test.R: 1 Optimizing with step length 0.8147. > test-networkLite.R: 1 2 3 4 5 6 > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 7 8 > test-networkLite.R: 9 > test-networkLite.R: 10 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-networkLite.R: Convergence test p-value: 0.0010. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nonunique-names.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonunique-names.R: Obtaining the responsible dyads. > test-nonunique-names.R: Evaluating the predictor and response matrix. > test-nonunique-names.R: Maximizing the pseudolikelihood. > test-nonunique-names.R: Finished MPLE. > test-nonunique-names.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonunique-names.R: Iteration 1 of at most 1: > test-networkLite.R: 1 Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-networkLite.R: Convergence test p-value: 0.0247. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nonunique-names.R: 1 > test-nonunique-names.R: Optimizing with step length 1.0000. > test-nonunique-names.R: The log-likelihood improved by 0.0084. > test-nonunique-names.R: Convergence test p-value: 0.0480. Not converged with 99% confidence; increasing sample size. > test-nonunique-names.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonunique-names.R: Finished MCMLE. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-nonunique-names.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonunique-names.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nonunique-names.R: Sample statistics summary: > test-nonunique-names.R: > test-nonunique-names.R: Iterations = 2304:44032 > test-nonunique-names.R: Thinning interval = 128 > test-nonunique-names.R: Number of chains = 1 > test-nonunique-names.R: Sample size per chain = 327 > test-nonunique-names.R: > test-nonunique-names.R: 1. Empirical mean and standard deviation for each variable, > test-nonunique-names.R: plus standard error of the mean: > test-nonunique-names.R: > test-nonunique-names.R: Mean SD Naive SE Time-series SE > test-nonunique-names.R: edgecov.a -0.2171 3.380 0.1869 0.3114 > test-nonunique-names.R: edgecov.a 0.1346 3.565 0.1971 0.4311 > test-nonunique-names.R: > test-nonunique-names.R: 2. Quantiles for each variable: > test-nonunique-names.R: > test-nonunique-names.R: 2.5% 25% 50% 75% 97.5% > test-nonunique-names.R: edgecov.a -7 -2 0 2 6.85 > test-nonunique-names.R: edgecov.a -7 -2 0 3 7.00 > test-nonunique-names.R: > test-nonunique-names.R: > test-nonunique-names.R: Are sample statistics significantly different from observed? > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-nonunique-names.R: edgecov.a edgecov.a (Omni) > test-nonunique-names.R: diff. -0.2171254 0.1345566 NA > test-nonunique-names.R: test stat. -0.6971750 0.3120903 1.2954084 > test-nonunique-names.R: P-val. 0.4856933 0.7549719 0.5307488 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics cross-correlations: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: edgecov.a 1.0000000 0.6853513 > test-nonunique-names.R: edgecov.a 0.6853513 1.0000000 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics auto-correlation: > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: Lag 0 1.000000000 1.00000000 > test-nonunique-names.R: Lag 128 0.592467538 0.65334235 > test-nonunique-names.R: Lag 256 0.298337375 0.41906307 > test-nonunique-names.R: Lag 384 0.082532656 0.22830518 > test-nonunique-names.R: Lag 512 -0.003477022 0.08811653 > test-nonunique-names.R: Lag 640 -0.090771181 0.03701357 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics burn-in diagnostic (Geweke): > test-networkLite.R: The log-likelihood improved by 0.0419. > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: > test-nonunique-names.R: Fraction in 1st window = 0.1 > test-nonunique-names.R: Fraction in 2nd window = 0.5 > test-nonunique-names.R: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: -0.41748721 0.04619135 > test-nonunique-names.R: > test-nonunique-names.R: Individual P-values (lower = worse): > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: 0.6763221 0.9631577 > test-nonunique-names.R: Joint P-value (lower = worse): 0.8447246 > test-nonunique-names.R: > test-nonunique-names.R: Note: MCMC diagnostics shown here are from the last round of > test-nonunique-names.R: simulation, prior to computation of final parameter estimates. > test-nonunique-names.R: Because the final estimates are refinements of those used for this > test-nonunique-names.R: simulation run, these diagnostics may understate model performance. > test-nonunique-names.R: To directly assess the performance of the final model on in-model > test-nonunique-names.R: statistics, please use the GOF command: gof(ergmFitObject, > test-nonunique-names.R: GOF=~model). > test-nonunique-names.R: > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: 1 2 > test-networkLite.R: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Optimizing with step length 1.0000. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: 2 3 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.6004. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-offsets.R: The log-likelihood improved by 0.0061. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-offsets.R: Using 16 bridges: > test-offsets.R: 1 > test-offsets.R: 2 > test-offsets.R: 3 > test-offsets.R: 4 > test-offsets.R: 5 > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: 6 7 > test-offsets.R: 8 > test-offsets.R: 9 > test-offsets.R: 10 > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 > test-offsets.R: 11 > test-networkLite.R: The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: 12 > test-offsets.R: 13 > test-offsets.R: 14 > test-offsets.R: 15 16 . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.7959. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-parallel.R: parallel test(s) skipped. Set ENABLE_statnet_TESTS environment variable to run. > test-parallel.R: Skipping OpenMP test. This package installation was built without OpenMP support. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0207. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: Convergence test p-value: 0.0005. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: Using 16 bridges: 1 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 2 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 3 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 4 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 5 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 6 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 7 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 8 > test-offsets.R: 9 > test-offsets.R: 10 > test-offsets.R: 11 > test-offsets.R: 12 > test-offsets.R: 13 > test-offsets.R: 14 > test-offsets.R: 15 > test-offsets.R: 16 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: Starting maximum pseudolikelihood estimation (MPLE): > test-runtime-diags.R: Obtaining the responsible dyads. > test-runtime-diags.R: Evaluating the predictor and response matrix. > test-runtime-diags.R: Maximizing the pseudolikelihood. > test-runtime-diags.R: Finished MPLE. > test-runtime-diags.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-runtime-diags.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: 1 > test-runtime-diags.R: Optimizing with step length 1.0000. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: The log-likelihood improved by 0.0414. > test-runtime-diags.R: Convergence test p-value: 0.0016. Converged with 99% confidence. > test-runtime-diags.R: Finished MCMLE. > test-runtime-diags.R: This model was fit using MCMC. To examine model diagnostics and check > test-runtime-diags.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: 1 Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: 1 2 > test-scoping.R: 3 > test-scoping.R: 4 > test-scoping.R: 5 > test-scoping.R: 6 > test-scoping.R: 7 > test-scoping.R: 8 > test-scoping.R: 9 > test-scoping.R: 10 > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 15 > test-scoping.R: 16 . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-scoping.R: 1 > test-scoping.R: Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: 1 2 > test-scoping.R: 3 > test-scoping.R: 4 5 > test-scoping.R: 6 > test-scoping.R: 7 > test-scoping.R: 8 9 > test-scoping.R: 10 11 12 13 14 > test-scoping.R: 15 16 . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-shrink-into-CH.R: 1 2 3 > test-shrink-into-CH.R: 4 > test-shrink-into-CH.R: 5 > test-shrink-into-CH.R: 6 7 8 > test-shrink-into-CH.R: 9 > test-shrink-into-CH.R: 10 > test-shrink-into-CH.R: 11 12 13 > test-shrink-into-CH.R: 14 > test-shrink-into-CH.R: 15 > test-shrink-into-CH.R: 16 17 18 > test-shrink-into-CH.R: 19 > test-shrink-into-CH.R: 20 > test-shrink-into-CH.R: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > test-shrink-into-CH.R: 18 > test-shrink-into-CH.R: 19 20 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-skip.R: Iteration 1 of at most 60: > test-skip.R: 1 Optimizing with step length 1.0000. > test-skip.R: The log-likelihood improved by 0.0360. > test-skip.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-skip.R: Finished MCMLE. > test-skip.R: This model was fit using MCMC. To examine model diagnostics and check > test-skip.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-snctrl.R: Starting maximum pseudolikelihood estimation (MPLE): > test-snctrl.R: Obtaining the responsible dyads. > test-snctrl.R: Evaluating the predictor and response matrix. > test-snctrl.R: Maximizing the pseudolikelihood. > test-snctrl.R: Finished MPLE. > test-snctrl.R: Evaluating log-likelihood at the estimate. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.7009355 0.2208488 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.6617183 0.1405334 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0034. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.5333754 -0.1317716 0.6729982 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.57231795 -0.05712682 0.44962020 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 > test-stocapprox.R: Optimizing with step length 1.0000. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: The log-likelihood improved by 0.0007. > test-stocapprox.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.1e-111 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.945. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-44 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.5962. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:4e-07 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: 1 The log-likelihood improved by 0.06364. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:5.6e-05 > test-stocapprox.R: 1 The log-likelihood improved by 0.04097. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.3e-03 > test-stocapprox.R: 1 > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.743217 0.112619 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: The log-likelihood improved by 0.01842. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:5.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 The log-likelihood improved by 0.002083. > test-stocapprox.R: Finished CD. > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.7631980 0.1383531 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-98 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.862. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:3.5e-30 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.3427. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:3e-09 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.08204. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:3.9e-02 > test-stocapprox.R: 1 The log-likelihood improved by 0.01313. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.2e-02 > test-stocapprox.R: 1 The log-likelihood improved by 0.009411. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:2.6e-01 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.005336. > test-stocapprox.R: Iteration 7 of at most 60: > test-stocapprox.R: Convergence test P-value:7.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 The log-likelihood improved by 0.0009177. > test-stocapprox.R: Finished CD. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0022. > test-stocapprox.R: Convergence test p-value: < 0.0001. > test-stocapprox.R: Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: > test-stocapprox.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-stocapprox.R: * 'news(package="ergm.count")' for changes since last version > test-stocapprox.R: * 'citation("ergm.count")' for citation information > test-stocapprox.R: * 'https://statnet.org' for help, support, and other information > test-stocapprox.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 60: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 1.0000. > test-target-offset.R: The log-likelihood improved by 0.0210. > test-target-offset.R: Convergence test p-value: 0.0002. Converged with 99% confidence. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: 1 > test-target-offset.R: 2 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 3 > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 10 11 > test-target-offset.R: 12 > test-target-offset.R: 13 > test-target-offset.R: 14 > test-target-offset.R: 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 14336:262144 > test-target-offset.R: Thinning interval = 1024 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 0.55556 4.490 0.2880 0.2880 > test-target-offset.R: degree1 0.04527 2.005 0.1286 0.1286 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges -7 -2.5 0 3 9.00 > test-target-offset.R: degree1 -3 -1.0 0 1 4.95 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Are sample statistics significantly different from observed? > test-target-offset.R: edges degree1 (Omni) > test-target-offset.R: diff. 0.55555556 0.04526749 NA > test-target-offset.R: test stat. 1.92893422 0.35200754 9.455405747 > test-target-offset.R: P-val. 0.05373903 0.72483261 0.009922641 > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges degree1 > test-target-offset.R: edges 1.0000000 -0.7250142 > test-target-offset.R: degree1 -0.7250142 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges degree1 > test-target-offset.R: Lag 0 1.000000000 1.000000000 > test-target-offset.R: Lag 1024 -0.061427219 0.030194492 > test-target-offset.R: Lag 2048 0.007868535 0.092075103 > test-target-offset.R: Lag 3072 0.018624816 0.047810603 > test-target-offset.R: Lag 4096 -0.047471894 0.007659206 > test-target-offset.R: Lag 5120 -0.073593205 -0.009870131 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges degree1 > test-target-offset.R: 0.4498910 -0.1601093 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges degree1 > test-target-offset.R: 0.652789 0.872795 > test-target-offset.R: Joint P-value (lower = worse): 0.8380775 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-target-offset.R: Obtaining the responsible dyads. > test-target-offset.R: Evaluating the predictor and response matrix. > test-target-offset.R: Maximizing the pseudolikelihood. > test-target-offset.R: Finished MPLE. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 3: > test-target-offset.R: 1 Optimizing with step length 0.7240. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 2 of at most 3: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.6386. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 3 of at most 3: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 1 Optimizing with step length 0.8376. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: 1 > test-target-offset.R: 2 > test-target-offset.R: 3 > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 9 > test-target-offset.R: 10 11 12 > test-target-offset.R: 13 > test-target-offset.R: 14 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 3584:65536 > test-target-offset.R: Thinning interval = 256 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 12.77778 5.118432 0.32835 0.3283476 > test-target-offset.R: gwdegree 0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: gwdegree.decay 0.01236 0.002961 0.00019 0.0001293 > test-target-offset.R: degree0 -0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges 3.000e+00 9.00000 13.00000 16.00000 23.00000 > test-target-offset.R: gwdegree 1.063e-12 1.00000 1.00000 1.00000 1.00000 > test-target-offset.R: gwdegree.decay 5.955e-03 0.01191 0.01191 0.01489 0.01489 > test-target-offset.R: degree0 -1.000e+00 -1.00000 -1.00000 -1.00000 0.00000 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: edges 1.0000000 0.2709648 0.6049364 -0.2709648 > test-target-offset.R: gwdegree 0.2709648 1.0000000 0.5143643 -1.0000000 > test-target-offset.R: gwdegree.decay 0.6049364 0.5143643 1.0000000 -0.5143643 > test-target-offset.R: degree0 -0.2709648 -1.0000000 -0.5143643 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: Lag 0 1.000000000 1.00000000 1.000000000 1.00000000 > test-target-offset.R: Lag 256 0.006056003 0.02865300 -0.034893817 0.02865300 > test-target-offset.R: Lag 512 0.062813023 -0.07862186 0.002608612 -0.07862186 > test-target-offset.R: Lag 768 -0.089332866 -0.07930006 -0.150790861 -0.07930006 > test-target-offset.R: Lag 1024 > test-target-offset.R: -0.091496281 -0.07564135 -0.189123113 -0.07564135 > test-target-offset.R: Lag 1280 0.030192390 0.03461402 0.073975025 0.03461402 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.05663036 -1.34419649 0.38772965 1.34419649 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.9548397 0.1788849 0.6982161 0.1788849 > test-target-offset.R: Joint P-value (lower = worse): 0.3850888 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: 1 > test-term-Offset.R: Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0066. > test-term-Offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-term-Offset.R: 1 > test-term-Offset.R: Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0024. > test-term-Offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-b12nodematch.R: In term 'b1nodematch' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b1dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1factor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: In term 'asymmetric' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1twostar' in package 'ergm': Argument 'base' has been superseded by 'levels2', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) ideg7+.homophily.group and ideg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b2dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) gwodeg.fixed.0 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: In term 'nodeifactor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg7+ and odeg8+ are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg6+.homophily.group, odeg7+.homophily.group, and odeg8+.homophily.group are at their smallest attainabl > test-term-directed.R: e values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Observed statistic(s) edgecov.YearsTrusted are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-flexible.R: All terms are either offsets or extreme values. No optimization is performed. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Note: Term 'mm(~Grade >= 10, levels = -1)' skipped because it contributes no statistics. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: 1 > test-term-options.R: Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0013. > test-term-options.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: Fitting the dyad-independent submodel... > test-term-options.R: Bridging between the dyad-independent submodel and the full model... > test-term-options.R: Setting up bridge sampling... > test-term-options.R: Using 16 bridges: > test-term-options.R: 1 > test-term-options.R: 2 > test-term-options.R: 3 > test-term-options.R: 4 5 > test-term-options.R: 6 7 8 > test-term-options.R: 9 > test-term-options.R: 10 > test-term-options.R: 11 > test-term-options.R: 12 > test-term-options.R: 13 > test-term-options.R: 14 > test-term-options.R: 15 > test-term-options.R: 16 > test-term-options.R: . > test-term-options.R: Bridging finished. > test-term-options.R: > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: 1 > test-term-options.R: Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0003. > test-term-options.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'DiscUnif2' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: mean=1, var=4, corr=0.3 > test-valued-sim.R: eta=(0.192307692307692,0.0824175824175824,0.362637362637363) > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated mean (stats only):0.9716704 > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated means (target=1): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 0.9473966 1.0398479 > test-valued-sim.R: [2,] 0.9923737 NA 0.9471411 > test-valued-sim.R: [3,] 0.8264568 1.0305133 NA > test-valued-sim.R: Simulated vars (target=4): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 3.865227 3.968847 > test-valued-sim.R: [2,] 3.818363 NA 3.945242 > test-valued-sim.R: [3,] 3.945397 3.950333 NA > test-valued-sim.R: Simulated correlations (1,2) (1,3) (2,3) (target=0.3): > test-valued-sim.R: [1] 0.2798051 0.2854507 0.2927308 > test-valued-sim.R: ==== output='stats', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: > test-valued-sim.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-sim.R: * 'news(package="ergm.count")' for changes since last version > test-valued-sim.R: * 'citation("ergm.count")' for citation information > test-valued-sim.R: * 'https://statnet.org' for help, support, and other information > test-valued-sim.R: > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: > test-valued-terms.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-terms.R: * 'news(package="ergm.count")' for changes since last version > test-valued-terms.R: * 'citation("ergm.count")' for citation information > test-valued-terms.R: * 'https://statnet.org' for help, support, and other information > test-valued-terms.R: [ FAIL 1 | WARN 0 | SKIP 2 | PASS 4296 ] ══ Skipped tests (2) ═══════════════════════════════════════════════════════════ • check_ABI("ergm.count") is not TRUE (1): 'test-u-function.R:86:3' • empty test (1): ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-miss.CD.R:76:3'): curved+missing ───────────────────────────── Expected `abs(coef(cdfit)[1] - truth)/sqrt(cdfit$covar[1])` < 2. Actual comparison: 2.95 >= 2.00 Difference: 0.95 >= 0 [ FAIL 1 | WARN 0 | SKIP 2 | PASS 4296 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 4.11.0
Flags: --no-vignettes
Check: tests
Result: ERROR Running ‘requireNamespaceTest.R’ [2s/2s] Running ‘testthat.R’ [241s/132s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # File tests/testthat.R in package ergm, part of the Statnet suite of packages > # for network analysis, https://statnet.org . > # > # This software is distributed under the GPL-3 license. It is free, open > # source, and has the attribution requirements (GPL Section 7) at > # https://statnet.org/attribution . > # > # Copyright 2003-2025 Statnet Commons > ################################################################################ > library(testthat) > library(statnet.common) Attaching package: 'statnet.common' The following objects are masked from 'package:base': attr, order, replace > library(ergm) Loading required package: network 'network' 1.20.0 (2026-02-06), part of the Statnet Project * 'news(package="network")' for changes since last version * 'citation("network")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4.11.0 (2025-12-22), part of the Statnet Project * 'news(package="ergm")' for changes since last version * 'citation("ergm")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4 is a major update that introduces some backwards-incompatible changes. Please type 'news(package="ergm")' for a list of major changes. Attaching package: 'ergm' The following object is masked from 'package:statnet.common': snctrl > > test_check("ergm") Starting 2 test processes. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 5 > test-basis.R: 6 7 8 > test-basis.R: 9 > test-basis.R: 10 11 > test-basis.R: 12 13 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 4 > test-basis.R: 5 6 7 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 12 > test-basis.R: 13 14 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 5 6 7 8 9 > test-basis.R: 10 11 12 13 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: Unable to match target stats. Using MCMLE estimation. > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-bridge-target.stats.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: The log-likelihood improved by 0.0219. > test-basis.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-bridge-target.stats.R: Finished MCMLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 2 > test-basis.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: 3 4 5 > test-bridge-target.stats.R: 6 7 > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-bridge-target.stats.R: 8 9 10 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: 11 12 > test-basis.R: Using 16 bridges: 1 2 > test-bridge-target.stats.R: 13 14 15 > test-basis.R: 3 > test-basis.R: 4 5 > test-bridge-target.stats.R: 16 . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: > test-bridge-target.stats.R: This model was fit using MCMC. To examine model diagnostics and check > test-bridge-target.stats.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: 6 7 8 > test-basis.R: 9 > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-basis.R: 10 11 > test-basis.R: 12 > test-basis.R: 13 14 15 16 > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: Using 16 bridges: 1 > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-bridge-target.stats.R: 2 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-basis.R: 1 Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-basis.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: 10 > test-basis.R: The log-likelihood improved by 0.0072. > test-bridge-target.stats.R: 11 > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: 12 > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 5 > test-bridge-target.stats.R: 13 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 9 > test-bridge-target.stats.R: 14 > test-basis.R: 10 11 12 13 14 15 > test-bridge-target.stats.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-bridge-target.stats.R: Using 16 bridges: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 7 > test-basis.R: 1 Optimizing with step length 1.0000. > test-bridge-target.stats.R: 8 > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: 9 > test-basis.R: Using 16 bridges: 1 2 > test-basis.R: 3 > test-basis.R: 4 5 > test-basis.R: 6 > test-basis.R: 7 > test-bridge-target.stats.R: 10 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 12 13 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Iteration 1 of at most 60: > test-checkpointing.R: Saving state in '/tmp/RtmpoR3vXF/file1b2f2064c83c05_001.RData'. > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 > test-bridge-target.stats.R: 2 > test-checkpointing.R: 1 > test-bridge-target.stats.R: 3 > test-checkpointing.R: Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0213. > test-checkpointing.R: Step length converged once. Increasing MCMC sample size. > test-checkpointing.R: Iteration 2 of at most 60: > test-checkpointing.R: Saving state in '/tmp/RtmpoR3vXF/file1b2f2064c83c05_002.RData'. > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-checkpointing.R: 1 Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0238. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: 9 > test-checkpointing.R: Fitting the dyad-independent submodel... > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-checkpointing.R: Using 16 bridges: 1 > test-checkpointing.R: 2 3 > test-checkpointing.R: 4 > test-checkpointing.R: 5 > test-checkpointing.R: 6 7 > test-checkpointing.R: 8 > test-checkpointing.R: 9 10 > test-checkpointing.R: 11 > test-checkpointing.R: 12 > test-checkpointing.R: 13 14 > test-checkpointing.R: 15 16 . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 10 > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Resuming from state saved in '/tmp/RtmpoR3vXF/file1b2f2064c83c05_002.RData'. > test-checkpointing.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-checkpointing.R: 1 Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0145. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-checkpointing.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-bridge-target.stats.R: 2 > test-checkpointing.R: Using 16 bridges: 1 2 > test-checkpointing.R: 3 4 > test-checkpointing.R: 5 > test-checkpointing.R: 6 > test-bridge-target.stats.R: 3 > test-checkpointing.R: 7 > test-checkpointing.R: 8 > test-checkpointing.R: 9 10 11 > test-bridge-target.stats.R: 4 > test-checkpointing.R: 12 13 > test-checkpointing.R: 14 > test-checkpointing.R: 15 > test-bridge-target.stats.R: 5 > test-checkpointing.R: 16 . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-constrain-degrees-edges.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constrain-degrees-edges.R: Iteration 1 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:5.2e-06 > test-constrain-degrees-edges.R: 1 > test-constrain-degrees-edges.R: The log-likelihood improved by 0.05768. > test-constrain-degrees-edges.R: Iteration 2 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:3.7e-03 > test-constrain-degrees-edges.R: 1 > test-constrain-degrees-edges.R: The log-likelihood improved by 0.09813. > test-constrain-degrees-edges.R: Finished CD. > test-constrain-degrees-edges.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-degrees-edges.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondInDegree' cannot take into account hint(s) 'triadic'. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-blockdiag.R: > test-constrain-blockdiag.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-constrain-blockdiag.R: * 'news(package="ergm.count")' for changes since last version > test-constrain-blockdiag.R: * 'citation("ergm.count")' for citation information > test-constrain-blockdiag.R: * 'https://statnet.org' for help, support, and other information > test-constrain-blockdiag.R: > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-constrain-dind.R: Iteration 1 of at most 60: > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: 1 > test-constrain-dind.R: Optimizing with step length 1.0000. > test-constrain-dind.R: The log-likelihood improved by 0.0020. > test-constrain-dind.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constrain-dind.R: Finished MCMLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Fitting the dyad-independent submodel... > test-constrain-dind.R: Bridging between the dyad-independent submodel and the full model... > test-constrain-dind.R: Setting up bridge sampling... > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Using 16 bridges: 1 > test-constrain-dind.R: 2 > test-constrain-dind.R: 3 > test-constrain-dind.R: 4 > test-constrain-dind.R: 5 > test-constrain-dind.R: 6 > test-constrain-dind.R: 7 > test-constrain-dind.R: 8 > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: 9 > test-constrain-dind.R: 10 > test-constrain-dind.R: 11 > test-constrain-dind.R: 12 > test-constrain-dind.R: 13 > test-constrain-dind.R: 14 > test-constrain-dind.R: 15 > test-constrain-dind.R: 16 > test-constrain-dind.R: . > test-constrain-dind.R: Bridging finished. > test-constrain-dind.R: > test-constrain-dind.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-dind.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-drop.R: 1 Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by < 0.0001. > test-drop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-drop.R: Fitting the dyad-independent submodel... > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Using 16 bridges: 1 > test-drop.R: 2 3 4 > test-drop.R: 5 6 > test-drop.R: 7 8 > test-drop.R: 9 > test-drop.R: 10 > test-drop.R: 11 > test-drop.R: 12 > test-drop.R: 13 14 > test-drop.R: 15 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-drop.R: 1 Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by 0.0018. > test-drop.R: Convergence test p-value: < 0.0001. > test-drop.R: Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-drop.R: Fitting the dyad-independent submodel... > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Using 16 bridges: 1 > test-drop.R: 2 > test-drop.R: 3 4 > test-drop.R: 5 > test-drop.R: 6 > test-drop.R: 7 8 > test-drop.R: 9 10 > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-drop.R: 11 > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: 12 > test-drop.R: 13 > test-drop.R: 14 15 > test-drop.R: 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Evaluating network in model. > test-drop.R: Initializing unconstrained Metropolis-Hastings proposal: > test-drop.R: 'ergm:MH_SPDyad'. > test-drop.R: Initializing model... > test-drop.R: Model initialized. > test-drop.R: Using initial method 'MPLE'. > test-drop.R: Initial parameters provided by caller: > test-drop.R: None. > test-drop.R: number of free parameters: 7 > test-drop.R: number of fixed parameters: 0 > test-drop.R: Observed statistic(s) triangle and kstar5 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Fitting initial model. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Density guard set to 10000 from an initial count of 3 edges. > test-drop.R: > test-drop.R: Iteration 1 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -5.244530e-01 2.592560e-01 -3.147987e-01 -9.254589e-01 2.322348e-12 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: All terms are either offsets or extreme values. No optimization is performed. > test-constraints.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-drop.R: Back from unconstrained MCMC. > test-constraints.R: Using 16 bridges: 1 > test-drop.R: New interval = 512. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -3.399177 -1.395062 -4.641975 -3.370370 2.170829 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 > test-drop.R: Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 1.5314. > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 2 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -7.679134e-01 3.298974e-01 -4.787791e-01 -1.324882e+00 9.046976e-10 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: 2 > test-constraints.R: 3 > test-constraints.R: 4 > test-constraints.R: 5 > test-constraints.R: 6 > test-constraints.R: 7 > test-drop.R: Back from unconstrained MCMC. > test-constraints.R: 8 > test-drop.R: New interval = 256. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.2427984 0.4115226 -0.1934156 -0.5020576 -0.2889661 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 > test-drop.R: Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 0.2272. > test-drop.R: Distance from origin on tolerance region scale: 4.992214 (previously Inf). > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 3 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -1.0610706 1.2599949 -0.5094541 -1.4594441 0.1742152 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: 9 > test-constraints.R: 10 > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 > test-constraints.R: 14 > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 128. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.4855967 -0.3621399 -0.6090535 -0.5209768 0.5709312 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 > test-drop.R: Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-constraints.R: 15 > test-drop.R: Optimizing loglikelihood > test-drop.R: Starting MCMC s.e. computation. > test-drop.R: The log-likelihood improved by 0.0416. > test-drop.R: Distance from origin on tolerance region scale: 0.9245623 (previously Inf). > test-constraints.R: 16 > test-drop.R: Estimated covariance matrix of the statistics has nullity 1. Effective parameter number adjusted to 4. > test-drop.R: Test statistic: T^2 = 10.41146, with 4 free parameter(s) and 238.9876 degrees of freedom. > test-drop.R: Convergence test p-value: 0.0387. Not converged with 99% confidence; increasing sample size. > test-drop.R: 99% confidence critical value = 13.77129. > test-drop.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Initializing model to obtain the list of dyad-independent terms... > test-drop.R: Fitting the dyad-independent submodel... > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-constraints.R: > test-drop.R: Dyad-independent submodel MLE has likelihood -11.02185 at: > test-drop.R: [1] -2.639057 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 > test-drop.R: [8] 0.000000 > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Initializing model and proposals... > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-drop.R: Model and proposals initialized. > test-drop.R: Using 16 bridges: Running theta=[-2.0110138, -Inf, 1.4621780,-0.4923718, -Inf,-0.9527669, 0.1279654, 0.0000000]. > test-drop.R: Running theta=[-2.0515328, -Inf, 1.3678439,-0.4606058, -Inf,-0.8912980, 0.1197096, 0.0000000]. > test-drop.R: Running theta=[-2.0920517, -Inf, 1.2735099,-0.4288399, -Inf,-0.8298292, 0.1114537, 0.0000000]. > test-constraints.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-constraints.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constraints.R: Iteration 1 of at most 60: > test-constraints.R: Convergence test P-value:1.1e-05 > test-constraints.R: 1 The log-likelihood improved by 0.07919. > test-constraints.R: Iteration 2 of at most 60: > test-constraints.R: Convergence test P-value:3.7e-02 > test-constraints.R: 1 > test-drop.R: Running theta=[-2.1325706, -Inf, 1.1791758,-0.3970740, -Inf,-0.7683604, 0.1031979, 0.0000000]. > test-drop.R: Running theta=[-2.17308956, -Inf, 1.08484175,-0.36530808, -Inf,-0.70689155, 0.09494207, 0.00000000]. > test-drop.R: Running theta=[-2.21360850, -Inf, 0.99050769,-0.33354216, -Inf,-0.64542272, 0.08668623, 0.00000000]. > test-constraints.R: The log-likelihood improved by 0.01687. > test-constraints.R: Iteration 3 of at most 60: > test-constraints.R: Convergence test P-value:7e-01 > test-constraints.R: Convergence detected. Stopping. > test-constraints.R: 1 > test-drop.R: Running theta=[-2.2541274, -Inf, 0.8961736,-0.3017762, -Inf,-0.5839539, 0.0784304, 0.0000000]. > test-drop.R: Running theta=[-2.29464637, -Inf, 0.80183956,-0.27001032, -Inf,-0.52248506, 0.07017457, 0.00000000]. > test-constraints.R: The log-likelihood improved by 0.0006029. > test-constraints.R: Finished CD. > test-constraints.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Running theta=[-2.33516531, -Inf, 0.70750549,-0.23824440, -Inf,-0.46101623, 0.06191874, 0.00000000]. > test-constraints.R: Iteration 1 of at most 60: > test-drop.R: Running theta=[-2.37568425, -Inf, 0.61317143,-0.20647848, -Inf,-0.39954740, 0.05366291, 0.00000000]. > test-drop.R: Running theta=[-2.41620318, -Inf, 0.51883736,-0.17471256, -Inf,-0.33807857, 0.04540708, 0.00000000]. > test-drop.R: Running theta=[-2.45672212, -Inf, 0.42450329,-0.14294664, -Inf,-0.27660974, 0.03715124, 0.00000000]. > test-drop.R: Running theta=[-2.49724105, -Inf, 0.33016923,-0.11118072, -Inf,-0.21514091, 0.02889541, 0.00000000]. > test-drop.R: Running theta=[-2.53775999, -Inf, 0.23583516,-0.07941480, -Inf,-0.15367208, 0.02063958, 0.00000000]. > test-drop.R: Running theta=[-2.57827893, -Inf, 0.14150110,-0.04764888, -Inf,-0.09220325, 0.01238375, 0.00000000]. > test-drop.R: Running theta=[-2.618797861, -Inf, 0.047167033,-0.015882960, -Inf,-0.030734415, 0.004127916, 0.000000000]. > test-drop.R: . > test-drop.R: Bridge sampling finished. Collating... > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-constraints.R: 1 Optimizing with step length 1.0000. > test-constraints.R: The log-likelihood improved by 0.0263. > test-constraints.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constraints.R: Finished MCMLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Setting up bridge sampling... > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constraints.R: Using 16 bridges: > test-constraints.R: 1 > test-constraints.R: 2 > test-constraints.R: 3 > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-proposal-unload.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-proposal-unload.R: * 'citation("ergm.count")' for citation information > test-ergm-proposal-unload.R: * 'https://statnet.org' for help, support, and other information > test-ergm-proposal-unload.R: > test-constraints.R: 4 > test-constraints.R: 5 > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-proposal-unload.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-proposal-unload.R: * 'citation("ergm.count")' for citation information > test-ergm-proposal-unload.R: * 'https://statnet.org' for help, support, and other information > test-ergm-proposal-unload.R: > test-constraints.R: 6 > test-constraints.R: 7 > test-constraints.R: 8 > test-constraints.R: 9 10 > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 14 > test-constraints.R: 15 > test-constraints.R: 16 > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-constraints.R: > test-constraints.R: This model was fit using MCMC. To examine model diagnostics and check > test-constraints.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm-san.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (binary, valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: ctriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ctriad (binary) > test-ergm-term-doc.R: Cyclic triples > test-ergm-term-doc.R: > test-ergm-term-doc.R: localtriangle(x) (binary) > test-ergm-term-doc.R: Triangles within neighborhoods > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1) (binary) > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: opentriad (binary) > test-ergm-term-doc.R: Open triads > test-ergm-term-doc.R: > test-ergm-term-doc.R: threetrail(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: threepath(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Three-trails > test-ergm-term-doc.R: > test-ergm-term-doc.R: triangle(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: triangles(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangles > test-ergm-term-doc.R: > test-ergm-term-doc.R: tripercent(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangle percentage > test-ergm-term-doc.R: > test-ergm-term-doc.R: ttriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ttriad (binary) > test-ergm-term-doc.R: Transitive triples > test-ergm-term-doc.R: Found 31 matching ergm terms: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Found 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Definitions for term(s) b2factor : > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network: This term adds multiple network statistics to the model, one for each of (a subset of) the > test-ergm-term-doc.R: unique values of the attr attribute. Each of these statistics > test-ergm-term-doc.R: gives the number of times a node with that attribute in the second mode of > test-ergm-term-doc.R: the network appears in an edge. The second mode of a bipartite network > test-ergm-term-doc.R: object is sometimes known as the "event" mode. > test-ergm-term-doc.R: Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected, binary, valued > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3factor' were found. Try searching with search='b3factor'instead. > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Found 50 matching ergm terms: > test-ergm-term-doc.R: B(formula, form) (valued) > test-ergm-term-doc.R: Wrap binary terms for use in valued models > test-ergm-term-doc.R: > test-ergm-term-doc.R: Curve(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrise(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrize(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Impose a curved structure on term parameters > test-ergm-term-doc.R: > test-ergm-term-doc.R: Exp(formula) (valued) > test-ergm-term-doc.R: Exponentiate a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: For(...) (valued) > test-ergm-term-doc.R: A for operator for terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: I(formula) (valued) > test-ergm-term-doc.R: Substitute a formula into the model formula > test-ergm-term-doc.R: > test-ergm-term-doc.R: Label(formula, label, pos) (valued) > test-ergm-term-doc.R: Modify terms' coefficient names > test-ergm-term-doc.R: > test-ergm-term-doc.R: Log(formula, log0=-1/sqrt(.Machine$double.eps)) (valued) > test-ergm-term-doc.R: Take a natural logarithm of a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: Prod(formulas, label) (valued) > test-ergm-term-doc.R: A product (or an arbitrary power combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: S(formula, attrs) (valued) > test-ergm-term-doc.R: Evaluation on an induced subgraph > test-ergm-term-doc.R: > test-ergm-term-doc.R: Sum(formulas, label) (valued) > test-ergm-term-doc.R: A sum (or an arbitrary linear combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiff(attr, pow=1, form="sum") (valued) > test-ergm-term-doc.R: Absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiffcat(attr, base=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Categorical absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: atleast(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values greater than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: atmost(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values less than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: attrcov(attr, mat, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate by attribute pairing > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: cdf(min = NULL, max = NULL, by = NULL, margin = 0.1, nmax = 100) (valued) > test-ergm-term-doc.R: Empirical cumulative distribution function (unnormalized) of > test-ergm-term-doc.R: the network's dyad values > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalties(threshold=0) (valued) > test-ergm-term-doc.R: Cyclical ties > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Cyclical weights > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: edgecov(x, attrname=NULL, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: edges (valued) > test-ergm-term-doc.R: nonzero (valued) > test-ergm-term-doc.R: Number of edges in the network > test-ergm-term-doc.R: > test-ergm-term-doc.R: equalto(value=0, tolerance=0) (valued) > test-ergm-term-doc.R: Number of dyads with values equal to a specific value (within tolerance) > test-ergm-term-doc.R: > test-ergm-term-doc.R: greaterthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly greater than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) > test-ergm-term-doc.R: Number of dyads whose values are in an interval > test-ergm-term-doc.R: > test-ergm-term-doc.R: mm(attrs, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Mixing matrix cells and margins > test-ergm-term-doc.R: > test-ergm-term-doc.R: mutual(form="min",threshold=0) (valued) > test-ergm-term-doc.R: Mutuality > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecov(attr, form="sum") (valued) > test-ergm-term-doc.R: nodemain(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of undirected dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodefactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of in-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeifactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodematch(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: match(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Uniform homophily and differential homophily > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of out-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeofactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: receiver(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Receiver effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: sender(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Sender effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: smallerthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly smaller than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: sociality(attr=NULL, base=1, levels=NULL, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Undirected degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: sum(pow=1) (valued) > test-ergm-term-doc.R: Sum of dyad values (optionally taken to a power) > test-ergm-term-doc.R: > test-ergm-term-doc.R: transitiveweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Transitive weights > test-ergm-term-doc.R: Found 4 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: DiscUnif(a,b) > test-ergm-term-doc.R: Discrete Uniform reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: StdNormal > test-ergm-term-doc.R: Standard Normal reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: Unif(a,b) > test-ergm-term-doc.R: Continuous Uniform reference > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found 1 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: Definitions for term(s) Bernoulli : > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference: Specifies each > test-ergm-term-doc.R: dyad's baseline distribution to be Bernoulli with probability of > test-ergm-term-doc.R: the tie being 0.5 . This is the only reference measure used > test-ergm-term-doc.R: in binary mode. > test-ergm-term-doc.R: Keywords: binary, discrete, finite, nonnegative > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'Cernoulli' were found. Try searching with search='Cernoulli'instead. > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrees > test-ergm-term-doc.R: Preserve the receiver degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 17 matching ergm terms: > test-ergm-term-doc.R: ChangeStats(fix, check_dind = TRUE) > test-ergm-term-doc.R: Specified statistics must remain constant > test-ergm-term-doc.R: > test-ergm-term-doc.R: Dyads(fix=NULL, vary=NULL) > test-ergm-term-doc.R: Constrain fixed or varying dyad-independent terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: blockdiag(attr) > test-ergm-term-doc.R: Block-diagonal structure constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: blocks(attr=NULL, levels=NULL, levels2=FALSE, b1levels=NULL, b2levels=NULL) > test-ergm-term-doc.R: Constrain blocks of dyads defined by mixing type on a vertex attribute. > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise(p01, p10) > test-ergm-term-doc.R: A soft constraint to adjust the sampled distribution for > test-ergm-term-doc.R: dyad-level noise with known perturbation probabilities > test-ergm-term-doc.R: > test-ergm-term-doc.R: egocentric(attr=NULL, direction="both") > test-ergm-term-doc.R: Preserve values of dyads incident on vertices with given attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixallbut(free.dyads) > test-ergm-term-doc.R: Preserve the dyad status in all but the given edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixedas(fixed.dyads, present, absent) > test-ergm-term-doc.R: Fix specific dyads > test-ergm-term-doc.R: > test-ergm-term-doc.R: hamming > test-ergm-term-doc.R: Preserve the hamming distance to the given network (BROKEN: Do NOT Use) > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: observed > test-ergm-term-doc.R: Preserve the observed dyads of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Definitions for term(s) b1degrees : > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks: For bipartite networks, preserve the degree for the first mode of each vertex of the given > test-ergm-term-doc.R: network, while allowing the degree for the second mode to vary. > test-ergm-term-doc.R: Keywords: bipartite > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3degrees' were found. Try searching with search='b3degrees'instead. > test-ergm-term-doc.R: Found 2 matching ergm proposals: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: Found 5 matching ergm proposals: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: DistRLE > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Found 0 matching ergm proposals: > test-ergm-term-doc.R: Found 18 matching ergm proposals: > test-ergm-term-doc.R: BDStratTNT > test-ergm-term-doc.R: TNT proposal with degree bounds, stratification, and a blocks constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegree > test-ergm-term-doc.R: MHp for degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeDist > test-ergm-term-doc.R: MHp for degreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeMix > test-ergm-term-doc.R: MHp for degree mix constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegree > test-ergm-term-doc.R: MHp for idegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegreeDist > test-ergm-term-doc.R: MHp for idegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegree > test-ergm-term-doc.R: MHp for odegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegreeDist > test-ergm-term-doc.R: MHp for odegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingConstantEdges > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoiseTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Definitions for proposal(s) randomtoggle : > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Reference: Bernoulli Class: cross-sectional > test-ergm-term-doc.R: May Enforce: .dyads bd changestats > test-ergm-term-doc.R: > test-ergm-term-doc.R: No proposals named 'mandomtoggle' were found. Try searching with search='mandomtoggle'instead. > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm-term-doc.R: > test-ergm-term-doc.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-term-doc.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-term-doc.R: * 'citation("ergm.count")' for citation information > test-ergm-term-doc.R: * 'https://statnet.org' for help, support, and other information > test-ergm-term-doc.R: > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergmMPLE.R: Starting maximum pseudolikelihood estimation (MPLE): > test-ergmMPLE.R: Obtaining the responsible dyads. > test-ergmMPLE.R: Evaluating the predictor and response matrix. > test-ergmMPLE.R: Maximizing the pseudolikelihood. > test-ergmMPLE.R: Finished MPLE. > test-ergmMPLE.R: Evaluating log-likelihood at the estimate. > test-ergmMPLE.R: > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-gflomiss.R: 1 > test-gflomiss.R: Optimizing with step length 1.0000. > test-gflomiss.R: The log-likelihood improved by 0.0067. > test-ergm.bridge.llr.R: 8 > test-gflomiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: 9 > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: 10 > test-gflomiss.R: Using 16 bridges: 1 > test-gflomiss.R: 2 > test-gflomiss.R: 3 > test-gflomiss.R: 4 > test-gflomiss.R: 5 > test-gflomiss.R: 6 > test-gflomiss.R: 7 > test-gflomiss.R: 8 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-gflomiss.R: 11 > test-ergm.bridge.llr.R: 11 > test-gflomiss.R: 12 13 14 15 > test-ergm.bridge.llr.R: 12 > test-gflomiss.R: 16 . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 13 > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-gflomiss.R: 1 > test-gflomiss.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 16 > test-gflomiss.R: The log-likelihood improved by 0.0050. > test-gflomiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-gflomiss.R: Fitting the dyad-independent submodel... > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-gflomiss.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gflomiss.R: 2 3 > test-gflomiss.R: 4 > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-gflomiss.R: 5 > test-gflomiss.R: 6 > test-ergm.bridge.llr.R: 2 > test-gflomiss.R: 7 8 9 10 > test-gflomiss.R: 11 12 > test-ergm.bridge.llr.R: 3 > test-gflomiss.R: 13 14 > test-gflomiss.R: 15 > test-gflomiss.R: 16 > test-ergm.bridge.llr.R: 4 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-gmonkmiss.R: odegree3 odegree4 odegree5 odegree6 > test-gmonkmiss.R: 1 5 7 5 > test-gmonkmiss.R: idegree2 idegree3 idegree4 idegree5 idegree6 idegree7 idegree8 idegree10 > test-gmonkmiss.R: 3 5 1 3 2 1 1 1 > test-gmonkmiss.R: idegree11 > test-gmonkmiss.R: 1 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-ergm.bridge.llr.R: 11 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-ergm.bridge.llr.R: 12 > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.6245. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-gmonkmiss.R: 1 Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 4 > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: 0.0005. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 5 > test-gmonkmiss.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-gmonkmiss.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-gmonkmiss.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gmonkmiss.R: Iteration 1 of at most 60: > test-gmonkmiss.R: Convergence test P-value:3.3e-34 > test-gmonkmiss.R: 1 The log-likelihood improved by 0.4205. > test-gmonkmiss.R: Iteration 2 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.8e-14 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.1501. > test-gmonkmiss.R: Iteration 3 of at most 60: > test-gmonkmiss.R: Convergence test P-value:2e-04 > test-gmonkmiss.R: 1 The log-likelihood improved by 0.03536. > test-gmonkmiss.R: Iteration 4 of at most 60: > test-ergm.bridge.llr.R: 6 > test-gmonkmiss.R: Convergence test P-value:1.6e-01 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.007343. > test-gmonkmiss.R: Iteration 5 of at most 60: > test-gmonkmiss.R: Convergence test P-value:2.4e-01 > test-gmonkmiss.R: 1 The log-likelihood improved by 0.00569. > test-gmonkmiss.R: Iteration 6 of at most 60: > test-gmonkmiss.R: Convergence test P-value:9.9e-02 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00904. > test-gmonkmiss.R: Iteration 7 of at most 60: > test-gmonkmiss.R: Convergence test P-value:7.6e-01 > test-gmonkmiss.R: Convergence detected. Stopping. > test-gmonkmiss.R: 1 The log-likelihood improved by 0.001102. > test-gmonkmiss.R: Finished CD. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.4514. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 15 > test-gmonkmiss.R: The log-likelihood improved by 0.0105. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 16 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-gmonkmiss.R: 1 Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.7035. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-gmonkmiss.R: 1 Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 7 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-gof.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gof.R: Iteration 1 of at most 60: > test-gof.R: Convergence test P-value:1.8e-266 > test-gof.R: 1 The log-likelihood improved by 1.541. > test-gof.R: Iteration 2 of at most 60: > test-gof.R: Convergence test P-value:2e-184 > test-gof.R: 1 > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gof.R: The log-likelihood improved by 1.461. > test-gof.R: Iteration 3 of at most 60: > test-gof.R: Convergence test P-value:1.8e-38 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.1713. > test-gof.R: Iteration 4 of at most 60: > test-gof.R: Convergence test P-value:5.5e-05 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.02153. > test-gof.R: Iteration 5 of at most 60: > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-gof.R: Convergence test P-value:3.3e-01 > test-gof.R: 1 The log-likelihood improved by 0.00457. > test-gof.R: Iteration 6 of at most 60: > test-gof.R: Convergence test P-value:4.4e-02 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.009062. > test-gof.R: Iteration 7 of at most 60: > test-gof.R: Convergence test P-value:4.6e-01 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.003667. > test-gof.R: Iteration 8 of at most 60: > test-gof.R: Convergence test P-value:8.7e-01 > test-gof.R: Convergence detected. Stopping. > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.001439. > test-gof.R: Finished CD. > test-gof.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gof.R: Iteration 1 of at most 2: > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-gof.R: 1 Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.2102. > test-gof.R: Estimating equations are not within tolerance region. > test-gof.R: Iteration 2 of at most 2: > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-gof.R: 1 > test-gof.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 11 > test-gof.R: The log-likelihood improved by 0.0698. > test-gof.R: Convergence test p-value: 0.0024. > test-gof.R: Converged with 99% confidence. > test-gof.R: Finished MCMLE. > test-gof.R: This model was fit using MCMC. To examine model diagnostics and check > test-gof.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 12 > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-ergm.bridge.llr.R: 13 > test-gof.R: > test-gof.R: Goodness-of-fit for model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 124 167.55 196 0.98 > test-gof.R: nonzero 88 68 88.02 106 1.00 > test-gof.R: nodematch.sum.group.Loyal 49 33 51.56 74 0.78 > test-gof.R: nodematch.sum.group.Outcasts 20 9 19.55 32 0.98 > test-gof.R: nodematch.sum.group.Turks 59 39 58.04 74 0.96 > test-gof.R: > test-gof.R: Goodness-of-fit for cumulative distribution function > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: 0 218 200 217.98 238 1.00 > test-gof.R: 1 256 241 253.05 272 0.56 > test-gof.R: 2 276 271 279.42 290 0.48 > test-gof.R: 3 306 306 306.00 306 1.00 > test-gof.R: 4 306 306 306.00 306 1.00 > test-ergm.bridge.llr.R: 14 > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-ergm.bridge.llr.R: 15 > test-gof.R: > test-gof.R: Goodness-of-fit for > test-gof.R: model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 131 163.65 201 0.76 > test-gof.R: nonzero 88 70 86.60 106 0.82 > test-gof.R: nodematch.sum.group.Loyal 49 25 48.56 68 0.94 > test-gof.R: nodematch.sum.group.Outcasts 20 12 19.57 31 0.88 > test-gof.R: nodematch.sum.group.Turks 59 31 57.33 77 0.88 > test-gof.R: > test-gof.R: Goodness-of-fit for user statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: atmost.0 218 200 219.40 236 0.82 > test-gof.R: atmost.1 256 239 254.73 265 0.90 > test-gof.R: atmost.2 276 272 280.22 288 0.34 > test-gof.R: atmost.3 306 306 306.00 306 1.00 > test-gof.R: atmost.4 306 306 306.00 306 1.00 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-metrics.R: 1 Optimizing with step length 0.4613. > test-metrics.R: The log-likelihood improved by 4.1429. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.8364. > test-metrics.R: The log-likelihood improved by 4.7215. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.1346. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss-dep.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss-dep.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-metrics.R: The log-likelihood improved by 0.1129. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss-dep.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss-dep.R: Iteration 1 of at most 60: > test-miss-dep.R: Convergence test P-value:4.6e-47 > test-miss-dep.R: 1 The log-likelihood improved by 1.824. > test-miss-dep.R: Iteration 2 of at most 60: > test-miss-dep.R: Convergence test P-value:1.5e-23 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.6054. > test-miss-dep.R: Iteration 3 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0037. > test-metrics.R: Convergence test p-value: 0.0004. > test-metrics.R: Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss-dep.R: Convergence test P-value:1.1e-07 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.1283. > test-miss-dep.R: Iteration 4 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: Convergence test P-value:3.3e-04 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.05435. > test-miss-dep.R: Iteration 5 of at most 60: > test-miss-dep.R: Convergence test P-value:2.1e-01 > test-miss-dep.R: 1 The log-likelihood improved by 0.006185. > test-miss-dep.R: Iteration 6 of at most 60: > test-miss-dep.R: Convergence test P-value:4.1e-01 > test-miss-dep.R: 1 The log-likelihood improved by 0.002664. > test-miss-dep.R: Iteration 7 of at most 60: > test-metrics.R: 1 > test-miss-dep.R: Convergence test P-value:1.6e-01 > test-miss-dep.R: 1 The log-likelihood improved by 0.007694. > test-miss-dep.R: Iteration 8 of at most 60: > test-metrics.R: Optimizing with step length 0.4018. > test-metrics.R: The log-likelihood improved by 3.2780. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss-dep.R: Convergence test P-value:1.9e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.006878. > test-miss-dep.R: Iteration 9 of at most 60: > test-miss-dep.R: Convergence test P-value:7.8e-01 > test-miss-dep.R: Convergence detected. Stopping. > test-miss-dep.R: 1 The log-likelihood improved by 0.0003111. > test-miss-dep.R: Finished CD. > test-miss-dep.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss-dep.R: Iteration 1 of at most 60: > test-metrics.R: 1 Optimizing with step length 0.6020. > test-metrics.R: The log-likelihood improved by 3.4584. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.2132. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0377. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss-dep.R: Post-burnin sample is constant; returning. > test-miss-dep.R: 1 > test-miss-dep.R: Optimizing with step length 1.0000. > test-miss-dep.R: The log-likelihood improved by 0.0017. > test-miss-dep.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-miss-dep.R: Finished MCMLE. > test-miss-dep.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: Using 16 bridges: 1 > test-miss-dep.R: 2 > test-miss-dep.R: 3 4 > test-miss-dep.R: 5 > test-metrics.R: 1 Optimizing with step length 0.4158. > test-metrics.R: The log-likelihood improved by 1.9115. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss-dep.R: 6 7 > test-miss-dep.R: 8 > test-miss-dep.R: 9 > test-miss-dep.R: 10 > test-miss-dep.R: 11 12 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4804. > test-metrics.R: The log-likelihood improved by 2.5519. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss-dep.R: 13 > test-miss-dep.R: 14 15 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss-dep.R: 16 > test-metrics.R: The log-likelihood improved by 2.9415. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss-dep.R: . > test-miss-dep.R: Note: The constraint on the sample space is not dyad-independent. Null > test-miss-dep.R: model likelihood is only implemented for dyad-independent constraints > test-miss-dep.R: at this time. Number of observations is similarly poorly defined. This > test-miss-dep.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-miss-dep.R: AIC, BIC, etc.) is only valid between models with the same reference > test-miss-dep.R: distribution and constraints. > test-miss-dep.R: > test-miss-dep.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss-dep.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: n=20, density=0.1, missing=0.1 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.1226. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:3e-13 > test-miss.CD.R: 1 The log-likelihood improved by 0.2096. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-12 > test-miss.CD.R: 1 The log-likelihood improved by 0.1974. > test-miss.CD.R: Iteration 3 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-11 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.341. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-15 > test-miss.CD.R: 1 The log-likelihood improved by 0.1744. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-16 > test-miss.CD.R: 1 The log-likelihood improved by 0.6862. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.3e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.3025. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1888. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.3e-17 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2862. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-07 > test-miss.CD.R: 1 The log-likelihood improved by 0.2007. > test-miss.CD.R: Iteration 10 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-02 > test-miss.CD.R: 1 The log-likelihood improved by 0.03854. > test-miss.CD.R: Iteration 11 of at most 60: > test-miss.CD.R: Convergence test P-value:7.9e-05 > test-miss.CD.R: 1 The log-likelihood improved by 0.1259. > test-miss.CD.R: Iteration 12 of at most 60: > test-metrics.R: 1 2 3 4 5 6 7 > test-miss.CD.R: Convergence test P-value:7.9e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-metrics.R: 8 9 10 11 Optimizing with step length 0.3934. > test-miss.CD.R: The log-likelihood improved by 0.0004877. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: The log-likelihood improved by 4.1457. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-metrics.R: The log-likelihood improved by 2.8651. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-68 > test-miss.CD.R: 1 The log-likelihood improved by 0.7099. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-64 > test-miss.CD.R: 1 The log-likelihood improved by 0.5925. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:9.6e-53 > test-miss.CD.R: 1 The log-likelihood improved by 0.6327. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:1.1e-37 > test-miss.CD.R: 1 The log-likelihood improved by 0.8025. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-30 > test-miss.CD.R: 1 The log-likelihood improved by 0.583. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.6e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6591. > test-miss.CD.R: Iteration 7 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss.CD.R: Convergence test P-value:6.2e-04 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.05663. > test-miss.CD.R: Iteration 8 of at most 60: > test-metrics.R: The log-likelihood improved by 0.3360. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:2.4e-01 > test-miss.CD.R: 1 The log-likelihood improved by 0.007268. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:9.1e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0827. > test-metrics.R: Convergence test p-value: 0.0004. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-54 > test-miss.CD.R: 1 > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.CD.R: The log-likelihood improved by 0.5854. > test-miss.CD.R: Iteration 2 of at most 60: > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:4.4e-52 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6164. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:4.5e-46 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6486. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-32 > test-miss.CD.R: 1 The log-likelihood improved by 1.361. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:6.8e-14 > test-miss.CD.R: 1 The log-likelihood improved by 0.379. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-03 > test-miss.CD.R: 1 The log-likelihood improved by 0.05118. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.9e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03478. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:6.5e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.001186. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: 1 > test-miss.CD.R: Network statistics: > test-miss.CD.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.CD.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.CD.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.CD.R: 0 0 0 0 0 0 0 > test-miss.CD.R: Correct estimate = -2.028148 > test-metrics.R: 2 3 > test-metrics.R: 4 5 > test-metrics.R: 6 > test-metrics.R: 7 8 9 10 11 Optimizing with step length 0.3701. > test-metrics.R: The log-likelihood improved by 2.3554. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.8e-283 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by 1.711. > test-miss.CD.R: Iteration 2 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 3 > test-metrics.R: 4 5 > test-metrics.R: 6 > test-metrics.R: 7 8 > test-metrics.R: 9 10 11 12 Optimizing with step length 0.5218. > test-miss.CD.R: Convergence test P-value:2.9e-233 > test-miss.CD.R: 1 > test-metrics.R: The log-likelihood improved by 2.9696. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by 1.753. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:4.4e-193 > test-miss.CD.R: 1 2 > test-metrics.R: 1 > test-metrics.R: 2 3 > test-metrics.R: Optimizing with step length 0.8048. > test-metrics.R: The log-likelihood improved by 1.8226. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-199 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 5 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.2705. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:2e-201 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-208 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 7 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0012. > test-metrics.R: Convergence test p-value: 0.0099. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:4.7e-207 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.7e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:4.1e-205 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 10 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-210 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 11 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-187 > test-miss.CD.R: 1 > test-metrics.R: 1 2 3 4 5 6 7 8 9 10 11 12 13 Optimizing with step length 0.4397. > test-metrics.R: The log-likelihood improved by 3.0119. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 12 of at most 60: > test-miss.CD.R: Convergence test P-value:1.2e-199 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 13 of at most 60: > test-miss.CD.R: Convergence test P-value:6.6e-211 > test-metrics.R: 1 2 3 4 5 6 7 8 9 10 11 12 Optimizing with step length 0.6225. > test-metrics.R: The log-likelihood improved by 3.6934. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 14 of at most 60: > test-miss.CD.R: Convergence test P-value:2.2e-203 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 15 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.0488. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-197 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 16 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0821. > test-miss.CD.R: Convergence test P-value:1e-201 > test-miss.CD.R: 1 2 > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 17 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: n=20, density=0.1, missing=0.05 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 18 of at most 60: > test-miss.R: Correct estimate = -2.118156 with log-likelihood -120.6883 . > test-miss.CD.R: Convergence test P-value:6.3e-210 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 19 of at most 60: > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: MPLE estimate = -2.118156 with log-likelihood -120.6883 OK. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.CD.R: Convergence test P-value:1.3e-213 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 26 dyads is required. > test-miss.R: Imputing 3 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 41 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 20 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -49.45267 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 6 7 8 > test-miss.R: 9 10 > test-miss.R: 11 12 > test-miss.R: Optimizing with step length 0.4099. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.5936. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.374066 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:2.6e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 21 of at most 60: > test-miss.CD.R: Convergence test P-value:5.5e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 22 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.CD.R: Convergence test P-value:7.2e-205 > test-miss.CD.R: 1 2 > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 23 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.36008 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 6 7 8 9 10 11 12 > test-miss.R: Optimizing with step length 0.4981. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.2702. > test-miss.R: Distance from origin on tolerance region scale: 192.073 (previously 422.077). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.647302 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:3.5e-207 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 24 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 25 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -17.50766 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 Optimizing with step length 0.7736. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.0776. > test-miss.R: Distance from origin on tolerance region scale: 71.38353 (previously 259.1767). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.95412 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:4e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 26 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -5.621399 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.3258. > test-miss.R: Distance from origin on tolerance region scale: 6.488425 (previously 62.9371). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 5 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.070021 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:1.8e-212 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 27 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:8e-208 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 28 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 32. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -1.853909 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0589. > test-miss.R: Distance from origin on tolerance region scale: 1.17581 (previously 10.81058). > test-miss.R: Test statistic: T^2 = 11.54078, with 1 free parameter(s) and 179.1884 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0008. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.CD.R: Convergence test P-value:1.4e-198 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 29 of at most 60: > test-miss.R: Dyad-independent submodel MLE has likelihood -120.6883 at: > test-miss.R: [1] -2.118156 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.CD.R: Convergence test P-value:2.3e-204 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 30 of at most 60: > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-2.133081, 0.000000]. > test-miss.R: Running theta=[-2.132118, 0.000000]. > test-miss.CD.R: Convergence test P-value:2.5e-205 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.131155, 0.000000]. > test-miss.R: Running theta=[-2.130192, 0.000000]. > test-miss.R: Running theta=[-2.129229, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 31 of at most 60: > test-miss.R: Running theta=[-2.128267, 0.000000]. > test-miss.R: Running theta=[-2.127304, 0.000000]. > test-miss.R: Running theta=[-2.126341, 0.000000]. > test-miss.R: Running theta=[-2.125378, 0.000000]. > test-miss.CD.R: Convergence test P-value:9.4e-205 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.124415, 0.000000]. > test-miss.R: Running theta=[-2.123452, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Running theta=[-2.122489, 0.000000]. > test-miss.R: Running theta=[-2.121526, 0.000000]. > test-miss.R: Running theta=[-2.120563, 0.000000]. > test-miss.CD.R: Iteration 32 of at most 60: > test-miss.R: Running theta=[-2.1196, 0.0000]. > test-miss.CD.R: Convergence test P-value:2.8e-202 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 33 of at most 60: > test-miss.R: Running theta=[-2.118637, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.009575496) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.119005, 0.000000]. > test-miss.R: Running theta=[-2.119968, 0.000000]. > test-miss.R: Running theta=[-2.120931, 0.000000]. > test-miss.CD.R: Convergence test P-value:3.3e-209 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.121894, 0.000000]. > test-miss.R: Running theta=[-2.122857, 0.000000]. > test-miss.R: Running theta=[-2.12382, 0.00000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 34 of at most 60: > test-miss.R: Running theta=[-2.124783, 0.000000]. > test-miss.R: Running theta=[-2.125746, 0.000000]. > test-miss.R: Running theta=[-2.126709, 0.000000]. > test-miss.R: Running theta=[-2.127671, 0.000000]. > test-miss.R: Running theta=[-2.128634, 0.000000]. > test-miss.R: Running theta=[-2.129597, 0.000000]. > test-miss.R: Running theta=[-2.13056, 0.00000]. > test-miss.CD.R: Convergence test P-value:2.8e-201 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 35 of at most 60: > test-miss.R: Running theta=[-2.131523, 0.000000]. > test-miss.R: Running theta=[-2.132486, 0.000000]. > test-miss.R: Running theta=[-2.133449, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.007542247) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132854, 0.000000]. > test-miss.R: Running theta=[-2.131891, 0.000000]. > test-miss.R: Running theta=[-2.130928, 0.000000]. > test-miss.R: Running theta=[-2.129965, 0.000000]. > test-miss.CD.R: Convergence test P-value:5.8e-206 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.129002, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 36 of at most 60: > test-miss.R: Running theta=[-2.128039, 0.000000]. > test-miss.R: Running theta=[-2.127076, 0.000000]. > test-miss.R: Running theta=[-2.126113, 0.000000]. > test-miss.R: Running theta=[-2.125151, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.3e-192 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.124188, 0.000000]. > test-miss.R: Running theta=[-2.123225, 0.000000]. > test-miss.R: Running theta=[-2.122262, 0.000000]. > test-miss.R: Running theta=[-2.121299, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 37 of at most 60: > test-miss.R: Running theta=[-2.120336, 0.000000]. > test-miss.R: Running theta=[-2.119373, 0.000000]. > test-miss.R: Running theta=[-2.11841, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.006188692) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.118778, 0.000000]. > test-miss.R: Running theta=[-2.119741, 0.000000]. > test-miss.CD.R: Convergence test P-value:5.1e-199 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 38 of at most 60: > test-miss.R: Running theta=[-2.120704, 0.000000]. > test-miss.R: Running theta=[-2.121667, 0.000000]. > test-miss.R: Running theta=[-2.12263, 0.00000]. > test-miss.R: Running theta=[-2.123593, 0.000000]. > test-miss.R: Running theta=[-2.124555, 0.000000]. > test-miss.R: Running theta=[-2.125518, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.7e-208 > test-miss.R: Running theta=[-2.126481, 0.000000]. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.127444, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 39 of at most 60: > test-miss.R: Running theta=[-2.128407, 0.000000]. > test-miss.R: Running theta=[-2.12937, 0.00000]. > test-miss.R: Running theta=[-2.130333, 0.000000]. > test-miss.R: Running theta=[-2.131296, 0.000000]. > test-miss.R: Running theta=[-2.132259, 0.000000]. > test-miss.R: Running theta=[-2.133222, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005396227) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132626, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 40 of at most 60: > test-miss.R: Running theta=[-2.131664, 0.000000]. > test-miss.R: Running theta=[-2.130701, 0.000000]. > test-miss.R: Running theta=[-2.129738, 0.000000]. > test-miss.R: Running theta=[-2.128775, 0.000000]. > test-miss.R: Running theta=[-2.127812, 0.000000]. > test-miss.R: Running theta=[-2.126849, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.1e-205 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.125886, 0.000000]. > test-miss.R: Running theta=[-2.124923, 0.000000]. > test-miss.R: Running theta=[-2.12396, 0.00000]. > test-miss.R: Running theta=[-2.122997, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 41 of at most 60: > test-miss.R: Running theta=[-2.122035, 0.000000]. > test-miss.R: Running theta=[-2.121072, 0.000000]. > test-miss.R: Running theta=[-2.120109, 0.000000]. > test-miss.R: Running theta=[-2.119146, 0.000000]. > test-miss.R: Running theta=[-2.118183, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-204 > test-miss.CD.R: 1 2 > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 42 of at most 60: > test-miss.CD.R: Convergence test P-value:8.4e-196 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 43 of at most 60: > test-miss.CD.R: Convergence test P-value:7.5e-206 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 44 of at most 60: > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1728:32768 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 486 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 1.8539 5.6566 0.2566 0.4463 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -8.881 -1.881 2.119 5.119 14.119 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -2.129e-17 1.663e+00 1.067e-01 1.067e-01 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.8807 -1.3807 0.1193 1.1193 4.0693 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.CD.R: Convergence test P-value:1.9e-197 > test-miss.CD.R: 1 > test-miss.R: edges (Omni) > test-miss.R: diff. 1.853909e+00 NA > test-miss.R: test stat. 4.040502e+00 1.632566e+01 > test-miss.R: P-val. 5.333689e-05 7.904382e-05 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.CD.R: 2 > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 0.50229634 > test-miss.R: Lag 128 0.27968825 > test-miss.R: Lag 192 0.14989734 > test-miss.R: Lag 256 0.08553620 > test-miss.R: Lag 320 0.01488518 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.04999730 > test-miss.R: Lag 128 0.05488745 > test-miss.R: Lag 192 -0.03080175 > test-miss.R: Lag 256 0.03734623 > test-miss.R: Lag 320 0.01289319 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 45 of at most 60: > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.4658741 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.6413056 > test-miss.R: Joint P-value (lower = worse): 0.5503774 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.2553269 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.7984706 > test-miss.R: Joint P-value (lower = worse): 0.5503774 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -2.133563 with log-likelihood -120.7039 OK. > test-miss.CD.R: Convergence test P-value:2.8e-211 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 46 of at most 60: > test-miss.R: Correct estimate = -1.663142 with log-likelihood -79.82064 . > test-miss.CD.R: Convergence test P-value:6.5e-203 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 47 of at most 60: > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: > test-miss.R: MPLE estimate = -1.663142 with log-likelihood -79.82064 OK. > test-miss.CD.R: Convergence test P-value:4.7e-204 > test-miss.CD.R: 1 2 > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 48 of at most 60: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 8 dyads is required. > test-miss.R: Imputing 1 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 30 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:5.7e-209 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 49 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-201 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 50 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:9.5e-218 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 51 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.15638 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 3 4 5 6 7 8 Optimizing with step length 0.5368. > test-miss.CD.R: Convergence test P-value:5.7e-193 > test-miss.CD.R: 1 2 > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 4.3000. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.146333 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 52 of at most 60: > test-miss.CD.R: Convergence test P-value:2.5e-206 > test-miss.CD.R: 1 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 53 of at most 60: > test-miss.CD.R: Convergence test P-value:6e-198 > test-miss.CD.R: 1 2 > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -14.85185 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 3.2552. > test-miss.R: Distance from origin on tolerance region scale: 64.83604 (previously 323.1391). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.584689 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 54 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:1.5e-204 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 55 of at most 60: > test-miss.CD.R: Convergence test P-value:2.9e-195 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 56 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.600823 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1297. > test-miss.R: Distance from origin on tolerance region scale: 2.582218 (previously 84.20395). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.684393 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:6.8e-200 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 57 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.2386831 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0011. > test-miss.R: Distance from origin on tolerance region scale: 0.02175454 (previously 2.583022). > test-miss.R: Test statistic: T^2 = 16.95471, with 1 free parameter(s) and 192.1073 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.CD.R: Convergence test P-value:8e-207 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 58 of at most 60: > test-miss.R: Dyad-independent submodel MLE has likelihood -79.82064 at: > test-miss.R: [1] -1.663142 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.CD.R: Convergence test P-value:3.6e-215 > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 59 of at most 60: > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: > test-miss.R: Running theta=[-1.674863, 0.000000]. > test-miss.R: Running theta=[-1.674107, 0.000000]. > test-miss.R: Running theta=[-1.673351, 0.000000]. > test-miss.R: Running theta=[-1.672594, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.6e-199 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 60 of at most 60: > test-miss.R: Running theta=[-1.671838, 0.000000]. > test-miss.R: Running theta=[-1.671082, 0.000000]. > test-miss.R: Running theta=[-1.670326, 0.000000]. > test-miss.R: Running theta=[-1.66957, 0.00000]. > test-miss.R: Running theta=[-1.668813, 0.000000]. > test-miss.R: Running theta=[-1.668057, 0.000000]. > test-miss.R: Running theta=[-1.667301, 0.000000]. > test-miss.CD.R: Convergence test P-value:6.1e-198 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-1.666545, 0.000000]. > test-miss.R: Running theta=[-1.665789, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Running theta=[-1.665033, 0.000000]. > test-miss.R: Running theta=[-1.664276, 0.000000]. Saving _problems/test-miss.CD-76.R > test-miss.R: Running theta=[-1.66352, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005483681) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-1.663809, 0.000000]. > test-miss.R: Running theta=[-1.664565, 0.000000]. > test-miss.R: Running theta=[-1.665321, 0.000000]. > test-miss.R: Running theta=[-1.666078, 0.000000]. > test-miss.R: Running theta=[-1.666834, 0.000000]. > test-miss.R: Running theta=[-1.66759, 0.00000]. > test-miss.R: Running theta=[-1.668346, 0.000000]. > test-miss.R: Running theta=[-1.669102, 0.000000]. > test-miss.R: Running theta=[-1.669858, 0.000000]. > test-miss.R: Running theta=[-1.670615, 0.000000]. > test-miss.R: Running theta=[-1.671371, 0.000000]. > test-miss.R: Running theta=[-1.672127, 0.000000]. > test-miss.R: Running theta=[-1.672883, 0.000000]. > test-miss.R: Running theta=[-1.673639, 0.000000]. > test-miss.R: Running theta=[-1.674396, 0.000000]. > test-miss.R: Running theta=[-1.675152, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.2387 5.2156 0.3346 0.3867 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -9.2346 -4.2346 -0.2346 2.7654 11.7154 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 4.040e-17 1.007e+00 6.463e-02 6.463e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -1.2346 -0.7346 -0.2346 0.7654 2.7154 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.2386831 NA > test-miss.R: test stat. -0.6087923 0.3706280 > test-miss.R: P-val. 0.5426621 0.5433813 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.000000000 > test-miss.R: Lag 128 0.141730657 > test-miss.R: Lag 256 -0.008044799 > test-miss.R: Lag 384 0.039503814 > test-miss.R: Lag 512 0.016265240 > test-miss.R: Lag 640 0.025525909 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.03837238 > test-miss.R: Lag 128 0.06102163 > test-miss.R: Lag 192 0.01817600 > test-miss.R: Lag 256 -0.07663989 > test-miss.R: Lag 320 -0.02107378 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -1.387683 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.1652336 > test-miss.R: Joint P-value (lower = worse): 0.2706448 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.5702328 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.5685198 > test-miss.R: Joint P-value (lower = worse): 0.2706448 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -1.675241 with log-likelihood -79.81794 OK. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: Correct estimate = -3.157 with log-likelihood -8.355963 . > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: MPLE estimate = -3.157 with log-likelihood -8.355963 OK. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 2 dyads is required. > test-miss.R: Imputing 0 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 2 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.942387 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.8416. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.729057 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -0.9012346 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1847. > test-miss.R: Distance from origin on tolerance region scale: 3.678483 (previously 39.20962). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -3.138904 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.05349794 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0008. > test-miss.R: Distance from origin on tolerance region scale: 0.01512904 (previously 4.293514). > test-miss.R: Test statistic: T^2 = 22.84874, with 1 free parameter(s) and 256.603 degrees of freedom. > test-miss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Dyad-independent submodel MLE has likelihood -8.355963 at: > test-miss.R: [1] -3.157 0.000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-3.11196, 0.00000]. > test-miss.R: Running theta=[-3.114866, 0.000000]. > test-miss.R: Running theta=[-3.117772, 0.000000]. > test-miss.R: Running theta=[-3.120678, 0.000000]. > test-miss.R: Running theta=[-3.123584, 0.000000]. > test-miss.R: Running theta=[-3.126489, 0.000000]. > test-miss.R: Running theta=[-3.129395, 0.000000]. > test-miss.R: Running theta=[-3.132301, 0.000000]. > test-miss.R: Running theta=[-3.135207, 0.000000]. > test-miss.R: Running theta=[-3.138113, 0.000000]. > test-miss.R: Running theta=[-3.141018, 0.000000]. > test-miss.R: Running theta=[-3.143924, 0.000000]. > test-miss.R: Running theta=[-3.14683, 0.00000]. > test-miss.R: Running theta=[-3.149736, 0.000000]. > test-miss.R: Running theta=[-3.152642, 0.000000]. > test-miss.R: Running theta=[-3.155548, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 3584:65536 > test-miss.R: Thinning interval = 256 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.05350 1.39509 0.08949 0.08949 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.05761 -1.05761 -0.05761 0.94239 2.94239 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 9.838e-19 2.335e-01 1.498e-02 1.763e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -0.05761 -0.05761 -0.05761 -0.05761 0.94239 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.05349794 NA > test-miss.R: test stat. -0.58650248 0.3476007 > test-miss.R: P-val. 0.55753790 0.5559932 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 256 -0.07640761 > test-miss.R: Lag 512 0.04674441 > test-miss.R: Lag 768 -0.08703223 > test-miss.R: Lag 1024 -0.01273911 > test-miss.R: Lag 1280 0.08918131 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 128 0.01440843 > test-miss.R: Lag 256 -0.06163854 > test-miss.R: Lag 384 -0.05752332 > test-miss.R: Lag 512 0.09381586 > test-miss.R: Lag 640 0.16935966 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 1.222791 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.2214088 > test-miss.R: Joint P-value (lower = worse): 0.530107 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 0.899493 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.3683901 > test-miss.R: Joint P-value (lower = worse): 0.530107 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -3.110507 with log-likelihood -8.357166 OK. > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: Network statistics: > test-miss.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.R: 0 0 0 0 0 0 0 > test-miss.R: Correct estimate = -2.028148 > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Iteration 1 of at most 5: > test-miss.R: 1 2 3 4 5 > test-miss.R: 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 2 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 4 5 6 7 8 9 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 3 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: 10 11 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 4 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 4 5 6 7 8 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 5 of at most 5: > test-miss.R: 1 > test-miss.R: 2 3 4 > test-miss.R: 5 6 7 8 9 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Estimating equations did not move closer to tolerance region more than 1 time(s) in 4 steps; increasing sample size. > test-miss.R: MCMLE estimation did not converge after 5 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. Fitting the dyad-independent submodel... > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Using 16 bridges: 1 > test-miss.R: 2 > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: 12 > test-miss.R: 13 > test-miss.R: 14 15 16 > test-miss.R: . > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-offset.R: Obtaining the responsible dyads. > test-mple-offset.R: Evaluating the predictor and response matrix. > test-mple-offset.R: Maximizing the pseudolikelihood. > test-mple-offset.R: Finished MPLE. > test-mple-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-offset.R: Iteration 1 of at most 60: > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-mple-offset.R: 1 > test-mple-offset.R: Optimizing with step length 1.0000. > test-mple-offset.R: The log-likelihood improved by 0.0040. > test-mple-offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-mple-offset.R: Finished MCMLE. > test-mple-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-mple-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-target.R: [1] 350 50 250 > test-mple-target.R: Structural check: > test-mple-target.R: Mean degree: 1.4 . > test-mple-target.R: Average degree among nodes with degree 2 or higher: 2.25 . > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-target.R: Iteration 1 of at most 60: > test-networkLite.R: Loading required package: networkLite > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Estimating Bootstrap Standard Errors using 500 simulated networks. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 > test-networkLite.R: 4 5 6 7 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 2 3 4 > test-networkLite.R: 5 6 7 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 9 10 11 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 2 3 4 5 6 7 8 9 10 > test-networkLite.R: 11 12 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-networkLite.R: Convergence test p-value: 0.0019. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 4 5 6 7 8 9 10 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-networkLite.R: Convergence test p-value: 0.0019. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-networkLite.R: Convergence test p-value: 0.0247. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-nodrop.R: 1 Optimizing with step length 1.0000. > test-nodrop.R: The log-likelihood improved by 0.0005. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-nodrop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-nodrop.R: 1 Optimizing with step length 0.2247. > test-nodrop.R: The log-likelihood improved by 2.2822. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.2817. > test-nodrop.R: The log-likelihood improved by 2.4734. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nodrop.R: 1 Optimizing with step length 0.2675. > test-nodrop.R: The log-likelihood improved by 3.3752. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-nodrop.R: 1 Optimizing with step length 0.3098. > test-nodrop.R: The log-likelihood improved by 2.4783. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: 1 > test-networkLite.R: 2 3 > test-networkLite.R: 4 > test-networkLite.R: 5 6 7 8 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: 1 Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-nonident-test.R: 1 > test-nonident-test.R: Optimizing with step length 1.0000. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: Convergence test p-value: 0.0247. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nonident-test.R: 1 Optimizing with step length 0.8147. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonunique-names.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonunique-names.R: Obtaining the responsible dyads. > test-nonunique-names.R: Evaluating the predictor and response matrix. > test-nonunique-names.R: Maximizing the pseudolikelihood. > test-nonunique-names.R: Finished MPLE. > test-nonunique-names.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonunique-names.R: Iteration 1 of at most 1: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: 12 > test-networkLite.R: 13 > test-networkLite.R: 14 > test-networkLite.R: 15 > test-networkLite.R: 16 > test-networkLite.R: 17 > test-networkLite.R: 18 > test-networkLite.R: 19 > test-networkLite.R: 20 > test-networkLite.R: 21 > test-networkLite.R: 22 > test-networkLite.R: 23 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 2 > test-networkLite.R: 3 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-nonunique-names.R: 1 > test-nonunique-names.R: Optimizing with step length 1.0000. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nonunique-names.R: The log-likelihood improved by 0.0084. > test-nonunique-names.R: Convergence test p-value: 0.0480. Not converged with 99% confidence; increasing sample size. > test-nonunique-names.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonunique-names.R: Finished MCMLE. > test-nonunique-names.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonunique-names.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-nonunique-names.R: Sample statistics summary: > test-nonunique-names.R: > test-nonunique-names.R: Iterations = 2304:44032 > test-nonunique-names.R: Thinning interval = 128 > test-nonunique-names.R: Number of chains = 1 > test-nonunique-names.R: Sample size per chain = 327 > test-nonunique-names.R: > test-nonunique-names.R: 1. Empirical mean and standard deviation for each variable, > test-nonunique-names.R: plus standard error of the mean: > test-nonunique-names.R: > test-nonunique-names.R: Mean SD Naive SE Time-series SE > test-nonunique-names.R: edgecov.a -0.2171 3.380 0.1869 0.3114 > test-nonunique-names.R: edgecov.a 0.1346 3.565 0.1971 0.4311 > test-nonunique-names.R: > test-nonunique-names.R: 2. Quantiles for each variable: > test-nonunique-names.R: > test-nonunique-names.R: 2.5% 25% 50% 75% 97.5% > test-nonunique-names.R: edgecov.a -7 -2 0 2 6.85 > test-nonunique-names.R: edgecov.a -7 -2 0 3 7.00 > test-nonunique-names.R: > test-nonunique-names.R: > test-nonunique-names.R: Are sample statistics significantly different from observed? > test-nonunique-names.R: edgecov.a edgecov.a (Omni) > test-nonunique-names.R: diff. -0.2171254 0.1345566 NA > test-nonunique-names.R: test stat. -0.6971750 0.3120903 1.2954084 > test-nonunique-names.R: P-val. 0.4856933 0.7549719 0.5307488 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics cross-correlations: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: edgecov.a 1.0000000 0.6853513 > test-nonunique-names.R: edgecov.a 0.6853513 1.0000000 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics auto-correlation: > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: Lag 0 1.000000000 1.00000000 > test-nonunique-names.R: Lag 128 0.592467538 0.65334235 > test-nonunique-names.R: Lag 256 0.298337375 0.41906307 > test-nonunique-names.R: Lag 384 0.082532656 0.22830518 > test-nonunique-names.R: Lag 512 -0.003477022 0.08811653 > test-nonunique-names.R: Lag 640 -0.090771181 0.03701357 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics burn-in diagnostic (Geweke): > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: > test-nonunique-names.R: Fraction in 1st window = 0.1 > test-nonunique-names.R: Fraction in 2nd window = 0.5 > test-nonunique-names.R: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: -0.41748721 0.04619135 > test-nonunique-names.R: > test-nonunique-names.R: Individual P-values (lower = worse): > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: 0.6763221 0.9631577 > test-nonunique-names.R: Joint P-value (lower = worse): 0.8447246 > test-nonunique-names.R: > test-nonunique-names.R: Note: MCMC diagnostics shown here are from the last round of > test-nonunique-names.R: simulation, prior to computation of final parameter estimates. > test-nonunique-names.R: Because the final estimates are refinements of those used for this > test-nonunique-names.R: simulation run, these diagnostics may understate model performance. > test-nonunique-names.R: To directly assess the performance of the final model on in-model > test-nonunique-names.R: statistics, please use the GOF command: gof(ergmFitObject, > test-nonunique-names.R: GOF=~model). > test-nonunique-names.R: > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: 1 Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.6004. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-offsets.R: 1 Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0061. > test-offsets.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 > test-offsets.R: Using 16 bridges: 1 > test-networkLite.R: The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 > test-offsets.R: 2 > test-networkLite.R: The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: 3 > test-offsets.R: 4 > test-offsets.R: 5 > test-offsets.R: 6 > test-offsets.R: 7 > test-offsets.R: 8 > test-offsets.R: 9 > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-offsets.R: 10 > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: 11 > test-offsets.R: 12 13 14 15 > test-offsets.R: 16 > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-parallel.R: parallel test(s) skipped. Set ENABLE_statnet_TESTS environment variable to run. > test-parallel.R: Skipping OpenMP test. This package installation was built without OpenMP support. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 1 Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.7959. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0207. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: Convergence test p-value: 0.0005. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: Using 16 bridges: 1 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 2 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 3 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 4 > test-offsets.R: 5 > test-offsets.R: 6 > test-offsets.R: 7 > test-offsets.R: 8 > test-offsets.R: 9 > test-offsets.R: 10 > test-offsets.R: 11 > test-offsets.R: 12 > test-offsets.R: 13 > test-offsets.R: 14 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 15 > test-offsets.R: 16 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-runtime-diags.R: Starting maximum pseudolikelihood estimation (MPLE): > test-runtime-diags.R: Obtaining the responsible dyads. > test-runtime-diags.R: Evaluating the predictor and response matrix. > test-runtime-diags.R: Maximizing the pseudolikelihood. > test-runtime-diags.R: Finished MPLE. > test-runtime-diags.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-runtime-diags.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: 1 Optimizing with step length 1.0000. > test-runtime-diags.R: The log-likelihood improved by 0.0414. > test-runtime-diags.R: Convergence test p-value: 0.0016. Converged with 99% confidence. > test-runtime-diags.R: Finished MCMLE. > test-runtime-diags.R: This model was fit using MCMC. To examine model diagnostics and check > test-runtime-diags.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: 1 Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: 1 2 > test-scoping.R: 3 > test-scoping.R: 4 > test-scoping.R: 5 > test-scoping.R: 6 7 8 9 > test-scoping.R: 10 > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 15 > test-scoping.R: 16 > test-scoping.R: . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: 1 Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: 1 > test-scoping.R: 2 3 > test-scoping.R: 4 > test-scoping.R: 5 6 > test-scoping.R: 7 > test-scoping.R: 8 9 10 > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 > test-scoping.R: 15 > test-scoping.R: 16 . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-shrink-into-CH.R: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 > test-shrink-into-CH.R: 10 11 > test-shrink-into-CH.R: 12 > test-shrink-into-CH.R: 13 14 15 16 17 18 19 20 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-skip.R: Iteration 1 of at most 60: > test-skip.R: 1 Optimizing with step length 1.0000. > test-skip.R: The log-likelihood improved by 0.0360. > test-skip.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-skip.R: Finished MCMLE. > test-skip.R: This model was fit using MCMC. To examine model diagnostics and check > test-skip.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-snctrl.R: Starting maximum pseudolikelihood estimation (MPLE): > test-snctrl.R: Obtaining the responsible dyads. > test-snctrl.R: Evaluating the predictor and response matrix. > test-snctrl.R: Maximizing the pseudolikelihood. > test-snctrl.R: Finished MPLE. > test-snctrl.R: Evaluating log-likelihood at the estimate. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.7009355 0.2208488 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.6617183 0.1405334 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0034. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.5333754 -0.1317716 0.6729982 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.57231795 -0.05712682 0.44962020 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0007. > test-stocapprox.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.1e-111 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.945. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-44 > test-stocapprox.R: 1 The log-likelihood improved by 0.5962. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:4e-07 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.06364. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:5.6e-05 > test-stocapprox.R: 1 The log-likelihood improved by 0.04097. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.3e-03 > test-stocapprox.R: 1 The log-likelihood improved by 0.01842. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:5.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.002083. > test-stocapprox.R: Finished CD. > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.743217 0.112619 > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.7631980 0.1383531 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-98 > test-stocapprox.R: 1 The log-likelihood improved by 1.862. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:3.5e-30 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.3427. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:3e-09 > test-stocapprox.R: 1 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: The log-likelihood improved by 0.08204. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:3.9e-02 > test-stocapprox.R: 1 The log-likelihood improved by 0.01313. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.2e-02 > test-stocapprox.R: 1 The log-likelihood improved by 0.009411. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:2.6e-01 > test-stocapprox.R: 1 The log-likelihood improved by 0.005336. > test-stocapprox.R: Iteration 7 of at most 60: > test-stocapprox.R: Convergence test P-value:7.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.0009177. > test-stocapprox.R: Finished CD. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: The log-likelihood improved by 0.0022. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: > test-stocapprox.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-stocapprox.R: * 'news(package="ergm.count")' for changes since last version > test-stocapprox.R: * 'citation("ergm.count")' for citation information > test-stocapprox.R: * 'https://statnet.org' for help, support, and other information > test-stocapprox.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 60: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 1.0000. > test-target-offset.R: The log-likelihood improved by 0.0210. > test-target-offset.R: Convergence test p-value: 0.0002. Converged with 99% confidence. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: 1 > test-target-offset.R: 2 > test-target-offset.R: 3 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 10 > test-target-offset.R: 11 > test-target-offset.R: 12 13 > test-target-offset.R: 14 > test-target-offset.R: 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 14336:262144 > test-target-offset.R: Thinning interval = 1024 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 0.55556 4.490 0.2880 0.2880 > test-target-offset.R: degree1 0.04527 2.005 0.1286 0.1286 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges -7 -2.5 0 3 9.00 > test-target-offset.R: degree1 -3 -1.0 0 1 4.95 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Are sample statistics significantly different from observed? > test-target-offset.R: edges degree1 (Omni) > test-target-offset.R: diff. 0.55555556 0.04526749 NA > test-target-offset.R: test stat. 1.92893422 0.35200754 9.455405747 > test-target-offset.R: P-val. 0.05373903 0.72483261 0.009922641 > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges degree1 > test-target-offset.R: edges 1.0000000 -0.7250142 > test-target-offset.R: degree1 -0.7250142 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges degree1 > test-target-offset.R: Lag 0 1.000000000 1.000000000 > test-target-offset.R: Lag 1024 -0.061427219 0.030194492 > test-target-offset.R: Lag 2048 0.007868535 0.092075103 > test-target-offset.R: Lag 3072 0.018624816 0.047810603 > test-target-offset.R: Lag 4096 -0.047471894 0.007659206 > test-target-offset.R: Lag 5120 -0.073593205 -0.009870131 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges degree1 > test-target-offset.R: 0.4498910 -0.1601093 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges degree1 > test-target-offset.R: 0.652789 0.872795 > test-target-offset.R: Joint P-value (lower = worse): 0.8380775 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-target-offset.R: Obtaining the responsible dyads. > test-target-offset.R: Evaluating the predictor and response matrix. > test-target-offset.R: Maximizing the pseudolikelihood. > test-target-offset.R: Finished MPLE. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 3: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.7240. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 2 of at most 3: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.6386. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 3 of at most 3: > test-target-offset.R: 1 Optimizing with step length 0.8376. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: > test-target-offset.R: 1 > test-target-offset.R: 2 > test-target-offset.R: 3 > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 > test-target-offset.R: 10 11 12 > test-target-offset.R: 13 > test-target-offset.R: 14 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 3584:65536 > test-target-offset.R: Thinning interval = 256 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 12.77778 5.118432 0.32835 0.3283476 > test-target-offset.R: gwdegree 0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: gwdegree.decay 0.01236 0.002961 0.00019 0.0001293 > test-target-offset.R: degree0 -0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges 3.000e+00 9.00000 13.00000 16.00000 23.00000 > test-target-offset.R: gwdegree 1.063e-12 1.00000 1.00000 1.00000 1.00000 > test-target-offset.R: gwdegree.decay 5.955e-03 0.01191 0.01191 0.01489 0.01489 > test-target-offset.R: degree0 -1.000e+00 -1.00000 -1.00000 -1.00000 0.00000 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: edges 1.0000000 0.2709648 0.6049364 -0.2709648 > test-target-offset.R: gwdegree 0.2709648 1.0000000 0.5143643 -1.0000000 > test-target-offset.R: gwdegree.decay 0.6049364 0.5143643 1.0000000 -0.5143643 > test-target-offset.R: degree0 -0.2709648 -1.0000000 -0.5143643 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: Lag 0 1.000000000 1.00000000 1.000000000 1.00000000 > test-target-offset.R: Lag 256 0.006056003 0.02865300 -0.034893817 0.02865300 > test-target-offset.R: Lag 512 0.062813023 -0.07862186 0.002608612 -0.07862186 > test-target-offset.R: Lag 768 -0.089332866 -0.07930006 -0.150790861 -0.07930006 > test-target-offset.R: Lag 1024 -0.091496281 -0.07564135 -0.189123113 -0.07564135 > test-target-offset.R: Lag 1280 0.030192390 0.03461402 0.073975025 0.03461402 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.05663036 -1.34419649 0.38772965 1.34419649 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.9548397 0.1788849 0.6982161 0.1788849 > test-target-offset.R: Joint P-value (lower = worse): 0.3850888 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-term-Offset.R: 1 > test-term-Offset.R: Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0005. > test-term-Offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-term-Offset.R: 1 Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0076. > test-term-Offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-b12nodematch.R: In term 'b1nodematch' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: In term 'asymmetric' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b1dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1factor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) ideg7+.homophily.group and ideg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) gwodeg.fixed.0 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1twostar' in package 'ergm': Argument 'base' has been superseded by 'levels2', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b2dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: In term 'nodeifactor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg7+ and odeg8+ are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg6+.homophily.group, odeg7+.homophily.group, and odeg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Observed statistic(s) edgecov.YearsTrusted are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-flexible.R: All terms are either offsets or extreme values. No optimization is performed. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: In term 'nodemix' in package 'ergm': Argument 'base' has been superseded by 'levels2', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Note: Term 'mm(~Grade >= 10, levels = -1)' skipped because it contributes no statistics. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-options.R: 1 > test-term-options.R: Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0013. > test-term-options.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: Fitting the dyad-independent submodel... > test-term-options.R: Bridging between the dyad-independent submodel and the full model... > test-term-options.R: Setting up bridge sampling... > test-term-options.R: Using 16 bridges: > test-term-options.R: 1 > test-term-options.R: 2 > test-term-options.R: 3 > test-term-options.R: 4 > test-term-options.R: 5 > test-term-options.R: 6 > test-term-options.R: 7 > test-term-options.R: 8 > test-term-options.R: 9 > test-term-options.R: 10 > test-term-options.R: 11 > test-term-options.R: 12 > test-term-options.R: 13 > test-term-options.R: 14 > test-term-options.R: 15 > test-term-options.R: 16 > test-term-options.R: . > test-term-options.R: Bridging finished. > test-term-options.R: > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-options.R: 1 Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0003. > test-term-options.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'DiscUnif2' cannot take into account hint(s) 'sparse' and 'triadic'. > test-u-function.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-valued-sim.R: mean=1, var=4, corr=0.3 > test-valued-sim.R: eta=(0.192307692307692,0.0824175824175824,0.362637362637363) > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated mean (stats only):0.9332403 > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated means (target=1): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 0.8501229 0.9808577 > test-valued-sim.R: [2,] 0.9672299 NA 0.9683310 > test-valued-sim.R: [3,] 0.8330923 1.0127929 NA > test-valued-sim.R: Simulated vars (target=4): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 4.290191 3.699857 > test-valued-sim.R: [2,] 4.185627 NA 4.195162 > test-valued-sim.R: [3,] 3.983195 3.945351 NA > test-valued-sim.R: Simulated correlations (1,2) (1,3) (2,3) (target=0.3): > test-valued-sim.R: [1] 0.3074687 0.2800508 0.3157743 > test-valued-sim.R: ==== output='stats', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: > test-valued-sim.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-sim.R: * 'news(package="ergm.count")' for changes since last version > test-valued-sim.R: * 'citation("ergm.count")' for citation information > test-valued-sim.R: * 'https://statnet.org' for help, support, and other information > test-valued-sim.R: > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: > test-valued-terms.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-terms.R: * 'news(package="ergm.count")' for changes since last version > test-valued-terms.R: * 'citation("ergm.count")' for citation information > test-valued-terms.R: * 'https://statnet.org' for help, support, and other information > test-valued-terms.R: [ FAIL 1 | WARN 0 | SKIP 1 | PASS 4300 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • empty test (1): ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-miss.CD.R:76:3'): curved+missing ───────────────────────────── Expected `abs(coef(cdfit)[1] - truth)/sqrt(cdfit$covar[1])` < 2. Actual comparison: 2.95 >= 2.00 Difference: 0.95 >= 0 [ FAIL 1 | WARN 0 | SKIP 1 | PASS 4300 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 4.11.0
Check: tests
Result: ERROR Running ‘requireNamespaceTest.R’ [5s/31s] Running ‘testthat.R’ [10m/17m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # File tests/testthat.R in package ergm, part of the Statnet suite of packages > # for network analysis, https://statnet.org . > # > # This software is distributed under the GPL-3 license. It is free, open > # source, and has the attribution requirements (GPL Section 7) at > # https://statnet.org/attribution . > # > # Copyright 2003-2025 Statnet Commons > ################################################################################ > library(testthat) > library(statnet.common) Attaching package: 'statnet.common' The following objects are masked from 'package:base': attr, order, replace > library(ergm) Loading required package: network 'network' 1.20.0 (2026-02-06), part of the Statnet Project * 'news(package="network")' for changes since last version * 'citation("network")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4.11.0 (2025-12-22), part of the Statnet Project * 'news(package="ergm")' for changes since last version * 'citation("ergm")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4 is a major update that introduces some backwards-incompatible changes. Please type 'news(package="ergm")' for a list of major changes. Attaching package: 'ergm' The following object is masked from 'package:statnet.common': snctrl > > test_check("ergm") Starting 2 test processes. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network > test-basis.R: satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network > test-basis.R: satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-basis.R: Convergence test p-value: 0.0001. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: > test-bridge-target.stats.R: Unable to match target stats. Using MCMLE estimation. > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-bridge-target.stats.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: Optimizing with step length 1.0000. > test-bridge-target.stats.R: The log-likelihood improved by 0.0219. > test-bridge-target.stats.R: Convergence test p-value: < 0.0001. > test-bridge-target.stats.R: Converged with 99% confidence. > test-bridge-target.stats.R: Finished MCMLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: > test-bridge-target.stats.R: This model was fit using MCMC. To examine model diagnostics and check > test-bridge-target.stats.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Iteration 1 of at most 60: > test-checkpointing.R: Saving state in '/tmp/Rtmp0UoJvo/working_dir/RtmpbWOzei/file1f892cf1b903_001.RData'. > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 7 8 9 10 11 12 13 14 15 16 . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: 1 2 3 4 5 6 7 > test-checkpointing.R: 1 Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0213. > test-checkpointing.R: Step length converged once. Increasing MCMC sample size. > test-checkpointing.R: Iteration 2 of at most 60: > test-checkpointing.R: Saving state in '/tmp/Rtmp0UoJvo/working_dir/RtmpbWOzei/file1f892cf1b903_002.RData'. > test-bridge-target.stats.R: 8 > test-checkpointing.R: 1 > test-checkpointing.R: Optimizing with step length 1.0000. > test-bridge-target.stats.R: 9 > test-checkpointing.R: The log-likelihood improved by 0.0238. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-checkpointing.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-checkpointing.R: Using 16 bridges: 1 > test-checkpointing.R: 2 > test-checkpointing.R: 3 > test-checkpointing.R: 4 > test-checkpointing.R: 5 > test-bridge-target.stats.R: 16 > test-checkpointing.R: 6 > test-checkpointing.R: 7 > test-checkpointing.R: 8 > test-checkpointing.R: 9 > test-checkpointing.R: 10 > test-checkpointing.R: 11 > test-checkpointing.R: 12 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-checkpointing.R: 13 > test-checkpointing.R: 14 > test-checkpointing.R: 15 > test-checkpointing.R: 16 > test-checkpointing.R: . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Resuming from state saved in '/tmp/Rtmp0UoJvo/working_dir/RtmpbWOzei/file1f892cf1b903_002.RData'. > test-checkpointing.R: Iteration 1 of at most 60: > test-checkpointing.R: 1 Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0145. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-checkpointing.R: Fitting the dyad-independent submodel... > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-checkpointing.R: Using 16 bridges: > test-checkpointing.R: 1 > test-checkpointing.R: 2 > test-checkpointing.R: 3 > test-checkpointing.R: 4 > test-checkpointing.R: 5 > test-checkpointing.R: 6 > test-checkpointing.R: 7 > test-checkpointing.R: 8 > test-checkpointing.R: 9 > test-checkpointing.R: 10 > test-checkpointing.R: 11 > test-checkpointing.R: 12 > test-checkpointing.R: 13 > test-checkpointing.R: 14 > test-checkpointing.R: 15 > test-checkpointing.R: 16 > test-checkpointing.R: . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-constrain-degrees-edges.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constrain-degrees-edges.R: Iteration 1 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:1.6e-07 > test-constrain-degrees-edges.R: 1 > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-degrees-edges.R: The log-likelihood improved by 0.1482. > test-constrain-degrees-edges.R: Iteration 2 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:2.7e-03 > test-constrain-degrees-edges.R: 1 > test-constrain-blockdiag.R: > test-constrain-blockdiag.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-constrain-blockdiag.R: * 'news(package="ergm.count")' for changes since last version > test-constrain-blockdiag.R: * 'citation("ergm.count")' for citation information > test-constrain-blockdiag.R: * 'https://statnet.org' for help, support, and other information > test-constrain-blockdiag.R: > test-constrain-degrees-edges.R: The log-likelihood improved by 0.04365. > test-constrain-degrees-edges.R: Finished CD. > test-constrain-degrees-edges.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-degrees-edges.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-constrain-dind.R: Iteration 1 of at most 60: > test-constrain-degrees-edges.R: Best valid proposal 'CondInDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: 1 Optimizing with step length 1.0000. > test-constrain-dind.R: The log-likelihood improved by 0.0020. > test-constrain-dind.R: Convergence test p-value: < 0.0001. > test-constrain-dind.R: Converged with 99% confidence. > test-constrain-dind.R: Finished MCMLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Fitting the dyad-independent submodel... > test-constrain-dind.R: Bridging between the dyad-independent submodel and the full model... > test-constrain-dind.R: Setting up bridge sampling... > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Using 16 bridges: 1 > test-constrain-dind.R: 2 > test-constrain-dind.R: 3 > test-constrain-dind.R: 4 > test-constrain-dind.R: 5 > test-constrain-dind.R: 6 > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: 7 > test-constrain-dind.R: 8 > test-constrain-dind.R: 9 > test-constrain-dind.R: 10 > test-constrain-dind.R: 11 > test-constrain-dind.R: 12 > test-constrain-dind.R: 13 > test-constrain-dind.R: 14 > test-constrain-dind.R: 15 > test-constrain-dind.R: 16 > test-constrain-dind.R: . > test-constrain-dind.R: Bridging finished. > test-constrain-dind.R: > test-constrain-dind.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-dind.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf > test-drop.R: . > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: All terms are either offsets or extreme values. No optimization is performed. > test-constraints.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: Using 16 bridges: 1 > test-constraints.R: 2 > test-constraints.R: 3 > test-constraints.R: 4 > test-constraints.R: 5 > test-constraints.R: 6 > test-constraints.R: 7 > test-constraints.R: 8 > test-constraints.R: 9 > test-constraints.R: 10 > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 > test-constraints.R: 14 > test-constraints.R: 15 > test-constraints.R: 16 > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent > test-constraints.R: constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-constraints.R: > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constraints.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network > test-constraints.R: satisfies all constraints. > test-constraints.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constraints.R: Iteration 1 of at most 60: > test-constraints.R: Convergence test P-value:1.1e-05 > test-constraints.R: 1 > test-drop.R: 1 > test-constraints.R: The log-likelihood improved by 0.07919. > test-constraints.R: Iteration 2 of at most 60: > test-drop.R: Optimizing with step length 1.0000. > test-constraints.R: Convergence test P-value:3.7e-02 > test-constraints.R: 1 > test-constraints.R: The log-likelihood improved by 0.01687. > test-constraints.R: Iteration 3 of at most 60: > test-constraints.R: Convergence test P-value:7e-01 > test-constraints.R: Convergence detected. Stopping. > test-constraints.R: 1 > test-constraints.R: The log-likelihood improved by 0.0006029. > test-constraints.R: Finished CD. > test-constraints.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-constraints.R: Iteration 1 of at most 60: > test-drop.R: The log-likelihood improved by 0.0005. > test-constraints.R: 1 > test-constraints.R: Optimizing with step length 1.0000. > test-constraints.R: The log-likelihood improved by 0.0263. > test-constraints.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constraints.R: Finished MCMLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Convergence test p-value: < 0.0001. > test-drop.R: Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-constraints.R: Setting up bridge sampling... > test-drop.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-drop.R: Fitting the dyad-independent submodel... > test-constraints.R: Using 16 bridges: 1 > test-constraints.R: 2 > test-constraints.R: 3 > test-constraints.R: 4 > test-constraints.R: 5 > test-constraints.R: 6 > test-constraints.R: 7 > test-constraints.R: 8 > test-constraints.R: 9 > test-constraints.R: 10 > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 > test-constraints.R: 14 > test-constraints.R: 15 > test-constraints.R: 16 > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-constraints.R: > test-constraints.R: This model was fit using MCMC. To examine model diagnostics and check > test-constraints.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Using 16 bridges: > test-drop.R: 1 > test-drop.R: 2 > test-drop.R: 3 > test-drop.R: 4 > test-drop.R: 5 > test-drop.R: 6 > test-drop.R: 7 > test-drop.R: 8 > test-drop.R: 9 > test-drop.R: 10 > test-drop.R: 11 > test-drop.R: 12 > test-drop.R: 13 > test-drop.R: 14 > test-drop.R: 15 > test-drop.R: 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-proposal-unload.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-proposal-unload.R: * 'citation("ergm.count")' for citation information > test-ergm-proposal-unload.R: * 'https://statnet.org' for help, support, and other information > test-ergm-proposal-unload.R: > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-ergm-san.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-drop.R: 1 > test-drop.R: Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by 0.0084. > test-drop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Fitting the dyad-independent submodel... > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Using 16 bridges: > test-drop.R: 1 > test-drop.R: 2 > test-drop.R: 3 > test-drop.R: 4 > test-drop.R: 5 > test-drop.R: 6 > test-drop.R: 7 > test-drop.R: 8 > test-drop.R: 9 > test-drop.R: 10 > test-drop.R: 11 > test-drop.R: 12 > test-drop.R: 13 > test-drop.R: 14 > test-drop.R: 15 > test-drop.R: 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Evaluating network in model. > test-drop.R: Initializing unconstrained Metropolis-Hastings proposal: > test-drop.R: 'ergm:MH_SPDyad'. > test-drop.R: Initializing model... > test-drop.R: Model initialized. > test-drop.R: Using initial method 'MPLE'. > test-drop.R: Initial parameters provided by caller: None. > test-drop.R: number of free parameters: 7 > test-drop.R: number of fixed parameters: 0 > test-drop.R: Observed statistic(s) triangle and kstar5 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Fitting initial model. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Density guard set to 10000 from an initial count of 3 edges. > test-drop.R: > test-drop.R: Iteration 1 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -5.244530e-01 2.592560e-01 -3.147987e-01 -9.254589e-01 2.322348e-12 > test-drop.R: Starting unconstrained MCMC... > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 512. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -3.399177 -1.395062 -4.641975 -3.370370 2.170829 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 > test-drop.R: Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 1.5314. > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 2 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -7.679134e-01 3.298974e-01 -4.787791e-01 -1.324882e+00 9.046976e-10 > test-drop.R: Starting unconstrained MCMC... > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 256. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.2427984 0.4115226 -0.1934156 -0.5020576 -0.2889661 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 0.2272. > test-drop.R: Distance from origin on tolerance region scale: 4.992214 (previously Inf). > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 3 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -1.0610706 1.2599949 -0.5094541 -1.4594441 0.1742152 > test-drop.R: Starting unconstrained MCMC... > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 128. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.4855967 -0.3621399 -0.6090535 -0.5209768 0.5709312 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: Starting MCMC s.e. computation. > test-drop.R: The log-likelihood improved by 0.0416. > test-drop.R: Distance from origin on tolerance region scale: 0.9245623 (previously Inf). > test-drop.R: Estimated covariance matrix of the statistics has nullity 1. Effective parameter number adjusted to 4. > test-drop.R: Test statistic: T^2 = 10.41146, with 4 free parameter(s) and 238.9876 degrees of freedom. > test-drop.R: Convergence test p-value: 0.0387. Not converged with 99% confidence; increasing sample size. > test-drop.R: 99% confidence critical value = 13.77129. > test-drop.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Initializing model to obtain the list of dyad-independent terms... > test-drop.R: Fitting the dyad-independent submodel... > test-drop.R: Dyad-independent submodel MLE has likelihood -11.02185 at: > test-drop.R: [1] -2.639057 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 > test-drop.R: [8] 0.000000 > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Initializing model and proposals... > test-drop.R: Model and proposals initialized. > test-drop.R: Using 16 bridges: Running theta=[-2.0110138, -Inf, 1.4621780,-0.4923718, -Inf,-0.9527669, 0.1279654, 0.0000000]. > test-drop.R: Running theta=[-2.0515328, -Inf, 1.3678439,-0.4606058, -Inf,-0.8912980, 0.1197096, 0.0000000]. > test-drop.R: Running theta=[-2.0920517, -Inf, 1.2735099,-0.4288399, -Inf,-0.8298292, 0.1114537, 0.0000000]. > test-drop.R: Running theta=[-2.1325706, -Inf, 1.1791758,-0.3970740, -Inf,-0.7683604, 0.1031979, 0.0000000]. > test-drop.R: Running theta=[-2.17308956, -Inf, 1.08484175,-0.36530808, -Inf,-0.70689155, 0.09494207, 0.00000000]. > test-drop.R: Running theta=[-2.21360850, -Inf, 0.99050769,-0.33354216, -Inf,-0.64542272, 0.08668623, 0.00000000]. > test-drop.R: Running theta=[-2.2541274, -Inf, 0.8961736,-0.3017762, -Inf,-0.5839539, 0.0784304, 0.0000000]. > test-drop.R: Running theta=[-2.29464637, -Inf, 0.80183956,-0.27001032, -Inf,-0.52248506, 0.07017457, 0.00000000]. > test-drop.R: Running theta=[-2.33516531, -Inf, 0.70750549,-0.23824440, -Inf,-0.46101623, 0.06191874, 0.00000000]. > test-drop.R: Running theta=[-2.37568425, -Inf, 0.61317143,-0.20647848, -Inf,-0.39954740, 0.05366291, 0.00000000]. > test-drop.R: Running theta=[-2.41620318, -Inf, 0.51883736,-0.17471256, -Inf,-0.33807857, 0.04540708, 0.00000000]. > test-drop.R: Running theta=[-2.45672212, -Inf, 0.42450329,-0.14294664, -Inf,-0.27660974, 0.03715124, 0.00000000]. > test-drop.R: Running theta=[-2.49724105, -Inf, 0.33016923,-0.11118072, -Inf,-0.21514091, 0.02889541, 0.00000000]. > test-drop.R: Running theta=[-2.53775999, -Inf, 0.23583516,-0.07941480, -Inf,-0.15367208, 0.02063958, 0.00000000]. > test-drop.R: Running theta=[-2.57827893, -Inf, 0.14150110,-0.04764888, -Inf,-0.09220325, 0.01238375, 0.00000000]. > test-drop.R: Running theta=[-2.618797861, -Inf, 0.047167033,-0.015882960, -Inf,-0.030734415, 0.004127916, 0.000000000]. > test-drop.R: . > test-drop.R: Bridge sampling finished. Collating... > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (binary, valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: ctriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ctriad (binary) > test-ergm-term-doc.R: Cyclic triples > test-ergm-term-doc.R: > test-ergm-term-doc.R: localtriangle(x) (binary) > test-ergm-term-doc.R: Triangles within neighborhoods > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1) (binary) > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: opentriad (binary) > test-ergm-term-doc.R: Open triads > test-ergm-term-doc.R: > test-ergm-term-doc.R: threetrail(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: threepath(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Three-trails > test-ergm-term-doc.R: > test-ergm-term-doc.R: triangle(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: triangles(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangles > test-ergm-term-doc.R: > test-ergm-term-doc.R: tripercent(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangle percentage > test-ergm-term-doc.R: > test-ergm-term-doc.R: ttriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ttriad (binary) > test-ergm-term-doc.R: Transitive triples > test-ergm-term-doc.R: Found 31 matching ergm terms: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergm.bridge.llr.R: 2 > test-ergm-term-doc.R: Found 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Definitions for term(s) > test-ergm-term-doc.R: b2factor : > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network: This term adds multiple network statistics to the model, one for each of (a subset of) the > test-ergm-term-doc.R: unique values of the attr attribute. Each of these statistics > test-ergm-term-doc.R: gives the number of times a node with that attribute in the second mode of > test-ergm-term-doc.R: the network appears in an edge. The second mode of a bipartite network > test-ergm-term-doc.R: object is sometimes known as the "event" mode. > test-ergm-term-doc.R: Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected, binary, valued > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3factor' were found. Try searching with search='b3factor'instead. > test-ergm-term-doc.R: Found 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm.bridge.llr.R: 3 > test-ergm-term-doc.R: Found 50 matching ergm terms: > test-ergm-term-doc.R: B(formula, form) (valued) > test-ergm-term-doc.R: Wrap binary terms for use in valued models > test-ergm-term-doc.R: > test-ergm-term-doc.R: Curve(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrise(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrize(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Impose a curved structure on term parameters > test-ergm-term-doc.R: > test-ergm-term-doc.R: Exp(formula) (valued) > test-ergm-term-doc.R: Exponentiate a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: For(...) (valued) > test-ergm-term-doc.R: A for operator for terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: I(formula) (valued) > test-ergm-term-doc.R: Substitute a formula into the model formula > test-ergm-term-doc.R: > test-ergm-term-doc.R: Label(formula, label, pos) (valued) > test-ergm-term-doc.R: Modify terms' coefficient names > test-ergm-term-doc.R: > test-ergm-term-doc.R: Log(formula, log0=-1/sqrt(.Machine$double.eps)) (valued) > test-ergm-term-doc.R: Take a natural logarithm of a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: Prod(formulas, label) (valued) > test-ergm-term-doc.R: A product (or an arbitrary power combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: S(formula, attrs) (valued) > test-ergm-term-doc.R: Evaluation on an induced subgraph > test-ergm-term-doc.R: > test-ergm-term-doc.R: Sum(formulas, label) (valued) > test-ergm-term-doc.R: A sum (or an arbitrary linear combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiff(attr, pow=1, form="sum") (valued) > test-ergm-term-doc.R: Absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiffcat(attr, base=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Categorical absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: atleast(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values greater than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: atmost(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values less than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: attrcov(attr, mat, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate by attribute pairing > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: cdf(min = NULL, max = NULL, by = NULL, margin = 0.1, nmax = 100) (valued) > test-ergm-term-doc.R: Empirical cumulative distribution function (unnormalized) of > test-ergm-term-doc.R: the network's dyad values > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalties(threshold=0) (valued) > test-ergm-term-doc.R: Cyclical ties > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Cyclical weights > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: edgecov(x, attrname=NULL, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: edges (valued) > test-ergm-term-doc.R: nonzero (valued) > test-ergm-term-doc.R: Number of edges in the network > test-ergm-term-doc.R: > test-ergm-term-doc.R: equalto(value=0, tolerance=0) (valued) > test-ergm-term-doc.R: Number of dyads with values equal to a specific value (within tolerance) > test-ergm-term-doc.R: > test-ergm-term-doc.R: greaterthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly greater than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) > test-ergm-term-doc.R: Number of dyads whose values are in an interval > test-ergm-term-doc.R: > test-ergm-term-doc.R: mm(attrs, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Mixing matrix cells and margins > test-ergm-term-doc.R: > test-ergm-term-doc.R: mutual(form="min",threshold=0) (valued) > test-ergm-term-doc.R: Mutuality > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecov(attr, form="sum") (valued) > test-ergm-term-doc.R: nodemain(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of undirected dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodefactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of in-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeifactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodematch(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: match(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Uniform homophily and differential homophily > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of out-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeofactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: receiver(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Receiver effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: sender(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Sender effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: smallerthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly smaller than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: sociality(attr=NULL, base=1, levels=NULL, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Undirected degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: sum(pow=1) (valued) > test-ergm-term-doc.R: Sum of dyad values (optionally taken to a power) > test-ergm-term-doc.R: > test-ergm-term-doc.R: transitiveweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Transitive weights > test-ergm-term-doc.R: Found 4 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: DiscUnif(a,b) > test-ergm-term-doc.R: Discrete Uniform reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: StdNormal > test-ergm-term-doc.R: Standard Normal reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: Unif(a,b) > test-ergm-term-doc.R: Continuous Uniform reference > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found 1 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: Definitions for term(s) Bernoulli : > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference: Specifies each > test-ergm-term-doc.R: dyad's baseline distribution to be Bernoulli with probability of > test-ergm-term-doc.R: the tie being 0.5 . This is the only reference measure used > test-ergm-term-doc.R: in binary mode. > test-ergm-term-doc.R: Keywords: binary, discrete, finite, nonnegative > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'Cernoulli' were found. Try searching with search='Cernoulli'instead. > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrees > test-ergm-term-doc.R: Preserve the receiver degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm.bridge.llr.R: 4 > test-ergm-term-doc.R: Found 17 matching ergm terms: > test-ergm-term-doc.R: ChangeStats(fix, check_dind = TRUE) > test-ergm-term-doc.R: Specified statistics must remain constant > test-ergm-term-doc.R: > test-ergm-term-doc.R: Dyads(fix=NULL, vary=NULL) > test-ergm-term-doc.R: Constrain fixed or varying dyad-independent terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: blockdiag(attr) > test-ergm-term-doc.R: Block-diagonal structure constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: blocks(attr=NULL, levels=NULL, levels2=FALSE, b1levels=NULL, b2levels=NULL) > test-ergm-term-doc.R: Constrain blocks of dyads defined by mixing type on a vertex attribute. > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise(p01, p10) > test-ergm-term-doc.R: A soft constraint to adjust the sampled distribution for > test-ergm-term-doc.R: dyad-level noise with known perturbation probabilities > test-ergm-term-doc.R: > test-ergm-term-doc.R: egocentric(attr=NULL, direction="both") > test-ergm-term-doc.R: Preserve values of dyads incident on vertices with given attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixallbut(free.dyads) > test-ergm-term-doc.R: Preserve the dyad status in all but the given edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixedas(fixed.dyads, present, absent) > test-ergm-term-doc.R: Fix specific dyads > test-ergm-term-doc.R: > test-ergm-term-doc.R: hamming > test-ergm-term-doc.R: Preserve the hamming distance to the given network (BROKEN: Do NOT Use) > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: observed > test-ergm-term-doc.R: Preserve the observed dyads of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Definitions for term(s) b1degrees : > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks: For bipartite networks, preserve the degree for the first mode of each vertex of the given > test-ergm-term-doc.R: network, while allowing the degree for the second mode to vary. > test-ergm-term-doc.R: Keywords: bipartite > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3degrees' were found. Try searching with search='b3degrees'instead. > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 2 matching ergm proposals: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: Found 5 matching ergm proposals: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: DistRLE > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 0 matching ergm proposals: > test-ergm-term-doc.R: Found 18 matching ergm proposals: > test-ergm-term-doc.R: BDStratTNT > test-ergm-term-doc.R: TNT proposal with degree bounds, stratification, and a blocks constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegree > test-ergm-term-doc.R: MHp for degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeDist > test-ergm-term-doc.R: MHp for degreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeMix > test-ergm-term-doc.R: MHp for degree mix constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegree > test-ergm-term-doc.R: MHp for idegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegreeDist > test-ergm-term-doc.R: MHp for idegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegree > test-ergm-term-doc.R: MHp for odegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegreeDist > test-ergm-term-doc.R: MHp for odegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingConstantEdges > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoiseTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Definitions for proposal(s) randomtoggle : > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Reference: Bernoulli Class: cross-sectional > test-ergm-term-doc.R: May Enforce: .dyads bd changestats > test-ergm-term-doc.R: > test-ergm.bridge.llr.R: 5 > test-ergm-term-doc.R: No proposals named 'mandomtoggle' were found. Try searching with search='mandomtoggle'instead. > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm-term-doc.R: > test-ergm-term-doc.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-term-doc.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-term-doc.R: * 'c > test-ergm-term-doc.R: itation("ergm.count")' for citation information > test-ergm-term-doc.R: * 'https://statnet.org' for help, support, and other information > test-ergm-term-doc.R: > test-ergm.bridge.llr.R: 9 10 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: 1 > test-ergmMPLE.R: Starting maximum pseudolikelihood estimation (MPLE): > test-ergmMPLE.R: Obtaining the responsible dyads. > test-ergmMPLE.R: Evaluating the predictor and response matrix. > test-ergmMPLE.R: Maximizing the pseudolikelihood. > test-ergmMPLE.R: Finished MPLE. > test-ergmMPLE.R: Evaluating log-likelihood at the estimate. > test-ergmMPLE.R: > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-ergm.bridge.llr.R: 8 > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 9 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gflomiss.R: 1 > test-gflomiss.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-gflomiss.R: The log-likelihood improved by 0.0033. > test-gflomiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 2 > test-gflomiss.R: Fitting the dyad-independent submodel... > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: 3 > test-gflomiss.R: Using 16 bridges: > test-gflomiss.R: 1 > test-ergm.bridge.llr.R: 4 > test-gflomiss.R: 2 > test-gflomiss.R: 3 > test-gflomiss.R: 4 > test-gflomiss.R: 5 > test-gflomiss.R: 6 > test-gflomiss.R: 7 > test-gflomiss.R: 8 > test-ergm.bridge.llr.R: 5 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-ergm.bridge.llr.R: 6 > test-gflomiss.R: 11 > test-ergm.bridge.llr.R: 7 > test-gflomiss.R: 12 > test-ergm.bridge.llr.R: 8 > test-gflomiss.R: 13 > test-gflomiss.R: 14 > test-gflomiss.R: 15 > test-ergm.bridge.llr.R: 9 > test-gflomiss.R: 16 > test-ergm.bridge.llr.R: 10 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-gflomiss.R: 1 Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 14 > test-gflomiss.R: The log-likelihood improved by 0.0025. > test-ergm.bridge.llr.R: 15 > test-gflomiss.R: Convergence test p-value: < 0.0001. > test-gflomiss.R: Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: 16 > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-gflomiss.R: Using 16 bridges: > test-ergm.bridge.llr.R: . > test-gflomiss.R: 1 > test-gflomiss.R: 2 > test-gflomiss.R: 3 > test-gflomiss.R: 4 > test-gflomiss.R: 5 > test-gflomiss.R: 6 > test-gflomiss.R: 7 > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-gflomiss.R: 8 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-gflomiss.R: 11 > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gflomiss.R: 12 > test-gflomiss.R: 13 > test-gflomiss.R: 14 > test-ergm.bridge.llr.R: Using 16 bridges: > test-gflomiss.R: 15 > test-ergm.bridge.llr.R: 1 > test-gflomiss.R: 16 > test-ergm.bridge.llr.R: 2 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 3 > test-gmonkmiss.R: odegree3 > test-gmonkmiss.R: odegree4 odegree5 odegree6 > test-gmonkmiss.R: 1 5 7 5 > test-gmonkmiss.R: idegree2 idegree3 idegree4 idegree5 idegree6 idegree7 idegree8 idegree10 > test-gmonkmiss.R: 3 5 1 3 2 1 1 1 > test-gmonkmiss.R: idegree11 > test-gmonkmiss.R: 1 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-ergm.bridge.llr.R: 10 > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.6245. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: 0.0005. > test-gmonkmiss.R: Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-gmonkmiss.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-gmonkmiss.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-gmonkmiss.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gmonkmiss.R: Iteration 1 of at most 60: > test-gmonkmiss.R: Convergence test P-value:3.3e-34 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.4205. > test-gmonkmiss.R: Iteration 2 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.8e-14 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.1501. > test-gmonkmiss.R: Iteration 3 of at most 60: > test-gmonkmiss.R: Convergence test P-value:2e-04 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.03536. > test-gmonkmiss.R: Iteration 4 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.6e-01 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.007343. > test-gmonkmiss.R: Iteration 5 of at most 60: > test-gmonkmiss.R: Convergence test P-value:2.4e-01 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00569. > test-gmonkmiss.R: Iteration 6 of at most 60: > test-gmonkmiss.R: Convergence test P-value:9.9e-02 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00904. > test-gmonkmiss.R: Iteration 7 of at most 60: > test-gmonkmiss.R: Convergence test P-value:7.6e-01 > test-gmonkmiss.R: Convergence detected. Stopping. > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.001102. > test-gmonkmiss.R: Finished CD. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-gof.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-gof.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gof.R: Iteration 1 of at most 60: > test-gof.R: Convergence test P-value:5.5e-307 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 1.755. > test-gof.R: Iteration 2 of at most 60: > test-gof.R: Convergence test P-value:1.4e-100 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.5849. > test-gof.R: Iteration 3 of at most 60: > test-gof.R: Convergence test P-value:9e-24 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.1098. > test-gof.R: Iteration 4 of at most 60: > test-gof.R: Convergence test P-value:1.1e-05 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.02449. > test-gof.R: Iteration 5 of at most 60: > test-gof.R: Convergence test P-value:4.6e-03 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.01353. > test-gof.R: Iteration 6 of at most 60: > test-gof.R: Convergence test P-value:4.4e-02 > test-gof.R: 1 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.009052. > test-gof.R: Iteration 7 of at most 60: > test-gmonkmiss.R: The log-likelihood improved by 0.4514. > test-gof.R: Convergence test P-value:5.2e-01 > test-gof.R: Convergence detected. Stopping. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.003305. > test-gof.R: Finished CD. > test-gof.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gof.R: Iteration 1 of at most 2: > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.0105. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.7035. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-gof.R: 1 > test-gof.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.4463. > test-gof.R: Estimating equations are not within tolerance region. > test-gof.R: Iteration 2 of at most 2: > test-gof.R: 1 > test-gof.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.0083. > test-gof.R: Convergence test p-value: 0.0005. > test-gof.R: Converged with 99% confidence. > test-gof.R: Finished MCMLE. > test-gof.R: This model was fit using MCMC. To examine model diagnostics and check > test-gof.R: for degeneracy, use the mcmc.diagnostics() function. > test-gof.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-gof.R: > test-gof.R: Goodness-of-fit for > test-gof.R: model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 143 171.39 204 0.88 > test-gof.R: nonzero 88 74 89.38 107 1.00 > test-gof.R: nodematch.sum.group.Loyal 49 32 50.21 69 0.90 > test-gof.R: nodematch.sum.group.Outcasts 20 9 20.67 28 0.90 > test-gof.R: nodematch.sum.group.Turks 59 36 58.71 78 1.00 > test-gof.R: > test-gof.R: Goodness-of-fit for cumulative distribution function > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: 0 218 199 216.62 232 1.00 > test-gof.R: 1 256 239 251.91 261 0.56 > test-gof.R: 2 276 270 278.08 289 0.88 > test-gof.R: 3 306 306 306.00 306 1.00 > test-gof.R: 4 306 306 306.00 306 1.00 > test-gof.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-gof.R: > test-gof.R: Goodness-of-fit for model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 125 167.79 204 1.00 > test-gof.R: nonzero 88 65 88.31 102 0.88 > test-gof.R: nodematch.sum.group.Loyal 49 29 50.04 65 0.94 > test-gof.R: nodematch.sum.group.Outcasts 20 10 20.15 33 1.00 > test-gof.R: nodematch.sum.group.Turks 59 39 58.45 87 1.00 > test-gof.R: > test-gof.R: Goodness-of-fit for user statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: atmost.0 218 204 217.69 241 0.88 > test-gof.R: atmost.1 256 241 252.91 268 0.70 > test-gof.R: atmost.2 276 264 279.61 290 0.44 > test-gof.R: atmost.3 306 306 306.00 306 1.00 > test-gof.R: atmost.4 306 306 306.00 306 1.00 > test-miss-dep.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-miss-dep.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss-dep.R: Iteration 1 of at most 60: > test-miss-dep.R: Convergence test P-value:4.6e-47 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 1.824. > test-miss-dep.R: Iteration 2 of at most 60: > test-miss-dep.R: Convergence test P-value:1.5e-23 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.6054. > test-miss-dep.R: Iteration 3 of at most 60: > test-miss-dep.R: Convergence test P-value:1.1e-07 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.1283. > test-miss-dep.R: Iteration 4 of at most 60: > test-miss-dep.R: Convergence test P-value:3.3e-04 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.05435. > test-miss-dep.R: Iteration 5 of at most 60: > test-miss-dep.R: Convergence test P-value:2.1e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.006185. > test-miss-dep.R: Iteration 6 of at most 60: > test-miss-dep.R: Convergence test P-value:4.1e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.002664. > test-miss-dep.R: Iteration 7 of at most 60: > test-miss-dep.R: Convergence test P-value:1.6e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.007694. > test-miss-dep.R: Iteration 8 of at most 60: > test-miss-dep.R: Convergence test P-value:1.9e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.006878. > test-miss-dep.R: Iteration 9 of at most 60: > test-miss-dep.R: Convergence test P-value:7.8e-01 > test-miss-dep.R: Convergence detected. Stopping. > test-miss-dep.R: 1 > test-metrics.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.0003111. > test-miss-dep.R: Finished CD. > test-miss-dep.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Optimizing with step length 0.4613. > test-miss-dep.R: Iteration 1 of at most 60: > test-metrics.R: The log-likelihood improved by 4.1429. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.8364. > test-metrics.R: The log-likelihood improved by 4.7215. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.1346. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.1129. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss-dep.R: Post-burnin sample is constant; returning. > test-miss-dep.R: 1 > test-miss-dep.R: Optimizing with step length 1.0000. > test-miss-dep.R: The log-likelihood improved by 0.0017. > test-miss-dep.R: Convergence test p-value: < 0.0001. > test-miss-dep.R: Converged with 99% confidence. > test-miss-dep.R: Finished MCMLE. > test-miss-dep.R: Evaluating log-likelihood at the estimate. > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss-dep.R: Setting up bridge sampling... > test-metrics.R: The log-likelihood improved by 0.0037. > test-metrics.R: Convergence test p-value: 0.0004. > test-metrics.R: Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss-dep.R: Using 16 bridges: 1 > test-miss-dep.R: 2 > test-miss-dep.R: 3 > test-miss-dep.R: 4 > test-miss-dep.R: 5 > test-miss-dep.R: 6 > test-miss-dep.R: 7 > test-miss-dep.R: 8 > test-miss-dep.R: 9 > test-miss-dep.R: 10 > test-miss-dep.R: 11 > test-miss-dep.R: 12 > test-miss-dep.R: 13 > test-miss-dep.R: 14 > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: 15 > test-miss-dep.R: 16 > test-miss-dep.R: . > test-miss-dep.R: Note: The constraint on the sample space is not dyad-independent. Null > test-miss-dep.R: model likelihood is only implemented for dyad-independent > test-miss-dep.R: constraints > test-miss-dep.R: at this time. Number of observations is similarly poorly defined. This > test-miss-dep.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-miss-dep.R: AIC, BIC, etc.) is only valid between models with the same reference > test-miss-dep.R: distribution and constraints. > test-miss-dep.R: > test-miss-dep.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss-dep.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: n= > test-miss.CD.R: 20, density=0.1, missing=0.1 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4018. > test-metrics.R: The log-likelihood improved by 3.2780. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:3e-13 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2096. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-12 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1974. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-11 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.341. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1744. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-16 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6862. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.3e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.3025. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1888. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.3e-17 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2862. > test-miss.CD.R: Iteration 9 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.6020. > test-metrics.R: The log-likelihood improved by 3.4584. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-07 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2007. > test-miss.CD.R: Iteration 10 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03854. > test-miss.CD.R: Iteration 11 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.2132. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:7.9e-05 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1259. > test-miss.CD.R: Iteration 12 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0377. > test-miss.CD.R: Convergence test P-value:7.9e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.0004877. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4158. > test-metrics.R: The log-likelihood improved by 1.9115. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-metrics.R: 1 Optimizing with step length 0.4804. > test-metrics.R: The log-likelihood improved by 2.5519. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-68 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.7099. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-64 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.5925. > test-miss.CD.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-miss.CD.R: Convergence test P-value:9.6e-53 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6327. > test-metrics.R: The log-likelihood improved by 2.9415. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:1.1e-37 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.8025. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-30 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.583. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.6e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6591. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:6.2e-04 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.05663. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.4e-01 > test-miss.CD.R: 1 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss.CD.R: The log-likelihood improved by 0.007268. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:9.1e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: The log-likelihood improved by 0.1226. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 > test-metrics.R: 4 5 6 > test-metrics.R: 7 > test-metrics.R: 8 9 > test-metrics.R: 10 > test-metrics.R: 11 > test-metrics.R: Optimizing with step length 0.3934. > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-metrics.R: The log-likelihood improved by 4.1457. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-54 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.5854. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:4.4e-52 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6164. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:4.5e-46 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6486. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-32 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 1.361. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:6.8e-14 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.379. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-03 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.05118. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.9e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03478. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:6.5e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.001186. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.8651. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Network statistics: > test-miss.CD.R: edges > test-miss.CD.R: esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.CD.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.CD.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.CD.R: 0 0 0 0 0 0 0 > test-miss.CD.R: Correct estimate = -2.028148 > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.3360. > test-miss.CD.R: Convergence test P-value:1.8e-283 > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by 1.711. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:2.9e-233 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by 1.753. > test-miss.CD.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-miss.CD.R: Convergence test P-value:4.4e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: The log-likelihood improved by 0.0827. > test-metrics.R: Convergence test p-value: 0.0004. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 4 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-199 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:2e-201 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-208 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 7 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 > test-metrics.R: 4 > test-metrics.R: 5 6 > test-metrics.R: 7 8 > test-metrics.R: 9 > test-metrics.R: 10 > test-metrics.R: 11 Optimizing with step length 0.3701. > test-miss.CD.R: Convergence test P-value:4.7e-207 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: The log-likelihood improved by 2.3554. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.7e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:4.1e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 4 > test-metrics.R: 5 6 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-metrics.R: 7 8 > test-metrics.R: 9 10 > test-miss.CD.R: Iteration 10 of at most 60: > test-metrics.R: 11 12 > test-metrics.R: Optimizing with step length 0.5218. > test-metrics.R: The log-likelihood improved by 2.9696. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-210 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 11 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 > test-metrics.R: Optimizing with step length 0.8048. > test-metrics.R: The log-likelihood improved by 1.8226. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-187 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 12 of at most 60: > test-miss.CD.R: Convergence test P-value:1.2e-199 > test-miss.CD.R: 1 2 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.2705. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 13 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0012. > test-metrics.R: Convergence test p-value: 0.0099. > test-metrics.R: Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:6.6e-211 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 14 of at most 60: > test-miss.CD.R: Convergence test P-value:2.2e-203 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 15 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-197 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 16 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 3 > test-metrics.R: 4 5 > test-metrics.R: 6 > test-metrics.R: 7 8 > test-metrics.R: 9 > test-metrics.R: 10 11 > test-metrics.R: 12 13 > test-metrics.R: Optimizing with step length 0.4397. > test-metrics.R: The log-likelihood improved by 3.0119. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1e-201 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 17 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 18 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 3 > test-metrics.R: 4 > test-metrics.R: 5 6 > test-metrics.R: 7 8 > test-metrics.R: 9 10 > test-metrics.R: 11 12 > test-metrics.R: Optimizing with step length 0.6225. > test-miss.CD.R: Convergence test P-value:6.3e-210 > test-miss.CD.R: 1 2 > test-metrics.R: The log-likelihood improved by 3.6934. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 19 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-213 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 20 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.0488. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:2.6e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 21 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0821. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:5.5e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 22 of at most 60: > test-miss.R: n=20, density=0.1, missing=0.05 > test-miss.CD.R: Convergence test P-value:7.2e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 23 of at most 60: > test-miss.R: Correct estimate = -2.118156 with log-likelihood -120.6883 . > test-miss.CD.R: Convergence test P-value:3.5e-207 > test-miss.CD.R: 1 2 > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Finished MPLE. > test-miss.CD.R: Iteration 24 of at most 60: > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: MPLE estimate = -2.118156 with log-likelihood -120.6883 OK. > test-miss.R: > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 2 > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 26 dyads is required. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 25 of at most 60: > test-miss.R: Imputing 3 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 41 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:4e-193 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 26 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:1.8e-212 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 27 of at most 60: > test-miss.CD.R: Convergence test P-value:8e-208 > test-miss.CD.R: 1 2 > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -49.45267 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 > test-miss.R: 3 > test-miss.R: 4 5 > test-miss.R: 6 7 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 28 of at most 60: > test-miss.R: 8 9 10 > test-miss.R: 11 > test-miss.CD.R: Convergence test P-value:1.4e-198 > test-miss.CD.R: 1 2 > test-miss.R: 12 Optimizing with step length 0.4099. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.5936. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.374066 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 29 of at most 60: > test-miss.CD.R: Convergence test P-value:2.3e-204 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 30 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.36008 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 > test-miss.R: 3 4 > test-miss.R: 5 6 > test-miss.R: 7 8 > test-miss.R: 9 10 > test-miss.R: 11 12 > test-miss.R: Optimizing with step length 0.4981. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.2702. > test-miss.R: Distance from origin on tolerance region scale: 192.073 (previously 422.077). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.647302 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:2.5e-205 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 31 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:9.4e-205 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 32 of at most 60: > test-miss.CD.R: Convergence test P-value:2.8e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 33 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -17.50766 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 3 > test-miss.R: 4 5 > test-miss.R: Optimizing with step length 0.7736. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.0776. > test-miss.R: Distance from origin on tolerance region scale: 71.38353 (previously 259.1767). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.95412 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:3.3e-209 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 34 of at most 60: > test-miss.CD.R: Convergence test P-value:2.8e-201 > test-miss.CD.R: 1 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -5.621399 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.3258. > test-miss.R: Distance from origin on tolerance region scale: 6.488425 (previously 62.9371). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 5 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.070021 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 35 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-206 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Iteration 36 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 32. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -1.853909 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0589. > test-miss.R: Distance from origin on tolerance region scale: 1.17581 (previously 10.81058). > test-miss.CD.R: Convergence test P-value:1.3e-192 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Test statistic: T^2 = 11.54078, with 1 free parameter(s) and 179.1884 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0008. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 37 of at most 60: > test-miss.R: Fitting the dyad-independent submodel... > test-miss.CD.R: Convergence test P-value:5.1e-199 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 38 of at most 60: > test-miss.R: Dyad-independent submodel MLE has likelihood -120.6883 at: > test-miss.R: [1] -2.118156 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.CD.R: Convergence test P-value:1.7e-208 > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 39 of at most 60: > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-2.133081, 0.000000]. > test-miss.R: Running theta=[-2.132118, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.131155, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 40 of at most 60: > test-miss.R: Running theta=[-2.130192, 0.000000]. > test-miss.R: Running theta=[-2.129229, 0.000000]. > test-miss.R: Running theta=[-2.128267, 0.000000]. > test-miss.R: Running theta=[-2.127304, 0.000000]. > test-miss.R: Running theta=[-2.126341, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.1e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.125378, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 41 of at most 60: > test-miss.R: Running theta=[-2.124415, 0.000000]. > test-miss.R: Running theta=[-2.123452, 0.000000]. > test-miss.R: Running theta=[-2.122489, 0.000000]. > test-miss.R: Running theta=[-2.121526, 0.000000]. > test-miss.R: Running theta=[-2.120563, 0.000000]. > test-miss.R: Running theta=[-2.1196, 0.0000]. > test-miss.R: Running theta=[-2.118637, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-204 > test-miss.CD.R: 1 > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.009575496) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.119005, 0.000000]. > test-miss.R: Running theta=[-2.119968, 0.000000]. > test-miss.R: Running theta=[-2.120931, 0.000000]. > test-miss.R: Running theta=[-2.121894, 0.000000]. > test-miss.R: Running theta=[-2.122857, 0.000000]. > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.12382, 0.00000]. > test-miss.R: Running theta=[-2.124783, 0.000000]. > test-miss.R: Running theta=[-2.125746, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 42 of at most 60: > test-miss.R: Running theta=[-2.126709, 0.000000]. > test-miss.R: Running theta=[-2.127671, 0.000000]. > test-miss.R: Running theta=[-2.128634, 0.000000]. > test-miss.R: Running theta=[-2.129597, 0.000000]. > test-miss.R: Running theta=[-2.13056, 0.00000]. > test-miss.R: Running theta=[-2.131523, 0.000000]. > test-miss.R: Running theta=[-2.132486, 0.000000]. > test-miss.R: Running theta=[-2.133449, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.007542247) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132854, 0.000000]. > test-miss.CD.R: Convergence test P-value:8.4e-196 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.131891, 0.000000]. > test-miss.R: Running theta=[-2.130928, 0.000000]. > test-miss.R: Running theta=[-2.129965, 0.000000]. > test-miss.R: Running theta=[-2.129002, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 43 of at most 60: > test-miss.R: Running theta=[-2.128039, 0.000000]. > test-miss.R: Running theta=[-2.127076, 0.000000]. > test-miss.R: Running theta=[-2.126113, 0.000000]. > test-miss.R: Running theta=[-2.125151, 0.000000]. > test-miss.R: Running theta=[-2.124188, 0.000000]. > test-miss.R: Running theta=[-2.123225, 0.000000]. > test-miss.R: Running theta=[-2.122262, 0.000000]. > test-miss.R: Running theta=[-2.121299, 0.000000]. > test-miss.CD.R: Convergence test P-value:7.5e-206 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.120336, 0.000000]. > test-miss.R: Running theta=[-2.119373, 0.000000]. > test-miss.R: Running theta=[-2.11841, 0.00000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 44 of at most 60: > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.006188692) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.118778, 0.000000]. > test-miss.R: Running theta=[-2.119741, 0.000000]. > test-miss.R: Running theta=[-2.120704, 0.000000]. > test-miss.R: Running theta=[-2.121667, 0.000000]. > test-miss.R: Running theta=[-2.12263, 0.00000]. > test-miss.R: Running theta=[-2.123593, 0.000000]. > test-miss.R: Running theta=[-2.124555, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.9e-197 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.125518, 0.000000]. > test-miss.R: Running theta=[-2.126481, 0.000000]. > test-miss.R: Running theta=[-2.127444, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 45 of at most 60: > test-miss.R: Running theta=[-2.128407, 0.000000]. > test-miss.R: Running theta=[-2.12937, 0.00000]. > test-miss.R: Running theta=[-2.130333, 0.000000]. > test-miss.CD.R: Convergence test P-value:2.8e-211 > test-miss.CD.R: 1 > test-miss.R: Running theta=[-2.131296, 0.000000]. > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.132259, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 46 of at most 60: > test-miss.R: Running theta=[-2.133222, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005396227) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132626, 0.000000]. > test-miss.R: Running theta=[-2.131664, 0.000000]. > test-miss.R: Running theta=[-2.130701, 0.000000]. > test-miss.R: Running theta=[-2.129738, 0.000000]. > test-miss.R: Running theta=[-2.128775, 0.000000]. > test-miss.R: Running theta=[-2.127812, 0.000000]. > test-miss.R: Running theta=[-2.126849, 0.000000]. > test-miss.R: Running theta=[-2.125886, 0.000000]. > test-miss.R: Running theta=[-2.124923, 0.000000]. > test-miss.R: Running theta=[-2.12396, 0.00000]. > test-miss.R: Running theta=[-2.122997, 0.000000]. > test-miss.R: Running theta=[-2.122035, 0.000000]. > test-miss.R: Running theta=[-2.121072, 0.000000]. > test-miss.R: Running theta=[-2.120109, 0.000000]. > test-miss.R: Running theta=[-2.119146, 0.000000]. > test-miss.R: Running theta=[-2.118183, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:6.5e-203 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 47 of at most 60: > test-miss.CD.R: Convergence test P-value:4.7e-204 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 48 of at most 60: > test-miss.CD.R: Convergence test P-value:5.7e-209 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 49 of at most 60: > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1728:32768 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 486 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 1.8539 5.6566 0.2566 0.4463 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -8.881 -1.881 2.119 5.119 14.119 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = > test-miss.R: > test-miss.R: 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -2.129e-17 1.663e+00 1.067e-01 1.067e-01 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.8807 -1.3807 0.1193 1.1193 4.0693 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: > test-miss.R: edges (Omni) > test-miss.R: diff. 1.853909e+00 NA > test-miss.R: test stat. 4.040502e+00 1.632566e+01 > test-miss.R: P-val. 5.333689e-05 7.904382e-05 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 0.50229634 > test-miss.R: Lag 128 0.27968825 > test-miss.R: Lag 192 0.14989734 > test-miss.R: Lag 256 0.08553620 > test-miss.R: Lag 320 0.01488518 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.04999730 > test-miss.R: Lag 128 0.05488745 > test-miss.R: Lag 192 -0.03080175 > test-miss.R: Lag 256 0.03734623 > test-miss.R: Lag 320 0.01289319 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.4658741 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.6413056 > test-miss.R: Joint P-value (lower = worse): 0.5503774 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.2553269 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.7984706 > test-miss.R: Joint P-value (lower = worse): 0.5503774 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -2.133563 with log-likelihood -120.7039 OK. > test-miss.CD.R: Convergence test P-value:4e-201 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 50 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-218 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 51 of at most 60: > test-miss.R: Correct estimate = -1.663142 with log-likelihood -79.82064 . > test-miss.CD.R: Convergence test P-value:5.7e-193 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 52 of at most 60: > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.CD.R: Convergence test P-value:2.5e-206 > test-miss.CD.R: 1 2 > test-miss.R: MPLE estimate = -1.663142 with log-likelihood -79.82064 OK. > test-miss.R: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 53 of at most 60: > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.CD.R: Convergence test P-value:6e-198 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 54 of at most 60: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.CD.R: Convergence test P-value:1.5e-204 > test-miss.CD.R: 1 2 > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.CD.R: Iteration 55 of at most 60: > test-miss.R: Fitting initial model. > test-miss.R: Imputing 8 dyads is required. > test-miss.R: Imputing 1 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 30 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:2.9e-195 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 56 of at most 60: > test-miss.CD.R: Convergence test P-value:6.8e-200 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 57 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:8e-207 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 58 of at most 60: > test-miss.CD.R: Convergence test P-value:3.6e-215 > test-miss.R: Back from constrained MCMC. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 59 of at most 60: > test-miss.R: edges > test-miss.R: -33.15638 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 3 4 5 6 7 8 Optimizing with step length 0.5368. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 4.3000. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.146333 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:1.6e-199 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -14.85185 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 3.2552. > test-miss.R: Distance from origin on tolerance region scale: 64.83604 (previously 323.1391). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.584689 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 60 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:6.1e-198 > test-miss.CD.R: 1 2 The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. Saving _problems/test-miss.CD-76.R > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.600823 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1297. > test-miss.R: Distance from origin on tolerance region scale: 2.582218 (previously 84.20395). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.684393 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.2386831 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0011. > test-miss.R: Distance from origin on tolerance region scale: 0.02175454 (previously 2.583022). > test-miss.R: Test statistic: T^2 = 16.95471, with 1 free parameter(s) and 192.1073 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Dyad-independent submodel MLE has likelihood -79.82064 at: > test-miss.R: [1] -1.663142 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-1.674863, 0.000000]. > test-miss.R: Running theta=[-1.674107, 0.000000]. > test-miss.R: Running theta=[-1.673351, 0.000000]. > test-miss.R: Running theta=[-1.672594, 0.000000]. > test-miss.R: Running theta=[-1.671838, 0.000000]. > test-miss.R: Running theta=[-1.671082, 0.000000]. > test-miss.R: Running theta=[-1.670326, 0.000000]. > test-miss.R: Running theta=[-1.66957, 0.00000]. > test-miss.R: Running theta=[-1.668813, 0.000000]. > test-miss.R: Running theta=[-1.668057, 0.000000]. > test-miss.R: Running theta=[-1.667301, 0.000000]. > test-miss.R: Running theta=[-1.666545, 0.000000]. > test-miss.R: Running theta=[-1.665789, 0.000000]. > test-miss.R: Running theta=[-1.665033, 0.000000]. > test-miss.R: Running theta=[-1.664276, 0.000000]. > test-miss.R: Running theta=[-1.66352, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005483681) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-1.663809, 0.000000]. > test-miss.R: Running theta=[-1.664565, 0.000000]. > test-miss.R: Running theta=[-1.665321, 0.000000]. > test-miss.R: Running theta=[-1.666078, 0.000000]. > test-miss.R: Running theta=[-1.666834, 0.000000]. > test-miss.R: Running theta=[-1.66759, 0.00000]. > test-miss.R: Running theta=[-1.668346, 0.000000]. > test-miss.R: Running theta=[-1.669102, 0.000000]. > test-miss.R: Running theta=[-1.669858, 0.000000]. > test-miss.R: Running theta=[-1.670615, 0.000000]. > test-miss.R: Running theta=[-1.671371, 0.000000]. > test-miss.R: Running theta=[-1.672127, 0.000000]. > test-miss.R: Running theta=[-1.672883, 0.000000]. > test-miss.R: Running theta=[-1.673639, 0.000000]. > test-miss.R: Running theta=[-1.674396, 0.000000]. > test-miss.R: Running theta=[-1.675152, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.2387 5.2156 0.3346 0.3867 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -9.2346 -4.2346 -0.2346 2.7654 11.7154 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 4.040e-17 1.007e+00 6.463e-02 6.463e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -1.2346 -0.7346 -0.2346 0.7654 2.7154 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.2386831 NA > test-miss.R: test stat. -0.6087923 0.3706280 > test-miss.R: P-val. 0.5426621 0.5433813 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.000000000 > test-miss.R: Lag 128 0.141730657 > test-miss.R: Lag 256 -0.008044799 > test-miss.R: Lag 384 > test-miss.R: 0.039503814 > test-miss.R: Lag 512 0.016265240 > test-miss.R: Lag 640 0.025525909 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.03837238 > test-miss.R: Lag 128 0.06102163 > test-miss.R: Lag 192 0.01817600 > test-miss.R: Lag 256 -0.07663989 > test-miss.R: Lag 320 -0.02107378 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -1.387683 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.1652336 > test-miss.R: Joint P-value (lower = worse): 0.2706448 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.5702328 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.5685198 > test-miss.R: Joint P-value (lower = worse): 0.2706448 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -1.675241 with log-likelihood -79.81794 OK. > test-miss.R: Correct estimate = -3.157 with log-likelihood -8.355963 . > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: > test-miss.R: MPLE estimate = -3.157 with log-likelihood -8.355963 OK. > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 2 dyads is required. > test-miss.R: Imputing 0 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 2 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: Starting unconstrained MCMC... > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.942387 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.8416. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.729057 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -0.9012346 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1847. > test-miss.R: Distance from origin on tolerance region scale: 3.678483 (previously 39.20962). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -3.138904 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.05349794 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0008. > test-miss.R: Distance from origin on tolerance region scale: 0.01512904 (previously 4.293514). > test-miss.R: Test statistic: T^2 = 22.84874, with 1 free parameter(s) and 256.603 degrees of freedom. > test-miss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Dyad-independent submodel MLE has likelihood -8.355963 at: > test-miss.R: [1] -3.157 0.000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: > test-miss.R: Running theta=[-3.11196, 0.00000]. > test-miss.R: Running theta=[-3.114866, 0.000000]. > test-miss.R: Running theta=[-3.117772, 0.000000]. > test-miss.R: Running theta=[-3.120678, 0.000000]. > test-miss.R: Running theta=[-3.123584, 0.000000]. > test-miss.R: Running theta=[-3.126489, 0.000000]. > test-miss.R: Running theta=[-3.129395, 0.000000]. > test-miss.R: Running theta=[-3.132301, 0.000000]. > test-miss.R: Running theta=[-3.135207, 0.000000]. > test-miss.R: Running theta=[-3.138113, 0.000000]. > test-miss.R: Running theta=[-3.141018, 0.000000]. > test-miss.R: Running theta=[-3.143924, 0.000000]. > test-miss.R: Running theta=[-3.14683, 0.00000]. > test-miss.R: Running theta=[-3.149736, 0.000000]. > test-miss.R: Running theta=[-3.152642, 0.000000]. > test-miss.R: Running theta=[-3.155548, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 3584:65536 > test-miss.R: Thinning interval = 256 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.05350 1.39509 0.08949 0.08949 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.05761 -1.05761 -0.05761 0.94239 2.94239 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 9.838e-19 2.335e-01 1.498e-02 1.763e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -0.05761 -0.05761 -0.05761 -0.05761 0.94239 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.05349794 NA > test-miss.R: test stat. -0.58650248 0.3476007 > test-miss.R: P-val. 0.55753790 0.5559932 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 256 -0.07640761 > test-miss.R: Lag 512 0.04674441 > test-miss.R: Lag 768 -0.08703223 > test-miss.R: Lag 1024 -0.01273911 > test-miss.R: Lag 1280 0.08918131 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 128 0.01440843 > test-miss.R: Lag 256 -0.06163854 > test-miss.R: Lag 384 -0.05752332 > test-miss.R: Lag 512 0.09381586 > test-miss.R: Lag 640 0.16935966 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 1.222791 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.2214088 > test-miss.R: Joint P-value (lower = worse): 0.530107 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 0.899493 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.3683901 > test-miss.R: Joint P-value (lower = worse): 0.530107 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -3.110507 with log-likelihood -8.357166 OK. > test-miss.R: Network statistics: > test-miss.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.R: 0 0 0 0 0 0 0 > test-miss.R: Correct estimate = -2.028148 > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Iteration 1 of at most 5: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 2 of at most 5: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 8 > test-miss.R: 9 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 3 of at most 5: > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 4 5 6 > test-miss.R: 7 8 > test-miss.R: 9 > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 4 of at most 5: > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: 1 2 > test-miss.R: 3 > test-miss.R: 4 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 5 of at most 5: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Estimating equations did not move closer to tolerance region more than 1 time(s) in 4 steps; increasing sample size. > test-miss.R: MCMLE estimation did not converge after 5 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Using 16 bridges: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: 12 > test-miss.R: 13 > test-miss.R: 14 > test-miss.R: 15 > test-miss.R: 16 > test-miss.R: . > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-largenetwork.R: > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-largenetwork.R: > test-mple-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-offset.R: Obtaining the responsible dyads. > test-mple-offset.R: Evaluating the predictor and response matrix. > test-mple-offset.R: Maximizing the pseudolikelihood. > test-mple-offset.R: Finished MPLE. > test-mple-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-offset.R: Iteration 1 of at most 60: > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: > test-mple-offset.R: 1 > test-mple-offset.R: Optimizing with step length 1.0000. > test-mple-offset.R: The log-likelihood improved by 0.0040. > test-mple-offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-mple-offset.R: Finished MCMLE. > test-mple-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-mple-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-target.R: [1] 350 50 250 > test-mple-target.R: Structural check: > test-mple-target.R: Mean degree: 1.4 . > test-mple-target.R: Average degree among nodes with degree 2 or higher: 2.25 . > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-target.R: Iteration 1 of at most 60: > test-networkLite.R: Loading required package: networkLite > test-mple-cov.R: Estimating Bootstrap Standard Errors using 500 simulated networks. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 6 > test-networkLite.R: 7 > test-networkLite.R: 8 9 > test-networkLite.R: 10 11 > test-networkLite.R: 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 12 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 3 > test-networkLite.R: 4 > test-networkLite.R: 5 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 11 > test-networkLite.R: 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 2 3 > test-networkLite.R: 4 5 > test-networkLite.R: 6 > test-networkLite.R: 7 8 > test-networkLite.R: 9 10 11 > test-networkLite.R: 12 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 1.0000. > test-nodrop.R: The log-likelihood improved by 0.0005. > test-nodrop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.2247. > test-nodrop.R: The log-likelihood improved by 2.2822. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-networkLite.R: 1 2 3 4 5 6 7 8 9 10 11 Optimizing with step length 1.0000. > test-nodrop.R: 1 Optimizing with step length 0.2817. > test-nodrop.R: The log-likelihood improved by 2.4734. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: Convergence test p-value: 0.0019. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.2675. > test-nodrop.R: The log-likelihood improved by 3.3752. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.3098. > test-nodrop.R: The log-likelihood improved by 2.4783. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 5 > test-networkLite.R: 6 7 8 > test-networkLite.R: 9 10 > test-networkLite.R: 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-networkLite.R: Convergence test p-value: 0.0019. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nonident-test.R: 1 Optimizing with step length 1.0000. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-networkLite.R: Convergence test p-value: 0.0247. > test-networkLite.R: Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nonident-test.R: 1 > test-nonident-test.R: Optimizing with step length 0.8147. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-networkLite.R: 1 > test-nonident-test.R: Finished MPLE. > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonunique-names.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonunique-names.R: Obtaining the responsible dyads. > test-nonunique-names.R: Evaluating the predictor and response matrix. > test-nonunique-names.R: Maximizing the pseudolikelihood. > test-nonunique-names.R: Finished MPLE. > test-nonunique-names.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonunique-names.R: Iteration 1 of at most 1: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 6 > test-networkLite.R: 7 > test-networkLite.R: 8 9 > test-networkLite.R: 10 11 > test-networkLite.R: 12 > test-networkLite.R: 13 > test-networkLite.R: 14 > test-networkLite.R: 15 > test-networkLite.R: 16 17 > test-networkLite.R: 18 > test-networkLite.R: 19 > test-networkLite.R: 20 > test-networkLite.R: 21 > test-networkLite.R: 22 23 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-nonunique-names.R: 1 > test-nonunique-names.R: Optimizing with step length 1.0000. > test-nonunique-names.R: The log-likelihood improved by 0.0084. > test-nonunique-names.R: Convergence test p-value: 0.0480. Not converged with 99% confidence; increasing sample size. > test-nonunique-names.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonunique-names.R: Finished MCMLE. > test-nonunique-names.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonunique-names.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-networkLite.R: Convergence test p-value: 0.0247. > test-networkLite.R: Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nonunique-names.R: Sample statistics summary: > test-nonunique-names.R: > test-nonunique-names.R: Iterations = 2304:44032 > test-nonunique-names.R: Thinning interval = 128 > test-nonunique-names.R: Number of chains = 1 > test-nonunique-names.R: Sample size per chain = 327 > test-nonunique-names.R: > test-nonunique-names.R: 1. Empirical mean and standard deviation for each variable, > test-nonunique-names.R: plus standard error of the mean: > test-nonunique-names.R: > test-nonunique-names.R: Mean SD Naive SE Time-series SE > test-nonunique-names.R: edgecov.a -0.2171 3.380 0.1869 0.3114 > test-nonunique-names.R: edgecov.a 0.1346 3.565 0.1971 0.4311 > test-nonunique-names.R: > test-nonunique-names.R: 2. Quantiles for each variable: > test-nonunique-names.R: > test-nonunique-names.R: 2.5% 25% 50% 75% 97.5% > test-nonunique-names.R: edgecov.a -7 -2 0 2 6.85 > test-nonunique-names.R: edgecov.a -7 -2 0 3 7.00 > test-nonunique-names.R: > test-nonunique-names.R: > test-nonunique-names.R: Are sample statistics significantly different from observed? > test-nonunique-names.R: edgecov.a edgecov.a (Omni) > test-nonunique-names.R: diff. -0.2171254 0.1345566 NA > test-nonunique-names.R: test stat. -0.6971750 0.3120903 1.2954084 > test-nonunique-names.R: P-val. 0.4856933 0.7549719 0.5307488 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics cross-correlations: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: edgecov.a 1.0000000 0.6853513 > test-nonunique-names.R: edgecov.a 0.6853513 1.0000000 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics auto-correlation: > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: Lag 0 1.000000000 1.00000000 > test-nonunique-names.R: Lag 128 0.592467538 0.65334235 > test-nonunique-names.R: Lag 256 0.298337375 0.41906307 > test-nonunique-names.R: Lag 384 0.082532656 0.22830518 > test-nonunique-names.R: Lag 512 -0.003477022 0.08811653 > test-nonunique-names.R: Lag 640 -0.090771181 0.03701357 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics burn-in diagnostic (Geweke): > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: > test-nonunique-names.R: Fraction in 1st window = 0.1 > test-nonunique-names.R: Fraction in 2nd window = 0.5 > test-nonunique-names.R: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: -0.41748721 0.04619135 > test-nonunique-names.R: > test-nonunique-names.R: Individual P-values (lower = worse): > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: 0.6763221 0.9631577 > test-nonunique-names.R: Joint P-value (lower = worse): 0.8447246 > test-nonunique-names.R: > test-nonunique-names.R: Note: MCMC diagnostics shown here are from the last round of > test-nonunique-names.R: simulation, prior to computation of final parameter estimates. > test-nonunique-names.R: Because the final estimates are refinements of those used for this > test-nonunique-names.R: simulation run, these diagnostics may understate model performance. > test-nonunique-names.R: To directly assess the performance of the final model on in-model > test-nonunique-names.R: statistics, please use the GOF command: gof(ergmFitObject, > test-nonunique-names.R: GOF=~model). > test-nonunique-names.R: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: 12 > test-networkLite.R: 13 > test-networkLite.R: 14 > test-networkLite.R: 15 > test-networkLite.R: 16 > test-networkLite.R: 17 > test-networkLite.R: 18 > test-networkLite.R: 19 > test-networkLite.R: 20 > test-networkLite.R: 21 > test-networkLite.R: 22 > test-networkLite.R: 23 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.6004. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 5 > test-networkLite.R: 6 > test-networkLite.R: 7 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0061. > test-offsets.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-offsets.R: Using 16 bridges: 1 > test-offsets.R: 2 > test-offsets.R: 3 > test-offsets.R: 4 > test-offsets.R: 5 > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: 6 > test-offsets.R: 7 > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 > test-offsets.R: 8 > test-networkLite.R: The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-offsets.R: 9 > test-networkLite.R: The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: 10 > test-offsets.R: 11 > test-offsets.R: 12 > test-offsets.R: 13 > test-offsets.R: 14 > test-offsets.R: 15 > test-offsets.R: 16 > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.7959. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: > test-operators.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-operators.R: * 'news(package="ergm.count")' for changes since last version > test-operators.R: * 'citation("ergm.count")' for citation information > test-operators.R: * 'https://statnet.org' for help, support, and other information > test-operators.R: > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0207. > test-offsets.R: Convergence test p-value: 0.0005. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-offsets.R: Using 16 bridges: 1 > test-offsets.R: 2 > test-offsets.R: 3 > test-parallel.R: parallel test(s) skipped. Set ENABLE_statnet_TESTS environment variable to run. > test-parallel.R: Skipping OpenMP test. This package installation was built without OpenMP support. > test-offsets.R: 4 > test-offsets.R: 5 > test-offsets.R: 6 > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-offsets.R: 7 > test-offsets.R: 8 > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-offsets.R: 9 > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-offsets.R: 10 > test-offsets.R: 11 > test-offsets.R: 12 > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-offsets.R: 13 > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-offsets.R: 14 > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-offsets.R: 15 > test-offsets.R: 16 > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: Starting maximum pseudolikelihood estimation (MPLE): > test-runtime-diags.R: Obtaining the responsible dyads. > test-runtime-diags.R: Evaluating the predictor and response matrix. > test-runtime-diags.R: Maximizing the pseudolikelihood. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: Finished MPLE. > test-runtime-diags.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-runtime-diags.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: 1 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-runtime-diags.R: Optimizing with step length 1.0000. > test-runtime-diags.R: The log-likelihood improved by 0.0414. > test-runtime-diags.R: Convergence test p-value: 0.0016. Converged with 99% confidence. > test-runtime-diags.R: Finished MCMLE. > test-runtime-diags.R: This model was fit using MCMC. To examine model diagnostics and check > test-runtime-diags.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: 1 > test-scoping.R: Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: > test-scoping.R: 1 > test-scoping.R: 2 > test-scoping.R: 3 > test-scoping.R: 4 > test-scoping.R: 5 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: 6 > test-scoping.R: 7 > test-scoping.R: 8 > test-scoping.R: 9 > test-scoping.R: 10 > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 > test-scoping.R: 15 > test-scoping.R: 16 > test-scoping.R: . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-scoping.R: 1 > test-scoping.R: Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: > test-scoping.R: 1 > test-scoping.R: 2 > test-scoping.R: 3 > test-scoping.R: 4 > test-scoping.R: 5 > test-scoping.R: 6 > test-scoping.R: 7 > test-scoping.R: 8 > test-scoping.R: 9 > test-scoping.R: 10 > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 > test-scoping.R: 15 > test-scoping.R: 16 > test-scoping.R: . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-shrink-into-CH.R: 1 > test-shrink-into-CH.R: 2 > test-shrink-into-CH.R: 3 > test-shrink-into-CH.R: 4 > test-shrink-into-CH.R: 5 > test-shrink-into-CH.R: 6 7 > test-shrink-into-CH.R: 8 > test-shrink-into-CH.R: 9 > test-shrink-into-CH.R: 10 > test-shrink-into-CH.R: 11 > test-shrink-into-CH.R: 12 > test-shrink-into-CH.R: 13 > test-shrink-into-CH.R: 14 > test-shrink-into-CH.R: 15 > test-shrink-into-CH.R: 16 > test-shrink-into-CH.R: 17 > test-shrink-into-CH.R: 18 > test-shrink-into-CH.R: 19 20 > test-shrink-into-CH.R: 1 > test-shrink-into-CH.R: 2 > test-shrink-into-CH.R: 3 > test-shrink-into-CH.R: 4 > test-shrink-into-CH.R: 5 > test-shrink-into-CH.R: 6 > test-shrink-into-CH.R: 7 > test-shrink-into-CH.R: 8 > test-shrink-into-CH.R: 9 > test-shrink-into-CH.R: 10 > test-shrink-into-CH.R: 11 > test-shrink-into-CH.R: 12 > test-shrink-into-CH.R: 13 > test-shrink-into-CH.R: 14 > test-shrink-into-CH.R: 15 > test-shrink-into-CH.R: 16 > test-shrink-into-CH.R: 17 > test-shrink-into-CH.R: 18 > test-shrink-into-CH.R: 19 > test-shrink-into-CH.R: 20 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-skip.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: 1 Optimizing with step length 1.0000. > test-skip.R: The log-likelihood improved by 0.0360. > test-skip.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-skip.R: Finished MCMLE. > test-skip.R: This model was fit using MCMC. To examine model diagnostics and check > test-skip.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-snctrl.R: Starting maximum pseudolikelihood estimation (MPLE): > test-snctrl.R: Obtaining the responsible dyads. > test-snctrl.R: Evaluating the predictor and response matrix. > test-snctrl.R: Maximizing the pseudolikelihood. > test-snctrl.R: Finished MPLE. > test-snctrl.R: Evaluating log-likelihood at the estimate. > test-snctrl.R: > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.7009355 0.2208488 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.6617183 0.1405334 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 > test-stocapprox.R: Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0034. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.5333754 -0.1317716 0.6729982 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.57231795 -0.05712682 0.44962020 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0007. > test-stocapprox.R: Convergence test p-value: 0.0001. > test-stocapprox.R: Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.1e-111 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.945. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-44 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.5962. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:4e-07 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.06364. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:5.6e-05 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.04097. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.3e-03 > test-stocapprox.R: 1 The log-likelihood improved by 0.01842. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:5.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.002083. > test-stocapprox.R: Finished CD. > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.743217 0.112619 > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.7631980 0.1383531 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-98 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.862. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:3.5e-30 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.3427. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:3e-09 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.08204. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:3.9e-02 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.01313. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.2e-02 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.009411. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:2.6e-01 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.005336. > test-stocapprox.R: Iteration 7 of at most 60: > test-stocapprox.R: Convergence test P-value:7.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.0009177. > test-stocapprox.R: Finished CD. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 > test-stocapprox.R: Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0022. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: > test-stocapprox.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-stocapprox.R: * 'news(package="ergm.count")' for changes since last version > test-stocapprox.R: * 'citation("ergm.count")' for citation information > test-stocapprox.R: * 'https://statnet.org' for help, support, and other information > test-stocapprox.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 60: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 1.0000. > test-target-offset.R: The log-likelihood improved by 0.0210. > test-target-offset.R: Convergence test p-value: 0.0002. > test-target-offset.R: Converged with 99% confidence. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: 1 2 3 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 > test-target-offset.R: 10 > test-target-offset.R: 11 > test-target-offset.R: 12 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 13 > test-target-offset.R: 14 > test-target-offset.R: 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 14336:262144 > test-target-offset.R: Thinning interval = 1024 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 0.55556 4.490 0.2880 0.2880 > test-target-offset.R: degree1 0.04527 2.005 0.1286 0.1286 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges -7 -2.5 0 3 9.00 > test-target-offset.R: degree1 -3 -1.0 0 1 4.95 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Are sample statistics significantly different from observed? > test-target-offset.R: edges degree1 (Omni) > test-target-offset.R: diff. 0.55555556 0.04526749 NA > test-target-offset.R: test stat. 1.92893422 0.35200754 9.455405747 > test-target-offset.R: P-val. 0.05373903 0.72483261 0.009922641 > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges degree1 > test-target-offset.R: edges 1.0000000 -0.7250142 > test-target-offset.R: degree1 -0.7250142 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges degree1 > test-target-offset.R: Lag 0 1.000000000 1.000000000 > test-target-offset.R: Lag 1024 -0.061427219 0.030194492 > test-target-offset.R: Lag 2048 0.007868535 0.092075103 > test-target-offset.R: Lag 3072 0.018624816 0.047810603 > test-target-offset.R: Lag 4096 -0.047471894 0.007659206 > test-target-offset.R: Lag 5120 -0.073593205 -0.009870131 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges degree1 > test-target-offset.R: 0.4498910 -0.1601093 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges degree1 > test-target-offset.R: 0.652789 0.872795 > test-target-offset.R: Joint P-value (lower = worse): 0.8380775 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-target-offset.R: Obtaining the responsible dyads. > test-target-offset.R: Evaluating the predictor and response matrix. > test-target-offset.R: Maximizing the pseudolikelihood. > test-target-offset.R: Finished MPLE. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 3: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.7240. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 2 of at most 3: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.6386. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 3 of at most 3: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.8376. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: > test-target-offset.R: 1 > test-target-offset.R: 2 > test-target-offset.R: 3 > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 > test-target-offset.R: 10 > test-target-offset.R: 11 > test-target-offset.R: 12 > test-target-offset.R: 13 > test-target-offset.R: 14 > test-target-offset.R: 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 3584:65536 > test-target-offset.R: Thinning interval = 256 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 12.77778 5.118432 0.32835 0.3283476 > test-target-offset.R: gwdegree 0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: gwdegree.decay 0.01236 0.002961 0.00019 0.0001293 > test-target-offset.R: degree0 -0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges 3.000e+00 9.00000 13.00000 16.00000 23.00000 > test-target-offset.R: gwdegree 1.063e-12 1.00000 1.00000 1.00000 1.00000 > test-target-offset.R: gwdegree.decay 5.955e-03 0.01191 0.01191 0.01489 0.01489 > test-target-offset.R: degree0 -1.000e+00 -1.00000 -1.00000 -1.00000 0.00000 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: edges 1.0000000 0.2709648 0.6049364 -0.2709648 > test-target-offset.R: gwdegree 0.2709648 1.0000000 0.5143643 -1.0000000 > test-target-offset.R: gwdegree.decay 0.6049364 0.5143643 1.0000000 -0.5143643 > test-target-offset.R: degree0 -0.2709648 -1.0000000 -0.5143643 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: Lag 0 1.000000000 1.00000000 1.000000000 1.00000000 > test-target-offset.R: Lag 256 0.006056003 0.02865300 -0.034893817 0.02865300 > test-target-offset.R: Lag 512 0.062813023 -0.07862186 0.002608612 -0.07862186 > test-target-offset.R: Lag 768 -0.089332866 -0.07930006 -0.150790861 -0.07930006 > test-target-offset.R: Lag 1024 -0.091496281 -0.07564135 -0.189123113 -0.07564135 > test-target-offset.R: Lag 1280 0.030192390 0.03461402 0.073975025 0.03461402 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.05663036 -1.34419649 0.38772965 1.34419649 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.9548397 0.1788849 0.6982161 0.1788849 > test-target-offset.R: Joint P-value (lower = worse): 0.3850888 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: 1 Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0066. > test-term-Offset.R: Convergence test p-value: < 0.0001. > test-term-Offset.R: Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: 1 > test-term-Offset.R: Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0024. > test-term-Offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-b12nodematch.R: In term 'b1nodematch' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b1dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1factor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1twostar' in package 'ergm': Argument 'base' has been superseded by 'levels2', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Observed statistic(s) b2dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) ideg7+.homophily.group and ideg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) gwodeg.fixed.0 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: In term 'absdiffcat' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg7+ and odeg8+ are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg6+.homophily.group, odeg7+.homophily.group, and odeg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Observed statistic(s) edgecov.YearsTrusted are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-flexible.R: All terms are either offsets or extreme values. No optimization is performed. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: In term 'nodematch' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: In term 'nodemix' in package 'ergm': Argument 'base' has been superseded by 'levels2', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Note: Term 'mm(~Grade >= 10, levels = -1)' skipped because it contributes no statistics. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: 1 > test-term-options.R: Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0013. > test-term-options.R: Convergence test p-value: < 0.0001. > test-term-options.R: Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: Fitting the dyad-independent submodel... > test-term-options.R: Bridging between the dyad-independent submodel and the full model... > test-term-options.R: Setting up bridge sampling... > test-term-options.R: Using 16 bridges: 1 2 3 4 5 > test-term-options.R: 6 > test-term-options.R: 7 > test-term-options.R: 8 > test-term-options.R: 9 > test-term-options.R: 10 > test-term-options.R: 11 > test-term-options.R: 12 > test-term-options.R: 13 > test-term-options.R: 14 > test-term-options.R: 15 > test-term-options.R: 16 > test-term-options.R: . > test-term-options.R: Bridging finished. > test-term-options.R: > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-options.R: 1 > test-term-options.R: Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0003. > test-term-options.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'DiscUnif2' cannot take into account hint(s) 'sparse' and 'triadic'. > test-u-function.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-valued-sim.R: mean=1, var=4, corr=0.3 > test-valued-sim.R: eta=(0.192307692307692,0.0824175824175824,0.362637362637363) > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated mean (stats only):0.9964445 > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated means (target=1): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 1.0034478 0.9683903 > test-valued-sim.R: [2,] 1.0302079 NA 0.8923730 > test-valued-sim.R: [3,] 0.6870641 0.7628159 NA > test-valued-sim.R: Simulated vars (target=4): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 3.863045 4.034701 > test-valued-sim.R: [2,] 3.944388 NA 3.888997 > test-valued-sim.R: [3,] 3.740890 4.202553 NA > test-valued-sim.R: Simulated correlations (1,2) (1,3) (2,3) (target=0.3): > test-valued-sim.R: [1] 0.2781206 0.2324470 0.3420405 > test-valued-sim.R: ==== output='stats', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: > test-valued-sim.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-sim.R: * 'news(package="ergm.count")' for changes since last version > test-valued-sim.R: * 'citation("ergm.count")' for citation information > test-valued-sim.R: * 'https://statnet.org' for help, support, and other information > test-valued-sim.R: > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: > test-valued-terms.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-terms.R: * 'news(package="ergm.count")' for changes since last version > test-valued-terms.R: * 'c > test-valued-terms.R: itation("ergm.count")' for citation information > test-valued-terms.R: * 'https://statnet.org' for help, support, and other information > test-valued-terms.R: [ FAIL 1 | WARN 0 | SKIP 1 | PASS 4300 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • empty test (1): ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-miss.CD.R:76:3'): curved+missing ───────────────────────────── Expected `abs(coef(cdfit)[1] - truth)/sqrt(cdfit$covar[1])` < 2. Actual comparison: 2.95 >= 2.00 Difference: 0.95 >= 0 [ FAIL 1 | WARN 0 | SKIP 1 | PASS 4300 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 4.11.0
Check: tests
Result: ERROR Running ‘requireNamespaceTest.R’ [5s/14s] Running ‘testthat.R’ [10m/12m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # File tests/testthat.R in package ergm, part of the Statnet suite of packages > # for network analysis, https://statnet.org . > # > # This software is distributed under the GPL-3 license. It is free, open > # source, and has the attribution requirements (GPL Section 7) at > # https://statnet.org/attribution . > # > # Copyright 2003-2025 Statnet Commons > ################################################################################ > library(testthat) > library(statnet.common) Attaching package: 'statnet.common' The following objects are masked from 'package:base': attr, order, replace > library(ergm) Loading required package: network 'network' 1.20.0 (2026-02-06), part of the Statnet Project * 'news(package="network")' for changes since last version * 'citation("network")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4.11.0 (2025-12-22), part of the Statnet Project * 'news(package="ergm")' for changes since last version * 'citation("ergm")' for citation information * 'https://statnet.org' for help, support, and other information 'ergm' 4 is a major update that introduces some backwards-incompatible changes. Please type 'news(package="ergm")' for a list of major changes. Attaching package: 'ergm' The following object is masked from 'package:statnet.common': snctrl > > test_check("ergm") Starting 2 test processes. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-bd.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-basis.R: Starting maximum pseudolikelihood estimation (MPLE): > test-basis.R: Obtaining the responsible dyads. > test-basis.R: Evaluating the predictor and response matrix. > test-basis.R: Maximizing the pseudolikelihood. > test-basis.R: Finished MPLE. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.6124. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0128. > test-basis.R: Convergence test p-value: 0.0011. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: > test-basis.R: Fitting the dyad-independent submodel... > test-basis.R: Bridging between the dyad-independent submodel and the full model... > test-basis.R: Setting up bridge sampling... > test-bridge-target.stats.R: Unable to match target stats. Using MCMLE estimation. > test-bridge-target.stats.R: Starting maximum pseudolikelihood estimation (MPLE): > test-bridge-target.stats.R: Obtaining the responsible dyads. > test-bridge-target.stats.R: Evaluating the predictor and response matrix. > test-bridge-target.stats.R: Maximizing the pseudolikelihood. > test-bridge-target.stats.R: Finished MPLE. > test-bridge-target.stats.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-bridge-target.stats.R: Iteration 1 of at most 60: > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Bridging finished. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 1 Optimizing with step length 1.0000. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: The log-likelihood improved by 0.0219. > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-bridge-target.stats.R: Finished MCMLE. > test-bridge-target.stats.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-bridge-target.stats.R: Using 16 bridges: 1 > test-bridge-target.stats.R: 2 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 3 > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-bridge-target.stats.R: 4 > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-bridge-target.stats.R: 5 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-bridge-target.stats.R: 8 > test-basis.R: 1 > test-bridge-target.stats.R: 9 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: > test-bridge-target.stats.R: This model was fit using MCMC. To examine model diagnostics and check > test-bridge-target.stats.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 4 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-bridge-target.stats.R: 5 > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Setting up bridge sampling... > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: 8 > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-bridge-target.stats.R: 9 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-bridge-target.stats.R: 10 > test-basis.R: 6 > test-basis.R: 7 > test-bridge-target.stats.R: 11 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-bridge-target.stats.R: 12 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-bridge-target.stats.R: 13 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: 16 > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-basis.R: Convergence test P-value:1.9e-80 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-bridge-target.stats.R: 8 > test-basis.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. > test-basis.R: Setting up bridge sampling... > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-bridge-target.stats.R: 9 > test-basis.R: Using 16 bridges: > test-basis.R: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-basis.R: 7 > test-basis.R: 8 > test-bridge-target.stats.R: 10 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 11 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-basis.R: Starting contrastive divergence estimation via CD-MCMLE: > test-basis.R: Iteration 1 of at most 60: > test-basis.R: Convergence test P-value:4.7e-173 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.861. > test-basis.R: Iteration 2 of at most 60: > test-basis.R: Convergence test P-value:2.5e-135 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 1.577. > test-basis.R: Iteration 3 of at most 60: > test-bridge-target.stats.R: 12 > test-basis.R: Convergence test P-value:1.9e-80 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.8158. > test-basis.R: Iteration 4 of at most 60: > test-basis.R: Convergence test P-value:4.5e-32 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.2411. > test-basis.R: Iteration 5 of at most 60: > test-basis.R: Convergence test P-value:1.3e-09 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.0608. > test-basis.R: Iteration 6 of at most 60: > test-basis.R: Convergence test P-value:2.8e-03 > test-basis.R: 1 > test-basis.R: The log-likelihood improved by 0.01871. > test-basis.R: Iteration 7 of at most 60: > test-basis.R: Convergence test P-value:7.5e-01 > test-basis.R: Convergence detected. Stopping. > test-basis.R: 1 > test-bridge-target.stats.R: 13 > test-basis.R: The log-likelihood improved by 0.001578. > test-basis.R: Finished CD. > test-basis.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-basis.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.1892. > test-basis.R: Estimating equations are not within tolerance region. > test-basis.R: Iteration 2 of at most 60: > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-basis.R: 1 > test-basis.R: Optimizing with step length 1.0000. > test-basis.R: The log-likelihood improved by 0.0072. > test-bridge-target.stats.R: 5 > test-basis.R: Convergence test p-value: 0.0001. > test-basis.R: Converged with 99% confidence. > test-basis.R: Finished MCMLE. > test-basis.R: Evaluating log-likelihood at the estimate. Setting up bridge sampling... > test-bridge-target.stats.R: 6 > test-basis.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-basis.R: Using 16 bridges: 1 > test-basis.R: 2 > test-basis.R: 3 > test-basis.R: 4 > test-basis.R: 5 > test-basis.R: 6 > test-bridge-target.stats.R: 7 > test-basis.R: 7 > test-basis.R: 8 > test-basis.R: 9 > test-basis.R: 10 > test-basis.R: 11 > test-basis.R: 12 > test-basis.R: 13 > test-bridge-target.stats.R: 8 > test-basis.R: 14 > test-basis.R: 15 > test-basis.R: 16 > test-basis.R: . > test-basis.R: Note: The constraint on the sample space is not dyad-independent. Null > test-basis.R: model likelihood is only implemented for dyad-independent constraints > test-basis.R: at this time. Number of observations is similarly poorly defined. This > test-basis.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-basis.R: AIC, BIC, etc.) is only valid between models with the same reference > test-basis.R: distribution and constraints. > test-basis.R: > test-basis.R: This model was fit using MCMC. To examine model diagnostics and check > test-basis.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-bridge-target.stats.R: 12 > test-bridge-target.stats.R: 13 > test-bridge-target.stats.R: 14 > test-bridge-target.stats.R: 15 > test-bridge-target.stats.R: 16 > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Iteration 1 of at most 60: > test-checkpointing.R: Saving state in '/tmp/RtmpKHbuQM/working_dir/RtmpAQ4tv2/file939ae2af911b1_001.RData'. > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-bridge-target.stats.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: Bridging between the dyad-independent submodel and the full model... > test-bridge-target.stats.R: Setting up bridge sampling... > test-bridge-target.stats.R: Using 16 bridges: > test-bridge-target.stats.R: 1 > test-bridge-target.stats.R: 2 > test-bridge-target.stats.R: 3 > test-bridge-target.stats.R: 4 > test-bridge-target.stats.R: 5 > test-checkpointing.R: 1 > test-checkpointing.R: Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0213. > test-checkpointing.R: Step length converged once. Increasing MCMC sample size. > test-checkpointing.R: Iteration 2 of at most 60: > test-checkpointing.R: Saving state in '/tmp/RtmpKHbuQM/working_dir/RtmpAQ4tv2/file939ae2af911b1_002.RData'. > test-bridge-target.stats.R: 6 > test-bridge-target.stats.R: 7 > test-bridge-target.stats.R: 8 > test-bridge-target.stats.R: 9 > test-bridge-target.stats.R: 10 > test-bridge-target.stats.R: 11 > test-checkpointing.R: 1 > test-checkpointing.R: Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0238. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-bridge-target.stats.R: 12 > test-checkpointing.R: Fitting the dyad-independent submodel... > test-bridge-target.stats.R: 13 > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-checkpointing.R: Using 16 bridges: > test-checkpointing.R: 1 > test-bridge-target.stats.R: 14 > test-checkpointing.R: 2 > test-checkpointing.R: 3 > test-checkpointing.R: 4 > test-checkpointing.R: 5 > test-checkpointing.R: 6 > test-checkpointing.R: 7 > test-checkpointing.R: 8 > test-checkpointing.R: 9 > test-checkpointing.R: 10 > test-bridge-target.stats.R: 15 > test-checkpointing.R: 11 > test-checkpointing.R: 12 > test-checkpointing.R: 13 > test-checkpointing.R: 14 > test-checkpointing.R: 15 > test-checkpointing.R: 16 > test-checkpointing.R: . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-bridge-target.stats.R: 16 > test-checkpointing.R: Starting maximum pseudolikelihood estimation (MPLE): > test-checkpointing.R: Obtaining the responsible dyads. > test-checkpointing.R: Evaluating the predictor and response matrix. > test-checkpointing.R: Maximizing the pseudolikelihood. > test-checkpointing.R: Finished MPLE. > test-checkpointing.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-checkpointing.R: Resuming from state saved in '/tmp/RtmpKHbuQM/working_dir/RtmpAQ4tv2/file939ae2af911b1_002.RData'. > test-checkpointing.R: Iteration 1 of at most 60: > test-bridge-target.stats.R: . > test-bridge-target.stats.R: Bridging finished. > test-checkpointing.R: 1 > test-checkpointing.R: Optimizing with step length 1.0000. > test-checkpointing.R: The log-likelihood improved by 0.0145. > test-checkpointing.R: Step length converged twice. Stopping. > test-checkpointing.R: Finished MCMLE. > test-checkpointing.R: Evaluating log-likelihood at the estimate. > test-checkpointing.R: Fitting the dyad-independent submodel... > test-checkpointing.R: Bridging between the dyad-independent submodel and the full model... > test-checkpointing.R: Setting up bridge sampling... > test-checkpointing.R: Using 16 bridges: > test-checkpointing.R: 1 > test-checkpointing.R: 2 > test-checkpointing.R: 3 > test-checkpointing.R: 4 > test-checkpointing.R: 5 > test-checkpointing.R: 6 > test-checkpointing.R: 7 > test-checkpointing.R: 8 > test-checkpointing.R: 9 > test-checkpointing.R: 10 > test-checkpointing.R: 11 > test-checkpointing.R: 12 > test-checkpointing.R: 13 > test-checkpointing.R: 14 > test-checkpointing.R: 15 > test-checkpointing.R: 16 > test-checkpointing.R: . > test-checkpointing.R: Bridging finished. > test-checkpointing.R: > test-checkpointing.R: This model was fit using MCMC. To examine model diagnostics and check > test-checkpointing.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-constrain-degrees-edges.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constrain-degrees-edges.R: Iteration 1 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:1.6e-07 > test-constrain-degrees-edges.R: 1 > test-constrain-degrees-edges.R: The log-likelihood improved by 0.1482. > test-constrain-degrees-edges.R: Iteration 2 of at most 2: > test-constrain-degrees-edges.R: Convergence test P-value:2.7e-03 > test-constrain-degrees-edges.R: 1 > test-constrain-degrees-edges.R: The log-likelihood improved by 0.04365. > test-constrain-degrees-edges.R: Finished CD. > test-constrain-degrees-edges.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-degrees-edges.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-degrees-edges.R: Best valid proposal 'CondOutDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondInDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-blockdiag.R: Best valid proposal 'DistRLE' cannot take into account hint(s) 'sparse' and 'triadic'. > test-constrain-blockdiag.R: > test-constrain-blockdiag.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-constrain-blockdiag.R: * 'news(package="ergm.count")' for changes since last version > test-constrain-blockdiag.R: * 'c > test-constrain-blockdiag.R: itation("ergm.count")' for citation information > test-constrain-blockdiag.R: * 'https://statnet.org' for help, support, and other information > test-constrain-blockdiag.R: > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-degrees-edges.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-constrain-dind.R: Iteration 1 of at most 60: > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: 1 Optimizing with step length 1.0000. > test-constrain-dind.R: The log-likelihood improved by 0.0020. > test-constrain-dind.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constrain-dind.R: Finished MCMLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Fitting the dyad-independent submodel... > test-constrain-degrees-edges.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constrain-dind.R: Bridging between the dyad-independent submodel and the full model... > test-constrain-dind.R: Setting up bridge sampling... > test-constrain-dind.R: Using 16 bridges: > test-constrain-dind.R: 1 > test-constrain-dind.R: 2 > test-constrain-dind.R: 3 > test-constrain-dind.R: 4 > test-constrain-dind.R: 5 > test-constrain-dind.R: 6 > test-constrain-dind.R: 7 > test-constrain-dind.R: 8 > test-constrain-dind.R: 9 > test-constrain-dind.R: 10 > test-constrain-dind.R: 11 > test-constrain-dind.R: 12 > test-constrain-dind.R: 13 > test-constrain-dind.R: 14 > test-constrain-dind.R: 15 > test-constrain-dind.R: 16 > test-constrain-dind.R: . > test-constrain-dind.R: Bridging finished. > test-constrain-dind.R: > test-constrain-dind.R: This model was fit using MCMC. To examine model diagnostics and check > test-constrain-dind.R: for degeneracy, use the mcmc.diagnostics() function. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constrain-dind.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constrain-dind.R: Obtaining the responsible dyads. > test-constrain-dind.R: Evaluating the predictor and response matrix. > test-constrain-dind.R: Maximizing the pseudolikelihood. > test-constrain-dind.R: Finished MPLE. > test-constrain-dind.R: Evaluating log-likelihood at the estimate. > test-constrain-dind.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf > test-drop.R: . > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m - 1/2 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: All terms are either offsets or extreme values. No optimization is performed. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-drop.R: > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: Observed statistic(s) edgecov.samplike.m are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: 1 > test-drop.R: Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by 0.0011. > test-drop.R: Convergence test p-value: < 0.0001. > test-drop.R: Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Fitting the dyad-independent submodel... > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: Using 16 bridges: > test-drop.R: 1 > test-drop.R: 2 > test-drop.R: 3 > test-drop.R: 4 > test-drop.R: 5 > test-drop.R: 6 > test-drop.R: 7 > test-drop.R: 8 > test-drop.R: 9 > test-drop.R: 10 > test-drop.R: 11 > test-drop.R: 12 > test-drop.R: 13 > test-drop.R: 14 > test-drop.R: 15 > test-drop.R: 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: > test-drop.R: Observed statistic(s) edgecov.-samplike.m are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Iteration 1 of at most 10: > test-drop.R: 1 > test-drop.R: Optimizing with step length 1.0000. > test-drop.R: The log-likelihood improved by 0.0005. > test-drop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Fitting the dyad-independent submodel... > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-drop.R: Using 16 bridges: > test-drop.R: 1 > test-drop.R: 2 > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-drop.R: 3 > test-constraints.R: > test-drop.R: 4 > test-drop.R: 5 > test-drop.R: 6 > test-drop.R: 7 > test-drop.R: 8 > test-drop.R: 9 > test-drop.R: 10 > test-drop.R: 11 > test-drop.R: 12 > test-drop.R: 13 > test-drop.R: 14 > test-drop.R: 15 > test-drop.R: 16 > test-drop.R: . > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-drop.R: Evaluating network in model. > test-drop.R: Initializing unconstrained Metropolis-Hastings proposal: > test-drop.R: 'ergm:MH_SPDyad'. > test-drop.R: Initializing model... > test-drop.R: Model initialized. > test-drop.R: Using initial method 'MPLE'. > test-drop.R: Initial parameters provided by caller: None. > test-drop.R: number of free parameters: 7 > test-drop.R: number of fixed parameters: 0 > test-drop.R: Observed statistic(s) triangle and kstar5 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-drop.R: Fitting initial model. > test-drop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-drop.R: Obtaining the responsible dyads. > test-drop.R: Evaluating the predictor and response matrix. > test-drop.R: Maximizing the pseudolikelihood. > test-drop.R: Finished MPLE. > test-drop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-drop.R: Density guard set to 10000 from an initial count of 3 edges. > test-drop.R: > test-drop.R: Iteration 1 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -5.244530e-01 2.592560e-01 -3.147987e-01 -9.254589e-01 2.322371e-12 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-constraints.R: Starting maximum pseudolikelihood estimation (MPLE): > test-constraints.R: Obtaining the responsible dyads. > test-constraints.R: Evaluating the predictor and response matrix. > test-constraints.R: Maximizing the pseudolikelihood. > test-constraints.R: Finished MPLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 512. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -3.399177 -1.395062 -4.641975 -3.370370 2.170829 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 > test-drop.R: Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 1.5314. > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 2 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -7.679134e-01 3.298974e-01 -4.787791e-01 -1.324882e+00 9.046975e-10 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: All terms are either offsets or extreme values. No optimization is performed. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Setting up bridge sampling... > test-constraints.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-constraints.R: Using 16 bridges: > test-constraints.R: 1 > test-constraints.R: 2 > test-constraints.R: 3 > test-constraints.R: 4 > test-constraints.R: 5 > test-constraints.R: 6 > test-constraints.R: 7 > test-constraints.R: 8 > test-constraints.R: 9 > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 256. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.2427984 0.4115226 -0.1934156 -0.5020576 -0.2889661 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 > test-constraints.R: 10 > test-drop.R: Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: The log-likelihood improved by 0.2272. > test-drop.R: Distance from origin on tolerance region scale: 4.992214 (previously Inf). > test-drop.R: Estimating equations are not within tolerance region. > test-drop.R: > test-drop.R: Iteration 3 of at most 3 with free parameter vector: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -1.0610706 1.2599949 -0.5094541 -1.4594441 0.1742152 > test-drop.R: Starting unconstrained MCMC... > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 > test-constraints.R: 14 > test-constraints.R: 15 > test-constraints.R: 16 > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent > test-constraints.R: constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-constraints.R: > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-constraints.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network > test-constraints.R: satisfies all constraints. > test-constraints.R: Starting contrastive divergence estimation via CD-MCMLE: > test-constraints.R: Iteration 1 of at most 60: > test-constraints.R: Convergence test P-value:1.1e-05 > test-constraints.R: 1 > test-constraints.R: The log-likelihood improved by 0.07919. > test-constraints.R: Iteration 2 of at most 60: > test-constraints.R: Convergence test P-value:3.7e-02 > test-constraints.R: 1 > test-constraints.R: The log-likelihood improved by 0.01687. > test-constraints.R: Iteration 3 of at most 60: > test-constraints.R: Convergence test P-value:7e-01 > test-constraints.R: Convergence detected. Stopping. > test-constraints.R: 1 > test-constraints.R: The log-likelihood improved by 0.0006029. > test-constraints.R: Finished CD. > test-constraints.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-constraints.R: Iteration 1 of at most 60: > test-drop.R: Back from unconstrained MCMC. > test-drop.R: New interval = 128. > test-drop.R: Estimated gradient of the log-likelihood: > test-drop.R: edges degree2 kstar2 gwdegree gwdegree.decay > test-drop.R: -0.4855967 -0.3621399 -0.6090535 -0.5209768 0.5709312 > test-drop.R: Starting MCMLE Optimization... > test-drop.R: 1 Optimizing with step length 0.9524. > test-drop.R: Using lognormal metric (see control.ergm function). > test-drop.R: Optimizing loglikelihood > test-drop.R: Starting MCMC s.e. computation. > test-drop.R: The log-likelihood improved by 0.0419. > test-drop.R: Distance from origin on tolerance region scale: 0.9245623 (previously Inf). > test-drop.R: Estimated covariance matrix of the statistics has nullity 1. Effective parameter number adjusted to 4. > test-drop.R: Test statistic: T^2 = 10.22576, with 4 free parameter(s) and 238.9876 degrees of freedom. > test-drop.R: Convergence test p-value: 0.0416. Not converged with 99% confidence; increasing sample size. > test-drop.R: 99% confidence critical value = 13.77129. > test-drop.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-drop.R: Finished MCMLE. > test-drop.R: Evaluating log-likelihood at the estimate. > test-drop.R: Initializing model to obtain the list of dyad-independent terms... > test-drop.R: Fitting the dyad-independent submodel... > test-constraints.R: 1 > test-constraints.R: Optimizing with step length 1.0000. > test-constraints.R: The log-likelihood improved by 0.0263. > test-constraints.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-constraints.R: Finished MCMLE. > test-constraints.R: Evaluating log-likelihood at the estimate. > test-constraints.R: Setting up bridge sampling... > test-drop.R: Dyad-independent submodel MLE has likelihood -11.02185 at: > test-drop.R: [1] -2.639057 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 > test-drop.R: [8] 0.000000 > test-drop.R: Bridging between the dyad-independent submodel and the full model... > test-drop.R: Setting up bridge sampling... > test-constraints.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-drop.R: Initializing model and proposals... > test-constraints.R: Using 16 bridges: > test-constraints.R: 1 > test-constraints.R: 2 > test-drop.R: Model and proposals initialized. > test-drop.R: Using 16 bridges: > test-drop.R: Running theta=[-1.0957763, -Inf, 1.5214507,-0.6414651, -Inf,-1.4155954, 0.3778579, 0.0000000]. > test-drop.R: Running theta=[-1.1953428, -Inf, 1.4232926,-0.6000803, -Inf,-1.3242667, 0.3534799, 0.0000000]. > test-constraints.R: 3 > test-drop.R: Running theta=[-1.2949093, -Inf, 1.3251345,-0.5586954, -Inf,-1.2329380, 0.3291020, 0.0000000]. > test-drop.R: Running theta=[-1.3944759, -Inf, 1.2269764,-0.5173106, -Inf,-1.1416092, 0.3047241, 0.0000000]. > test-drop.R: Running theta=[-1.4940424, -Inf, 1.1288183,-0.4759257, -Inf,-1.0502805, 0.2803462, 0.0000000]. > test-constraints.R: 4 > test-drop.R: Running theta=[-1.5936089, -Inf, 1.0306601,-0.4345409, -Inf,-0.9589517, 0.2559682, 0.0000000]. > test-drop.R: Running theta=[-1.6931754, -Inf, 0.9325020,-0.3931560, -Inf,-0.8676230, 0.2315903, 0.0000000]. > test-drop.R: Running theta=[-1.7927419, -Inf, 0.8343439,-0.3517712, -Inf,-0.7762943, 0.2072124, 0.0000000]. > test-constraints.R: 5 > test-drop.R: Running theta=[-1.8923085, -Inf, 0.7361858,-0.3103863, -Inf,-0.6849655, 0.1828345, 0.0000000]. > test-drop.R: Running theta=[-1.9918750, -Inf, 0.6380277,-0.2690015, -Inf,-0.5936368, 0.1584565, 0.0000000]. > test-drop.R: Running theta=[-2.0914415, -Inf, 0.5398696,-0.2276166, -Inf,-0.5023081, 0.1340786, 0.0000000]. > test-constraints.R: 6 > test-drop.R: Running theta=[-2.1910080, -Inf, 0.4417115,-0.1862318, -Inf,-0.4109793, 0.1097007, 0.0000000]. > test-drop.R: Running theta=[-2.29057452, -Inf, 0.34355338,-0.14484696, -Inf,-0.31965058, 0.08532274, 0.00000000]. > test-drop.R: Running theta=[-2.39014104, -Inf, 0.24539527,-0.10346211, -Inf,-0.22832184, 0.06094482, 0.00000000]. > test-constraints.R: 7 > test-drop.R: Running theta=[-2.48970755, -Inf, 0.14723716,-0.06207727, -Inf,-0.13699311, 0.03656689, 0.00000000]. > test-drop.R: Running theta=[-2.58927407, -Inf, 0.04907905,-0.02069242, -Inf,-0.04566437, 0.01218896, 0.00000000]. > test-drop.R: . > test-drop.R: Bridge sampling finished. Collating... > test-drop.R: Bridging finished. > test-drop.R: > test-drop.R: This model was fit using MCMC. To examine model diagnostics and check > test-drop.R: for degeneracy, use the mcmc.diagnostics() function. > test-constraints.R: 8 > test-constraints.R: 9 > test-constraints.R: 10 > test-constraints.R: 11 > test-constraints.R: 12 > test-constraints.R: 13 > test-constraints.R: 14 > test-constraints.R: 15 > test-constraints.R: 16 > test-constraints.R: . > test-constraints.R: Note: The constraint on the sample space is not dyad-independent. Null > test-constraints.R: model likelihood is only implemented for dyad-independent constraints > test-constraints.R: at this time. Number of observations is similarly poorly defined. This > test-constraints.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-constraints.R: AIC, BIC, etc.) is only valid between models with the same reference > test-constraints.R: distribution and constraints. > test-constraints.R: > test-constraints.R: This model was fit using MCMC. To examine model diagnostics and check > test-constraints.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-proposal-unload.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-proposal-unload.R: * 'c > test-ergm-proposal-unload.R: itation("ergm.count")' for citation information > test-ergm-proposal-unload.R: * 'https://statnet.org' for help, support, and other information > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: > test-ergm-proposal-unload.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-proposal-unload.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-proposal-unload.R: * 'citation("ergm.count")' for citation information > test-ergm-proposal-unload.R: * 'https://statnet.org' for help, support, and other information > test-ergm-proposal-unload.R: > test-ergm-san.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (binary, valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: ctriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ctriad (binary) > test-ergm-term-doc.R: Cyclic triples > test-ergm-term-doc.R: > test-ergm-term-doc.R: localtriangle(x) (binary) > test-ergm-term-doc.R: Triangles within neighborhoods > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1) (binary) > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: opentriad (binary) > test-ergm-term-doc.R: Open triads > test-ergm-term-doc.R: > test-ergm-term-doc.R: threetrail(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: threepath(keep=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Three-trails > test-ergm-term-doc.R: > test-ergm-term-doc.R: triangle(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: triangles(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangles > test-ergm-term-doc.R: > test-ergm-term-doc.R: tripercent(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Triangle percentage > test-ergm-term-doc.R: > test-ergm-term-doc.R: ttriple(attr=NULL, diff=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: ttriad (binary) > test-ergm-term-doc.R: Transitive triples > test-ergm-term-doc.R: Found 31 matching ergm terms: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Found 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Definitions for term(s) b2factor : > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network: This term adds multiple network statistics to the model, one for each of (a subset of) the > test-ergm-term-doc.R: unique values of the attr attribute. Each of these statistics > test-ergm-term-doc.R: gives the number of times a node with that attribute in the second mode of > test-ergm-term-doc.R: the network appears in an edge. The second mode of a bipartite network > test-ergm-term-doc.R: object is sometimes known as the "event" mode. > test-ergm-term-doc.R: Keywords: bipartite, categorical nodal attribute, dyad-independent, frequently-used, undirected, binary, valued > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3factor' were found. Try searching with search='b3factor'instead. > test-ergm-term-doc.R: Found 36 matching ergm terms: > test-ergm-term-doc.R: Project(formula, mode) (binary) > test-ergm-term-doc.R: Proj1(formula) (binary) > test-ergm-term-doc.R: Proj2(formula) (binary) > test-ergm-term-doc.R: Evaluation on a projection of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1concurrent(by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr) (binary) > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-1 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degrange(from, to=`+Inf`, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1degree(d, by=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the first node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the first mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2concurrent(by=NULL) (binary) > test-ergm-term-doc.R: Concurrent node count for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr) (binary) > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovrange(attr) (binary) > test-ergm-term-doc.R: Range of covariate values for neighbors of a mode-2 node > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) > test-ergm-term-doc.R: Degree range for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degree(d, by=NULL) (binary) > test-ergm-term-doc.R: Degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2dsp(d) (binary) > test-ergm-term-doc.R: Dyadwise shared partners for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1) (binary) > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factordistinct(attr, levels=TRUE) (binary) > test-ergm-term-doc.R: Number of distinct neighbor types for the second mode > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2mindegree(d) (binary) > test-ergm-term-doc.R: Minimum degree for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: Nodal attribute-based homophily effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1) (binary) > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2star(k, attr=NULL, levels=NULL) (binary) > test-ergm-term-doc.R: k-stars for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2starmix(k, attr, base=NULL, diff=TRUE) (binary) > test-ergm-term-doc.R: Mixing matrix for k-stars centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) > test-ergm-term-doc.R: Two-star census for central nodes centered on the second mode of a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: coincidence(levels=NULL,active=0) (binary) > test-ergm-term-doc.R: Coincident node count for the second mode in a bipartite (aka two-mode) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb1dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the first bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) > test-ergm-term-doc.R: Geometrically weighted degree distribution for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: gwb2dsp(decay=0, fixed=FALSE, cutoff=30) (binary) > test-ergm-term-doc.R: Geometrically weighted dyadwise shared partner distribution for dyads in the second bipartition > test-ergm-term-doc.R: > test-ergm-term-doc.R: isolatededges (binary) > test-ergm-term-doc.R: Isolated edges > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 50 matching ergm terms: > test-ergm-term-doc.R: B(formula, form) (valued) > test-ergm-term-doc.R: Wrap binary terms for use in valued models > test-ergm-term-doc.R: > test-ergm-term-doc.R: Curve(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrise(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Parametrize(formula, params, map, gradient=NULL, minpar=-Inf, maxpar=+Inf, cov=NULL) (valued) > test-ergm-term-doc.R: Impose a curved structure on term parameters > test-ergm-term-doc.R: > test-ergm-term-doc.R: Exp(formula) (valued) > test-ergm-term-doc.R: Exponentiate a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: For(...) (valued) > test-ergm-term-doc.R: A for operator for terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: I(formula) (valued) > test-ergm-term-doc.R: Substitute a formula into the model formula > test-ergm-term-doc.R: > test-ergm-term-doc.R: Label(formula, label, pos) (valued) > test-ergm-term-doc.R: Modify terms' coefficient names > test-ergm-term-doc.R: > test-ergm-term-doc.R: Log(formula, log0=-1/sqrt(.Machine$double.eps)) (valued) > test-ergm-term-doc.R: Take a natural logarithm of a network's statistic > test-ergm-term-doc.R: > test-ergm-term-doc.R: Prod(formulas, label) (valued) > test-ergm-term-doc.R: A product (or an arbitrary power combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: S(formula, attrs) (valued) > test-ergm-term-doc.R: Evaluation on an induced subgraph > test-ergm-term-doc.R: > test-ergm-term-doc.R: Sum(formulas, label) (valued) > test-ergm-term-doc.R: A sum (or an arbitrary linear combination) of one or more formulas > test-ergm-term-doc.R: > test-ergm-term-doc.R: Symmetrize(formula, rule="weak") (valued) > test-ergm-term-doc.R: Evaluation on symmetrized (undirected) network > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiff(attr, pow=1, form="sum") (valued) > test-ergm-term-doc.R: Absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: absdiffcat(attr, base=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Categorical absolute difference in nodal attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: atleast(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values greater than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: atmost(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values less than or equal to a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: attrcov(attr, mat, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate by attribute pairing > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the first mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b1sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2cov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2factor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for the second mode in a bipartite network > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2sociality(nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: cdf(min = NULL, max = NULL, by = NULL, margin = 0.1, nmax = 100) (valued) > test-ergm-term-doc.R: Empirical cumulative distribution function (unnormalized) of > test-ergm-term-doc.R: the network's dyad values > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalties(threshold=0) (valued) > test-ergm-term-doc.R: Cyclical ties > test-ergm-term-doc.R: > test-ergm-term-doc.R: cyclicalweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Cyclical weights > test-ergm-term-doc.R: > test-ergm-term-doc.R: diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) > test-ergm-term-doc.R: Difference > test-ergm-term-doc.R: > test-ergm-term-doc.R: edgecov(x, attrname=NULL, form="sum") (valued) > test-ergm-term-doc.R: Edge covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: edges (valued) > test-ergm-term-doc.R: nonzero (valued) > test-ergm-term-doc.R: Number of edges in the network > test-ergm-term-doc.R: > test-ergm-term-doc.R: equalto(value=0, tolerance=0) (valued) > test-ergm-term-doc.R: Number of dyads with values equal to a specific value (within tolerance) > test-ergm-term-doc.R: > test-ergm-term-doc.R: greaterthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly greater than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) > test-ergm-term-doc.R: Number of dyads whose values are in an interval > test-ergm-term-doc.R: > test-ergm-term-doc.R: mm(attrs, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Mixing matrix cells and margins > test-ergm-term-doc.R: > test-ergm-term-doc.R: mutual(form="min",threshold=0) (valued) > test-ergm-term-doc.R: Mutuality > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecov(attr, form="sum") (valued) > test-ergm-term-doc.R: nodemain(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodecovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of undirected dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodefactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeicovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of in-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeifactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for in-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodematch(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: match(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) > test-ergm-term-doc.R: Uniform homophily and differential homophily > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=-1, form="sum") (valued) > test-ergm-term-doc.R: Nodal attribute mixing > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocov(attr, form="sum") (valued) > test-ergm-term-doc.R: Main effect of a covariate for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeocovar(center, transform) (valued) > test-ergm-term-doc.R: Covariance of out-dyad values incident on each actor > test-ergm-term-doc.R: > test-ergm-term-doc.R: nodeofactor(attr, base=1, levels=-1, form="sum") (valued) > test-ergm-term-doc.R: Factor attribute effect for out-edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: receiver(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Receiver effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: sender(base=1, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Sender effect > test-ergm-term-doc.R: > test-ergm-term-doc.R: smallerthan(threshold=0) (valued) > test-ergm-term-doc.R: Number of dyads with values strictly smaller than a threshold > test-ergm-term-doc.R: > test-ergm-term-doc.R: sociality(attr=NULL, base=1, levels=NULL, nodes=-1, form="sum") (valued) > test-ergm-term-doc.R: Undirected degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: sum(pow=1) (valued) > test-ergm-term-doc.R: Sum of dyad values (optionally taken to a power) > test-ergm-term-doc.R: > test-ergm-term-doc.R: transitiveweights(twopath="min", combine="max", affect="min") (valued) > test-ergm-term-doc.R: Transitive weights > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 4 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: DiscUnif(a,b) > test-ergm-term-doc.R: Discrete Uniform reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: StdNormal > test-ergm-term-doc.R: Standard Normal reference > test-ergm-term-doc.R: > test-ergm-term-doc.R: Unif(a,b) > test-ergm-term-doc.R: Continuous Uniform reference > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found 1 matching ergm terms: > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference > test-ergm-term-doc.R: Definitions for term(s) Bernoulli : > test-ergm-term-doc.R: Bernoulli > test-ergm-term-doc.R: Bernoulli reference: Specifies each > test-ergm-term-doc.R: dyad's baseline distribution to be Bernoulli with probability of > test-ergm-term-doc.R: the tie being 0.5 . This is the only reference measure used > test-ergm-term-doc.R: in binary mode. > test-ergm-term-doc.R: Keywords: binary, discrete, finite, nonnegative > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'Cernoulli' were found. Try searching with search='Cernoulli'instead. > test-ergm-term-doc.R: Found 9 matching ergm terms: > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: b2degrees > test-ergm-term-doc.R: Preserve the receiver degree for bipartite networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Found 0 matching ergm terms: > test-ergm-term-doc.R: Found > test-ergm-term-doc.R: 17 matching ergm terms: > test-ergm-term-doc.R: ChangeStats(fix, check_dind = TRUE) > test-ergm-term-doc.R: Specified statistics must remain constant > test-ergm-term-doc.R: > test-ergm-term-doc.R: Dyads(fix=NULL, vary=NULL) > test-ergm-term-doc.R: Constrain fixed or varying dyad-independent terms > test-ergm-term-doc.R: > test-ergm-term-doc.R: bd(attribs, maxout, maxin, minout, minin) > test-ergm-term-doc.R: Constrain maximum and minimum vertex degree > test-ergm-term-doc.R: > test-ergm-term-doc.R: blockdiag(attr) > test-ergm-term-doc.R: Block-diagonal structure constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: blocks(attr=NULL, levels=NULL, levels2=FALSE, b1levels=NULL, b2levels=NULL) > test-ergm-term-doc.R: Constrain blocks of dyads defined by mixing type on a vertex attribute. > test-ergm-term-doc.R: > test-ergm-term-doc.R: degreedist > test-ergm-term-doc.R: Preserve the degree distribution of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: degrees > test-ergm-term-doc.R: nodedegrees > test-ergm-term-doc.R: Preserve the degree of each vertex of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise(p01, p10) > test-ergm-term-doc.R: A soft constraint to adjust the sampled distribution for > test-ergm-term-doc.R: dyad-level noise with known perturbation probabilities > test-ergm-term-doc.R: > test-ergm-term-doc.R: egocentric(attr=NULL, direction="both") > test-ergm-term-doc.R: Preserve values of dyads incident on vertices with given attribute > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixallbut(free.dyads) > test-ergm-term-doc.R: Preserve the dyad status in all but the given edges > test-ergm-term-doc.R: > test-ergm-term-doc.R: fixedas(fixed.dyads, present, absent) > test-ergm-term-doc.R: Fix specific dyads > test-ergm-term-doc.R: > test-ergm-term-doc.R: hamming > test-ergm-term-doc.R: Preserve the hamming distance to the given network (BROKEN: Do NOT Use) > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegreedist > test-ergm-term-doc.R: Preserve the indegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: idegrees > test-ergm-term-doc.R: Preserve indegree for directed networks > test-ergm-term-doc.R: > test-ergm-term-doc.R: observed > test-ergm-term-doc.R: Preserve the observed dyads of the given network > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegreedist > test-ergm-term-doc.R: Preserve the outdegree distribution > test-ergm-term-doc.R: > test-ergm-term-doc.R: odegrees > test-ergm-term-doc.R: Preserve outdegree for directed networks > test-ergm-term-doc.R: Definitions for term(s) b1degrees : > test-ergm-term-doc.R: b1degrees > test-ergm-term-doc.R: Preserve the actor degree for bipartite networks: For bipartite networks, preserve the degree for the first mode of each vertex of the given > test-ergm-term-doc.R: network, while allowing the degree for the second mode to vary. > test-ergm-term-doc.R: Keywords: bipartite > test-ergm-term-doc.R: > test-ergm-term-doc.R: No terms named 'b3degrees' were found. Try searching with search='b3degrees'instead. > test-ergm-term-doc.R: Found 2 matching ergm proposals: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: Found 5 matching ergm proposals: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: DistRLE > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Found 0 matching ergm proposals: > test-ergm-term-doc.R: Found 18 matching ergm proposals: > test-ergm-term-doc.R: BDStratTNT > test-ergm-term-doc.R: TNT proposal with degree bounds, stratification, and a blocks constraint > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB1Degree > test-ergm-term-doc.R: MHp for b1degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondB2Degree > test-ergm-term-doc.R: MHp for b2degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegree > test-ergm-term-doc.R: MHp for degree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeDist > test-ergm-term-doc.R: MHp for degreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondDegreeMix > test-ergm-term-doc.R: MHp for degree mix constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegree > test-ergm-term-doc.R: MHp for idegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondInDegreeDist > test-ergm-term-doc.R: MHp for idegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegree > test-ergm-term-doc.R: MHp for odegree constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: CondOutDegreeDist > test-ergm-term-doc.R: MHp for odegreedist constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: ConstantEdges > test-ergm-term-doc.R: MHp for edges constraints > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingConstantEdges > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: HammingTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: SPDyad > test-ergm-term-doc.R: A proposal alternating between TNT and a triad-focused > test-ergm-term-doc.R: proposal > test-ergm-term-doc.R: > test-ergm-term-doc.R: TNT > test-ergm-term-doc.R: Default MH algorithm > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoise > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: dyadnoiseTNT > test-ergm-term-doc.R: TODO > test-ergm-term-doc.R: > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Definitions for proposal(s) randomtoggle : > test-ergm-term-doc.R: randomtoggle > test-ergm-term-doc.R: Propose a randomly selected dyad to toggle: Propose a randomly selected dyad to toggle > test-ergm-term-doc.R: Reference: Bernoulli Class: cross-sectional > test-ergm-term-doc.R: May Enforce: .dyads bd changestats > test-ergm-term-doc.R: > test-ergm-term-doc.R: No proposals named 'mandomtoggle' were found. Try searching with search='mandomtoggle'instead. > test-ergm-term-doc.R: > test-ergm-term-doc.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-ergm-term-doc.R: * 'news(package="ergm.count")' for changes since last version > test-ergm-term-doc.R: * 'citation("ergm.count")' for citation information > test-ergm-term-doc.R: * 'https://statnet.org' for help, support, and other information > test-ergm-term-doc.R: > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergmMPLE.R: Starting maximum pseudolikelihood estimation (MPLE): > test-ergmMPLE.R: Obtaining the responsible dyads. > test-ergmMPLE.R: Evaluating the predictor and response matrix. > test-ergmMPLE.R: Maximizing the pseudolikelihood. > test-ergmMPLE.R: Finished MPLE. > test-ergmMPLE.R: Evaluating log-likelihood at the estimate. > test-ergmMPLE.R: > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-ergm.bridge.llr.R: 15 > test-gflomiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gflomiss.R: Obtaining the responsible dyads. > test-gflomiss.R: Evaluating the predictor and response matrix. > test-gflomiss.R: Maximizing the pseudolikelihood. > test-gflomiss.R: Finished MPLE. > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-gflomiss.R: 1 > test-gflomiss.R: Optimizing with step length 1.0000. > test-gflomiss.R: The log-likelihood improved by 0.0039. > test-ergm.bridge.llr.R: 8 > test-gflomiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: 9 > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-gflomiss.R: Using 16 bridges: > test-gflomiss.R: 1 > test-ergm.bridge.llr.R: 10 > test-gflomiss.R: 2 > test-gflomiss.R: 3 > test-gflomiss.R: 4 > test-gflomiss.R: 5 > test-ergm.bridge.llr.R: 11 > test-gflomiss.R: 6 > test-gflomiss.R: 7 > test-gflomiss.R: 8 > test-ergm.bridge.llr.R: 12 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-gflomiss.R: 11 > test-ergm.bridge.llr.R: 13 > test-gflomiss.R: 12 > test-gflomiss.R: 13 > test-gflomiss.R: 14 > test-ergm.bridge.llr.R: 14 > test-gflomiss.R: 15 > test-gflomiss.R: 16 > test-ergm.bridge.llr.R: 15 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 16 > test-gflomiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gflomiss.R: Iteration 1 of at most 60: > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-gflomiss.R: 1 Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 2 > test-gflomiss.R: The log-likelihood improved by 0.0078. > test-gflomiss.R: Convergence test p-value: < 0.0001. > test-gflomiss.R: Converged with 99% confidence. > test-gflomiss.R: Finished MCMLE. > test-gflomiss.R: Evaluating log-likelihood at the estimate. > test-gflomiss.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: 3 > test-gflomiss.R: Bridging between the dyad-independent submodel and the full model... > test-gflomiss.R: Setting up bridge sampling... > test-gflomiss.R: Using 16 bridges: 1 > test-gflomiss.R: 2 > test-ergm.bridge.llr.R: 4 > test-gflomiss.R: 3 > test-gflomiss.R: 4 > test-gflomiss.R: 5 > test-gflomiss.R: 6 > test-ergm.bridge.llr.R: 5 > test-gflomiss.R: 7 > test-gflomiss.R: 8 > test-gflomiss.R: 9 > test-gflomiss.R: 10 > test-gflomiss.R: 11 > test-gflomiss.R: 12 > test-ergm.bridge.llr.R: 6 > test-gflomiss.R: 13 > test-gflomiss.R: 14 > test-gflomiss.R: 15 > test-gflomiss.R: 16 > test-gflomiss.R: . > test-gflomiss.R: Bridging finished. > test-gflomiss.R: > test-gflomiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gflomiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 7 > test-gmonkmiss.R: odegree3 odegree4 odegree5 odegree6 > test-gmonkmiss.R: 1 5 7 5 > test-gmonkmiss.R: idegree2 idegree3 idegree4 idegree5 idegree6 idegree7 idegree8 idegree10 > test-gmonkmiss.R: 3 5 1 3 2 1 1 1 > test-gmonkmiss.R: idegree11 > test-gmonkmiss.R: 1 > test-ergm.bridge.llr.R: 8 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-ergm.bridge.llr.R: 9 > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-ergm.bridge.llr.R: 15 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.6245. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-gmonkmiss.R: Convergence test p-value: 0.0005. > test-gmonkmiss.R: Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 2 > test-gmonkmiss.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-gmonkmiss.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network satisfies all constraints. > test-gmonkmiss.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gmonkmiss.R: Iteration 1 of at most 60: > test-gmonkmiss.R: Convergence test P-value:3.3e-34 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.4205. > test-gmonkmiss.R: Iteration 2 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.8e-14 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.1501. > test-gmonkmiss.R: Iteration 3 of at most 60: > test-ergm.bridge.llr.R: 3 > test-gmonkmiss.R: Convergence test P-value:2e-04 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.03536. > test-gmonkmiss.R: Iteration 4 of at most 60: > test-gmonkmiss.R: Convergence test P-value:1.6e-01 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.007343. > test-gmonkmiss.R: Iteration 5 of at most 60: > test-gmonkmiss.R: Convergence test P-value:2.4e-01 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00569. > test-gmonkmiss.R: Iteration 6 of at most 60: > test-gmonkmiss.R: Convergence test P-value:9.9e-02 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.00904. > test-gmonkmiss.R: Iteration 7 of at most 60: > test-gmonkmiss.R: Convergence test P-value:7.6e-01 > test-gmonkmiss.R: Convergence detected. Stopping. > test-gmonkmiss.R: 1 > test-gmonkmiss.R: The log-likelihood improved by 0.001102. > test-gmonkmiss.R: Finished CD. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-ergm.bridge.llr.R: 4 > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: 5 > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-gmonkmiss.R: The log-likelihood improved by 0.4514. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-ergm.bridge.llr.R: 10 > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 15 > test-gmonkmiss.R: The log-likelihood improved by 0.0105. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. > test-gmonkmiss.R: Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gmonkmiss.R: Obtaining the responsible dyads. > test-gmonkmiss.R: Evaluating the predictor and response matrix. > test-gmonkmiss.R: Maximizing the pseudolikelihood. > test-gmonkmiss.R: Finished MPLE. > test-gmonkmiss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-ergm.bridge.llr.R: 16 > test-gmonkmiss.R: Iteration 1 of at most 3: > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Fitting the dyad-independent submodel... > test-ergm.bridge.llr.R: Bridging between the dyad-independent submodel and the full model... > test-ergm.bridge.llr.R: Setting up bridge sampling... > test-ergm.bridge.llr.R: Using 16 bridges: > test-ergm.bridge.llr.R: 1 > test-ergm.bridge.llr.R: 2 > test-ergm.bridge.llr.R: 3 > test-ergm.bridge.llr.R: 4 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 5 > test-gmonkmiss.R: The log-likelihood improved by 0.7035. > test-gmonkmiss.R: Estimating equations are not within tolerance region. > test-gmonkmiss.R: Iteration 2 of at most 3: > test-ergm.bridge.llr.R: 6 > test-ergm.bridge.llr.R: 7 > test-ergm.bridge.llr.R: 8 > test-ergm.bridge.llr.R: 9 > test-gmonkmiss.R: 1 > test-gmonkmiss.R: Optimizing with step length 1.0000. > test-ergm.bridge.llr.R: 10 > test-gmonkmiss.R: The log-likelihood improved by 0.0078. > test-gmonkmiss.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-gmonkmiss.R: Finished MCMLE. > test-gmonkmiss.R: This model was fit using MCMC. To examine model diagnostics and check > test-gmonkmiss.R: for degeneracy, use the mcmc.diagnostics() function. > test-ergm.bridge.llr.R: 11 > test-ergm.bridge.llr.R: 12 > test-ergm.bridge.llr.R: 13 > test-ergm.bridge.llr.R: 14 > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-ergm.bridge.llr.R: 15 > test-ergm.bridge.llr.R: 16 > test-ergm.bridge.llr.R: . > test-ergm.bridge.llr.R: Bridging finished. > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-gof.R: Starting maximum pseudolikelihood estimation (MPLE): > test-gof.R: Obtaining the responsible dyads. > test-gof.R: Evaluating the predictor and response matrix. > test-gof.R: Maximizing the pseudolikelihood. > test-gof.R: Finished MPLE. > test-gof.R: Evaluating log-likelihood at the estimate. > test-gof.R: > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-gof.R: Starting contrastive divergence estimation via CD-MCMLE: > test-gof.R: Iteration 1 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-gof.R: Convergence test P-value:1.8e-266 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 1.541. > test-gof.R: Iteration 2 of at most 60: > test-gof.R: Convergence test P-value:2e-184 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 1.461. > test-gof.R: Iteration 3 of at most 60: > test-gof.R: Convergence test P-value:1.8e-38 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.1713. > test-gof.R: Iteration 4 of at most 60: > test-gof.R: Convergence test P-value:5.5e-05 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.02153. > test-gof.R: Iteration 5 of at most 60: > test-gof.R: Convergence test P-value:3.3e-01 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4613. > test-metrics.R: The log-likelihood improved by 4.1429. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.00457. > test-gof.R: Iteration 6 of at most 60: > test-gof.R: Convergence test P-value:4.4e-02 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.009062. > test-gof.R: Iteration 7 of at most 60: > test-gof.R: Convergence test P-value:4.6e-01 > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.003667. > test-gof.R: Iteration 8 of at most 60: > test-gof.R: Convergence test P-value:8.7e-01 > test-gof.R: Convergence detected. Stopping. > test-gof.R: 1 > test-gof.R: The log-likelihood improved by 0.001439. > test-gof.R: Finished CD. > test-gof.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-gof.R: Iteration 1 of at most 2: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.8364. > test-metrics.R: The log-likelihood improved by 4.7215. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.1346. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.1129. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0037. > test-metrics.R: Convergence test p-value: 0.0004. > test-metrics.R: Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4018. > test-metrics.R: The log-likelihood improved by 3.2780. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-gof.R: 1 > test-gof.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.2102. > test-gof.R: Estimating equations are not within tolerance region. > test-gof.R: Iteration 2 of at most 2: > test-metrics.R: 1 Optimizing with step length 0.6020. > test-metrics.R: The log-likelihood improved by 3.4584. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.2132. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0377. > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-gof.R: 1 > test-gof.R: Optimizing with step length 1.0000. > test-gof.R: The log-likelihood improved by 0.0698. > test-gof.R: Convergence test p-value: 0.0024. Converged with 99% confidence. > test-gof.R: Finished MCMLE. > test-gof.R: This model was fit using MCMC. To examine model diagnostics and check > test-gof.R: for degeneracy, use the mcmc.diagnostics() function. > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-metrics.R: 1 > test-gof.R: > test-gof.R: Goodness-of-fit for model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 124 167.55 196 0.98 > test-gof.R: nonzero 88 68 88.02 106 1.00 > test-gof.R: nodematch.sum.group.Loyal 49 33 51.56 74 0.78 > test-gof.R: nodematch.sum.group.Outcasts 20 9 19.55 32 0.98 > test-gof.R: nodematch.sum.group.Turks 59 39 58.04 74 0.96 > test-gof.R: > test-gof.R: Goodness-of-fit for cumulative distribution function > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: 0 218 200 217.98 238 1.00 > test-gof.R: 1 256 241 253.05 272 0.56 > test-gof.R: 2 276 271 279.42 290 0.48 > test-gof.R: 3 306 306 306.00 306 1.00 > test-gof.R: 4 306 306 306.00 306 1.00 > test-metrics.R: Optimizing with step length 0.4158. > test-metrics.R: The log-likelihood improved by 1.9115. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-gof.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 0.4804. > test-metrics.R: The log-likelihood improved by 2.5519. > test-gof.R: > test-gof.R: Goodness-of-fit for model statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: sum 168 131 163.65 201 0.76 > test-gof.R: nonzero 88 70 86.60 106 0.82 > test-gof.R: nodematch.sum.group.Loyal 49 25 48.56 68 0.94 > test-gof.R: nodematch.sum.group.Outcasts 20 12 19.57 31 0.88 > test-gof.R: nodematch.sum.group.Turks 59 31 57.33 77 0.88 > test-gof.R: > test-gof.R: Goodness-of-fit for user statistics > test-gof.R: > test-gof.R: obs min mean max MC p-value > test-gof.R: atmost.0 218 200 219.40 236 0.82 > test-gof.R: atmost.1 256 239 254.73 265 0.90 > test-gof.R: atmost.2 276 272 280.22 288 0.34 > test-gof.R: atmost.3 306 306 306.00 306 1.00 > test-gof.R: atmost.4 306 306 306.00 306 1.00 > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.9415. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss-dep.R: Best valid proposal 'ConstantEdges' cannot take into account hint(s) 'triadic'. > test-miss-dep.R: Model and/or observational constraints are not dyad-independent. Dyad imputation cannot be used. Please ensure your LHS network > test-miss-dep.R: satisfies all constraints. > test-miss-dep.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss-dep.R: Iteration 1 of at most 60: > test-miss-dep.R: Convergence test P-value:9.4e-47 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 1.617. > test-miss-dep.R: Iteration 2 of at most 60: > test-metrics.R: 1 Optimizing with step length 1.0000. > test-miss-dep.R: Convergence test P-value:2.6e-20 > test-miss-dep.R: 1 > test-metrics.R: The log-likelihood improved by 0.1226. > test-miss-dep.R: The log-likelihood improved by 0.4878. > test-miss-dep.R: Iteration 3 of at most 60: > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss-dep.R: Convergence test P-value:2.6e-03 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.03706. > test-miss-dep.R: Iteration 4 of at most 60: > test-miss-dep.R: Convergence test P-value:1.1e-01 > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by 0.01002. > test-miss-dep.R: Iteration 5 of at most 60: > test-miss-dep.R: Convergence test P-value:9.4e-01 > test-miss-dep.R: Convergence detected. Stopping. > test-miss-dep.R: 1 > test-miss-dep.R: The log-likelihood improved by < 0.0001. > test-miss-dep.R: Finished CD. > test-miss-dep.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss-dep.R: Iteration 1 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss-dep.R: Post-burnin sample is constant; returning. > test-miss-dep.R: 1 > test-miss-dep.R: Optimizing with step length 1.0000. > test-miss-dep.R: The log-likelihood improved by 0.0639. > test-miss-dep.R: Convergence test p-value: < 0.0001. > test-miss-dep.R: Converged with 99% confidence. > test-miss-dep.R: Finished MCMLE. > test-miss-dep.R: Evaluating log-likelihood at the estimate. > test-miss-dep.R: Setting up bridge sampling... > test-miss-dep.R: Using 16 bridges: > test-miss-dep.R: 1 > test-miss-dep.R: 2 > test-miss-dep.R: 3 > test-miss-dep.R: 4 > test-metrics.R: 1 2 > test-metrics.R: 3 4 > test-metrics.R: 5 6 > test-metrics.R: 7 8 > test-metrics.R: 9 > test-metrics.R: 10 11 > test-metrics.R: Optimizing with step length 0.3934. > test-miss-dep.R: 5 > test-metrics.R: The log-likelihood improved by 4.1457. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss-dep.R: 6 > test-miss-dep.R: 7 > test-miss-dep.R: 8 > test-miss-dep.R: 9 > test-miss-dep.R: 10 > test-miss-dep.R: 11 > test-miss-dep.R: 12 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 2.8651. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss-dep.R: 13 > test-miss-dep.R: 14 > test-miss-dep.R: 15 > test-miss-dep.R: 16 > test-miss-dep.R: . > test-miss-dep.R: Note: The constraint on the sample space is not dyad-independent. Null > test-miss-dep.R: model likelihood is only implemented for dyad-independent constraints > test-miss-dep.R: at this time. Number of observations is similarly poorly defined. This > test-miss-dep.R: means that all likelihood-based inference (LRT, Analysis of Deviance, > test-miss-dep.R: AIC, BIC, etc.) is only valid between models with the same reference > test-miss-dep.R: distribution and constraints. > test-miss-dep.R: > test-miss-dep.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss-dep.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: n=20, density=0.1, missing=0.1 > test-metrics.R: 1 Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.3360. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:3e-13 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2096. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-12 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1974. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-11 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.341. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1744. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-16 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6862. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.3e-15 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.3025. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1888. > test-miss.CD.R: Iteration 8 of at most 60: > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-miss.CD.R: Convergence test P-value:2.3e-17 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2862. > test-miss.CD.R: Iteration 9 of at most 60: > test-metrics.R: The log-likelihood improved by 0.0827. > test-miss.CD.R: Convergence test P-value:1.6e-07 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.2007. > test-miss.CD.R: Iteration 10 of at most 60: > test-metrics.R: Convergence test p-value: 0.0004. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:2.1e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03854. > test-miss.CD.R: Iteration 11 of at most 60: > test-miss.CD.R: Convergence test P-value:7.9e-05 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.1259. > test-miss.CD.R: Iteration 12 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:7.9e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.0004877. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-68 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.7099. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:1.6e-64 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.5925. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:9.6e-53 > test-metrics.R: 1 2 3 4 5 6 7 8 9 10 11 Optimizing with step length 0.3701. > test-metrics.R: The log-likelihood improved by 2.3554. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: 1 The log-likelihood improved by 0.6327. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:1.1e-37 > test-miss.CD.R: 1 The log-likelihood improved by 0.8025. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-30 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.583. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:8.6e-19 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6591. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:6.2e-04 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.05663. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.4e-01 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.007268. > test-miss.CD.R: Iteration 9 of at most 60: > test-miss.CD.R: Convergence test P-value:9.1e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 4 > test-metrics.R: 5 > test-metrics.R: 6 7 > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-metrics.R: 8 > test-metrics.R: 9 > test-metrics.R: 10 11 > test-metrics.R: 12 > test-metrics.R: Optimizing with step length 0.5218. > test-metrics.R: The log-likelihood improved by 2.9696. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 > test-metrics.R: Optimizing with step length 0.8048. > test-metrics.R: The log-likelihood improved by 1.8226. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-54 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.5854. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:4.4e-52 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6164. > test-miss.CD.R: Iteration 3 of at most 60: > test-miss.CD.R: Convergence test P-value:4.5e-46 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.6486. > test-miss.CD.R: Iteration 4 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-32 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 1.361. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:6.8e-14 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.379. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:4.6e-03 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.05118. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:1.9e-02 > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.03478. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:6.5e-01 > test-miss.CD.R: Convergence detected. Stopping. > test-miss.CD.R: 1 > test-miss.CD.R: The log-likelihood improved by 0.001186. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Network statistics: > test-miss.CD.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.CD.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.CD.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.CD.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.CD.R: 0 0 0 0 0 0 0 > test-miss.CD.R: Correct estimate = -2.028148 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.2705. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 5 of at most 60: > test-miss.CD.R: Starting contrastive divergence estimation via CD-MCMLE: > test-miss.CD.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.8e-283 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by 1.711. > test-miss.CD.R: Iteration 2 of at most 60: > test-miss.CD.R: Convergence test P-value:2.9e-233 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0012. > test-miss.CD.R: The log-likelihood improved by 1.753. > test-miss.CD.R: Iteration 3 of at most 60: > test-metrics.R: Convergence test p-value: 0.0099. > test-metrics.R: Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:4.4e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 4 of at most 60: > test-metrics.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-metrics.R: Iteration 1 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-199 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 5 of at most 60: > test-miss.CD.R: Convergence test P-value:2e-201 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 6 of at most 60: > test-miss.CD.R: Convergence test P-value:1.3e-208 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 7 of at most 60: > test-miss.CD.R: Convergence test P-value:4.7e-207 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 8 of at most 60: > test-miss.CD.R: Convergence test P-value:2.7e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 9 of at most 60: > test-metrics.R: 1 2 > test-metrics.R: 3 > test-metrics.R: 4 > test-metrics.R: 5 > test-metrics.R: 6 > test-metrics.R: 7 > test-miss.CD.R: Convergence test P-value:4.1e-205 > test-metrics.R: 8 9 > test-metrics.R: 10 > test-metrics.R: 11 > test-miss.CD.R: 1 2 > test-metrics.R: 12 13 > test-metrics.R: Optimizing with step length 0.4397. > test-metrics.R: The log-likelihood improved by 3.0119. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 2 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 10 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-210 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 11 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-187 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 12 of at most 60: > test-metrics.R: 1 > test-metrics.R: 2 > test-metrics.R: 3 > test-metrics.R: 4 > test-metrics.R: 5 > test-miss.CD.R: Convergence test P-value:1.2e-199 > test-metrics.R: 6 > test-metrics.R: 7 8 9 > test-metrics.R: 10 11 > test-miss.CD.R: 1 2 > test-metrics.R: 12 Optimizing with step length 0.6225. > test-metrics.R: The log-likelihood improved by 3.6934. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 3 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 13 of at most 60: > test-miss.CD.R: Convergence test P-value:6.6e-211 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 14 of at most 60: > test-miss.CD.R: Convergence test P-value:2.2e-203 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 1.0488. > test-metrics.R: Estimating equations are not within tolerance region. > test-metrics.R: Iteration 4 of at most 60: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 15 of at most 60: > test-miss.CD.R: Convergence test P-value:5.2e-197 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 16 of at most 60: > test-miss.CD.R: Convergence test P-value:1e-201 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 17 of at most 60: > test-miss.CD.R: Convergence test P-value:2.1e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-metrics.R: 1 > test-metrics.R: Optimizing with step length 1.0000. > test-metrics.R: The log-likelihood improved by 0.0821. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 18 of at most 60: > test-metrics.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-metrics.R: Finished MCMLE. > test-metrics.R: This model was fit using MCMC. To examine model diagnostics and check > test-metrics.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:6.3e-210 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 19 of at most 60: > test-miss.R: n= > test-miss.R: 20, density=0.1, missing=0.05 > test-miss.CD.R: Convergence test P-value:1.3e-213 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 20 of at most 60: > test-miss.R: Correct estimate = -2.118156 with log-likelihood -120.6883 . > test-miss.CD.R: Convergence test P-value:2.6e-202 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 21 of at most 60: > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: MPLE estimate = -2.118156 with log-likelihood -120.6883 OK. > test-miss.CD.R: Convergence test P-value:5.5e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 22 of at most 60: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 26 dyads is required. > test-miss.R: Imputing 3 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 41 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.118156 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:7.2e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 23 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:3.5e-207 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 24 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -49.45267 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: 10 11 > test-miss.R: 12 > test-miss.R: Optimizing with step length 0.4099. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.5936. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.374066 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 25 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 26 of at most 60: > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:1.8e-212 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.36008 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 > test-miss.R: 3 4 > test-miss.R: 5 6 > test-miss.R: 7 8 > test-miss.R: 9 10 11 > test-miss.R: 12 > test-miss.R: Optimizing with step length 0.4981. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.2702. > test-miss.R: Distance from origin on tolerance region scale: 192.073 (previously 422.077). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.647302 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 27 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:8e-208 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 28 of at most 60: > test-miss.CD.R: Convergence test P-value:1.4e-198 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 29 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -17.50766 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 3 > test-miss.R: 4 5 > test-miss.R: Optimizing with step length 0.7736. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 2.0776. > test-miss.R: Distance from origin on tolerance region scale: 71.38353 (previously 259.1767). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.95412 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: Convergence test P-value:2.3e-204 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 30 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:2.5e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 31 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.CD.R: Convergence test P-value:9.4e-205 > test-miss.CD.R: 1 > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -5.621399 > test-miss.CD.R: 2 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.3258. > test-miss.R: Distance from origin on tolerance region scale: 6.488425 (previously 62.9371). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 5 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.070021 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 32 of at most 60: > test-miss.CD.R: Convergence test P-value:2.8e-202 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 33 of at most 60: > test-miss.CD.R: Convergence test P-value:3.3e-209 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 34 of at most 60: > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:2.8e-201 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 35 of at most 60: > test-miss.CD.R: Convergence test P-value:5.8e-206 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 32. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -1.853909 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Starting MCMC s.e. computation. > test-miss.CD.R: Iteration 36 of at most 60: > test-miss.R: The log-likelihood improved by 0.0589. > test-miss.R: Distance from origin on tolerance region scale: 1.17581 (previously 10.81058). > test-miss.R: Test statistic: T^2 = 11.54078, with 1 free parameter(s) and 179.1884 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0008. Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.CD.R: Convergence test P-value:1.3e-192 > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.CD.R: 1 2 > test-miss.R: Fitting the dyad-independent submodel... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 37 of at most 60: > test-miss.CD.R: Convergence test P-value:5.1e-199 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Dyad-independent submodel MLE has likelihood -120.6883 at: > test-miss.R: [1] -2.118156 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: > test-miss.R: Running theta=[-2.133081, 0.000000]. > test-miss.R: Running theta=[-2.132118, 0.000000]. > test-miss.R: Running theta=[-2.131155, 0.000000]. > test-miss.R: Running theta=[-2.130192, 0.000000]. > test-miss.R: Running theta=[-2.129229, 0.000000]. > test-miss.R: Running theta=[-2.128267, 0.000000]. > test-miss.R: Running theta=[-2.127304, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 38 of at most 60: > test-miss.R: Running theta=[-2.126341, 0.000000]. > test-miss.R: Running theta=[-2.125378, 0.000000]. > test-miss.R: Running theta=[-2.124415, 0.000000]. > test-miss.R: Running theta=[-2.123452, 0.000000]. > test-miss.R: Running theta=[-2.122489, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.7e-208 > test-miss.CD.R: 1 > test-miss.R: Running theta=[-2.121526, 0.000000]. > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.120563, 0.000000]. > test-miss.R: Running theta=[-2.1196, 0.0000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 39 of at most 60: > test-miss.R: Running theta=[-2.118637, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.009575496) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.119005, 0.000000]. > test-miss.R: Running theta=[-2.119968, 0.000000]. > test-miss.R: Running theta=[-2.120931, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-197 > test-miss.R: Running theta=[-2.121894, 0.000000]. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.122857, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 40 of at most 60: > test-miss.R: Running theta=[-2.12382, 0.00000]. > test-miss.R: Running theta=[-2.124783, 0.000000]. > test-miss.R: Running theta=[-2.125746, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.1e-205 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.126709, 0.000000]. > test-miss.R: Running theta=[-2.127671, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 41 of at most 60: > test-miss.R: Running theta=[-2.128634, 0.000000]. > test-miss.R: Running theta=[-2.129597, 0.000000]. > test-miss.R: Running theta=[-2.13056, 0.00000]. > test-miss.R: Running theta=[-2.131523, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.2e-204 > test-miss.R: Running theta=[-2.132486, 0.000000]. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Running theta=[-2.133449, 0.000000]. > test-miss.CD.R: Iteration 42 of at most 60: > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.007542247) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132854, 0.000000]. > test-miss.R: Running theta=[-2.131891, 0.000000]. > test-miss.R: Running theta=[-2.130928, 0.000000]. > test-miss.CD.R: Convergence test P-value:8.4e-196 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.129965, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 43 of at most 60: > test-miss.R: Running theta=[-2.129002, 0.000000]. > test-miss.R: Running theta=[-2.128039, 0.000000]. > test-miss.CD.R: Convergence test P-value:7.5e-206 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.127076, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 44 of at most 60: > test-miss.R: Running theta=[-2.126113, 0.000000]. > test-miss.R: Running theta=[-2.125151, 0.000000]. > test-miss.CD.R: Convergence test P-value:1.9e-197 > test-miss.R: Running theta=[-2.124188, 0.000000]. > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.123225, 0.000000]. > test-miss.R: Running theta=[-2.122262, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 45 of at most 60: > test-miss.R: Running theta=[-2.121299, 0.000000]. > test-miss.R: Running theta=[-2.120336, 0.000000]. > test-miss.R: Running theta=[-2.119373, 0.000000]. > test-miss.R: Running theta=[-2.11841, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.006188692) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.118778, 0.000000]. > test-miss.R: Running theta=[-2.119741, 0.000000]. > test-miss.CD.R: Convergence test P-value:2.8e-211 > test-miss.CD.R: 1 2 > test-miss.R: Running theta=[-2.120704, 0.000000]. > test-miss.R: Running theta=[-2.121667, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 46 of at most 60: > test-miss.R: Running theta=[-2.12263, 0.00000]. > test-miss.R: Running theta=[-2.123593, 0.000000]. > test-miss.R: Running theta=[-2.124555, 0.000000]. > test-miss.R: Running theta=[-2.125518, 0.000000]. > test-miss.R: Running theta=[-2.126481, 0.000000]. > test-miss.CD.R: Convergence test P-value:6.5e-203 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.127444, 0.000000]. > test-miss.R: Running theta=[-2.128407, 0.000000]. > test-miss.R: Running theta=[-2.12937, 0.00000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Running theta=[-2.130333, 0.000000]. > test-miss.CD.R: Iteration 47 of at most 60: > test-miss.R: Running theta=[-2.131296, 0.000000]. > test-miss.R: Running theta=[-2.132259, 0.000000]. > test-miss.R: Running theta=[-2.133222, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005396227) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-2.132626, 0.000000]. > test-miss.R: Running theta=[-2.131664, 0.000000]. > test-miss.R: Running theta=[-2.130701, 0.000000]. > test-miss.R: Running theta=[-2.129738, 0.000000]. > test-miss.R: Running theta=[-2.128775, 0.000000]. > test-miss.R: Running theta=[-2.127812, 0.000000]. > test-miss.CD.R: Convergence test P-value:4.7e-204 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Running theta=[-2.126849, 0.000000]. > test-miss.R: Running theta=[-2.125886, 0.000000]. > test-miss.R: Running theta=[-2.124923, 0.000000]. > test-miss.R: Running theta=[-2.12396, 0.00000]. > test-miss.R: Running theta=[-2.122997, 0.000000]. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 48 of at most 60: > test-miss.R: Running theta=[-2.122035, 0.000000]. > test-miss.R: Running theta=[-2.121072, 0.000000]. > test-miss.R: Running theta=[-2.120109, 0.000000]. > test-miss.R: Running theta=[-2.119146, 0.000000]. > test-miss.R: Running theta=[-2.118183, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.CD.R: Convergence test P-value:5.7e-209 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 49 of at most 60: > test-miss.CD.R: Convergence test P-value:4e-201 > test-miss.CD.R: 1 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 50 of at most 60: > test-miss.CD.R: Convergence test P-value:9.5e-218 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Sample statistics summary: > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: > test-miss.R: Iterations = 1728:32768 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 486 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 1.8539 5.6566 0.2566 0.4463 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -8.881 -1.881 2.119 5.119 14.119 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.CD.R: Iteration 51 of at most 60: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -2.129e-17 1.663e+00 1.067e-01 1.067e-01 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.8807 -1.3807 0.1193 1.1193 4.0693 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: > test-miss.R: edges (Omni) > test-miss.R: diff. 1.853909e+00 NA > test-miss.R: test stat. 4.040502e+00 1.632566e+01 > test-miss.R: P-val. 5.333689e-05 7.904382e-05 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 0.50229634 > test-miss.R: Lag 128 0.27968825 > test-miss.R: Lag 192 0.14989734 > test-miss.R: Lag 256 0.08553620 > test-miss.R: Lag 320 0.01488518 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.04999730 > test-miss.R: Lag 128 0.05488745 > test-miss.R: Lag 192 -0.03080175 > test-miss.R: Lag 256 0.03734623 > test-miss.R: Lag 320 0.01289319 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.4658741 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.6413056 > test-miss.R: Joint P-value (lower = worse): 0.5503774 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.2553269 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.7984706 > test-miss.R: Joint P-value (lower = worse): 0.5503774 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -2.133563 with log-likelihood -120.7039 OK. > test-miss.CD.R: Convergence test P-value:5.7e-193 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Correct estimate = > test-miss.R: -1.663142 with log-likelihood -79.82064 . > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 52 of at most 60: > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.CD.R: Convergence test P-value:2.5e-206 > test-miss.R: Finished MPLE. > test-miss.CD.R: 1 2 > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: MPLE estimate = -1.663142 with log-likelihood -79.82064 OK. > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 53 of at most 60: > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_SPDyad'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.CD.R: Convergence test P-value:6e-198 > test-miss.R: Model reinitialized. > test-miss.CD.R: 1 > test-miss.R: Using initial method 'MPLE'. > test-miss.CD.R: 2 > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 8 dyads is required. > test-miss.R: Imputing 1 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 30 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -0.6631421 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 54 of at most 60: > test-miss.CD.R: Convergence test P-value:1.5e-204 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 55 of at most 60: > test-miss.CD.R: Convergence test P-value:2.9e-195 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 56 of at most 60: > test-miss.CD.R: Convergence test P-value:6.8e-200 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -33.15638 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 2 > test-miss.R: 3 4 5 > test-miss.R: 6 7 > test-miss.R: 8 > test-miss.R: Optimizing with step length 0.5368. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 4.3000. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.146333 > test-miss.R: Starting unconstrained MCMC... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 57 of at most 60: > test-miss.CD.R: Convergence test P-value:8e-207 > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 58 of at most 60: > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -14.85185 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 3.2552. > test-miss.R: Distance from origin on tolerance region scale: 64.83604 (previously 323.1391). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.584689 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:3.6e-215 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.600823 > test-miss.R: Starting MCMLE Optimization... > test-miss.CD.R: Iteration 59 of at most 60: > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1297. > test-miss.R: Distance from origin on tolerance region scale: 2.582218 (previously 84.20395). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 4 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -1.684393 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.CD.R: Convergence test P-value:1.6e-199 > test-miss.R: Back from constrained MCMC. > test-miss.CD.R: 1 > test-miss.R: New interval = 64. > test-miss.R: New constrained interval = 32. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.2386831 > test-miss.R: Starting MCMLE Optimization... > test-miss.CD.R: 2 > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0011. > test-miss.R: Distance from origin on tolerance region scale: 0.02175454 (previously 2.583022). > test-miss.R: Test statistic: T^2 = 16.95471, with 1 free parameter(s) and 192.1073 degrees of freedom. > test-miss.R: Convergence test p-value: 0.0001. > test-miss.R: Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Iteration 60 of at most 60: > test-miss.CD.R: Convergence test P-value:6.1e-198 > test-miss.CD.R: 1 > test-miss.CD.R: 2 > test-miss.CD.R: The log-likelihood improved by < 0.0001. > test-miss.CD.R: Finished CD. > test-miss.CD.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.CD.R: for degeneracy, use the mcmc.diagnostics() function. Saving _problems/test-miss.CD-76.R > test-miss.R: Dyad-independent submodel MLE has likelihood -79.82064 at: > test-miss.R: [1] -1.663142 0.000000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-1.674863, 0.000000]. > test-miss.R: Running theta=[-1.674107, 0.000000]. > test-miss.R: Running theta=[-1.673351, 0.000000]. > test-miss.R: Running theta=[-1.672594, 0.000000]. > test-miss.R: Running theta=[-1.671838, 0.000000]. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: Running theta=[-1.671082, 0.000000]. > test-miss.R: Running theta=[-1.670326, 0.000000]. > test-miss.R: Running theta=[-1.66957, 0.00000]. > test-miss.R: Running theta=[-1.668813, 0.000000]. > test-miss.R: Running theta=[-1.668057, 0.000000]. > test-miss.R: Running theta=[-1.667301, 0.000000]. > test-miss.R: Running theta=[-1.666545, 0.000000]. > test-miss.R: Running theta=[-1.665789, 0.000000]. > test-miss.R: Running theta=[-1.665033, 0.000000]. > test-miss.R: Running theta=[-1.664276, 0.000000]. > test-miss.R: Running theta=[-1.66352, 0.00000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Estimated standard error (0.005483681) above target (0.005). Drawing additional samples. > test-miss.R: Running theta=[-1.663809, 0.000000]. > test-miss.R: Running theta=[-1.664565, 0.000000]. > test-miss.R: Running theta=[-1.665321, 0.000000]. > test-miss.R: Running theta=[-1.666078, 0.000000]. > test-miss.R: Running theta=[-1.666834, 0.000000]. > test-miss.R: Running theta=[-1.66759, 0.00000]. > test-miss.R: Running theta=[-1.668346, 0.000000]. > test-miss.R: Running theta=[-1.669102, 0.000000]. > test-miss.R: Running theta=[-1.669858, 0.000000]. > test-miss.R: Running theta=[-1.670615, 0.000000]. > test-miss.R: Running theta=[-1.671371, 0.000000]. > test-miss.R: Running theta=[-1.672127, 0.000000]. > test-miss.R: Running theta=[-1.672883, 0.000000]. > test-miss.R: Running theta=[-1.673639, 0.000000]. > test-miss.R: Running theta=[-1.674396, 0.000000]. > test-miss.R: Running theta=[-1.675152, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.2387 5.2156 0.3346 0.3867 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -9.2346 -4.2346 -0.2346 2.7654 11.7154 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 896:16384 > test-miss.R: Thinning interval = 64 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 4.040e-17 1.007e+00 6.463e-02 6.463e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -1.2346 -0.7346 -0.2346 0.7654 2.7154 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.2386831 NA > test-miss.R: test stat. -0.6087923 0.3706280 > test-miss.R: P-val. 0.5426621 0.5433813 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.000000000 > test-miss.R: Lag 128 0.141730657 > test-miss.R: Lag 256 -0.008044799 > test-miss.R: Lag 384 0.039503814 > test-miss.R: Lag 512 0.016265240 > test-miss.R: Lag 640 0.025525909 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 64 -0.03837238 > test-miss.R: Lag 128 0.06102163 > test-miss.R: Lag 192 0.01817600 > test-miss.R: Lag 256 -0.07663989 > test-miss.R: Lag 320 -0.02107378 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -1.387683 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.1652336 > test-miss.R: Joint P-value (lower = worse): 0.2706448 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: -0.5702328 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.5685198 > test-miss.R: Joint P-value (lower = worse): 0.2706448 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -1.675241 with log-likelihood -79.81794 OK. > test-miss.R: Correct estimate = > test-miss.R: -3.157 with log-likelihood -8.355963 . > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: > test-miss.R: MPLE estimate = -3.157 with log-likelihood -8.355963 OK. > test-miss.R: Evaluating network in model. > test-miss.R: Initializing unconstrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing constrained Metropolis-Hastings proposal: > test-miss.R: 'ergm:MH_TNT'. > test-miss.R: Initializing model... > test-miss.R: Model initialized. > test-miss.R: Constrained proposal requires different auxiliaries: reinitializing model... > test-miss.R: Model reinitialized. > test-miss.R: Using initial method 'MPLE'. > test-miss.R: Initial parameters provided by caller: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: number of free parameters: 1 > test-miss.R: number of fixed parameters: 0 > test-miss.R: Fitting initial model. > test-miss.R: Imputing 2 dyads is required. > test-miss.R: Imputing 0 edges at random. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Density guard set to 10000 from an initial count of 2 edges. > test-miss.R: > test-miss.R: Iteration 1 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.157 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 512. > test-miss.R: New constrained interval = 256. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -2.942387 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.8416. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 2 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -2.729057 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 256. > test-miss.R: New constrained interval = 128. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: -0.9012346 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: The log-likelihood improved by 0.1847. > test-miss.R: Distance from origin on tolerance region scale: 3.678483 (previously 39.20962). > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: > test-miss.R: Iteration 3 of at most 60 with free parameter vector: > test-miss.R: edges > test-miss.R: -3.138904 > test-miss.R: Starting unconstrained MCMC... > test-miss.R: Back from unconstrained MCMC. > test-miss.R: Starting constrained MCMC... > test-miss.R: Back from constrained MCMC. > test-miss.R: New interval = 128. > test-miss.R: New constrained interval = 64. > test-miss.R: Estimated gradient of the log-likelihood: > test-miss.R: edges > test-miss.R: 0.05349794 > test-miss.R: Starting MCMLE Optimization... > test-miss.R: 1 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: Using lognormal metric (see control.ergm function). > test-miss.R: Using log-normal approx with missing (no optim) > test-miss.R: Starting MCMC s.e. computation. > test-miss.R: The log-likelihood improved by 0.0008. > test-miss.R: Distance from origin on tolerance region scale: 0.01512904 (previously 4.293514). > test-miss.R: Test statistic: T^2 = 22.84874, with 1 free parameter(s) and 256.603 degrees of freedom. > test-miss.R: Convergence test p-value: < 0.0001. > test-miss.R: Converged with 99% confidence. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Initializing model to obtain the list of dyad-independent terms... > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Dyad-independent submodel MLE has likelihood -8.355963 at: > test-miss.R: [1] -3.157 0.000 > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Initializing model and proposals... > test-miss.R: Model and proposals initialized. > test-miss.R: Initializing constrained model and proposals... > test-miss.R: Constrained model and proposals initialized. > test-miss.R: Using 16 bridges: Running theta=[-3.11196, 0.00000]. > test-miss.R: Running theta=[-3.114866, 0.000000]. > test-miss.R: Running theta=[-3.117772, 0.000000]. > test-miss.R: Running theta=[-3.120678, 0.000000]. > test-miss.R: Running theta=[-3.123584, 0.000000]. > test-miss.R: Running theta=[-3.126489, 0.000000]. > test-miss.R: Running theta=[-3.129395, 0.000000]. > test-miss.R: Running theta=[-3.132301, 0.000000]. > test-miss.R: Running theta=[-3.135207, 0.000000]. > test-miss.R: Running theta=[-3.138113, 0.000000]. > test-miss.R: Running theta=[-3.141018, 0.000000]. > test-miss.R: Running theta=[-3.143924, 0.000000]. > test-miss.R: Running theta=[-3.14683, 0.00000]. > test-miss.R: Running theta=[-3.149736, 0.000000]. > test-miss.R: Running theta=[-3.152642, 0.000000]. > test-miss.R: Running theta=[-3.155548, 0.000000]. > test-miss.R: . > test-miss.R: Bridge sampling finished. Collating... > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-miss.R: Sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 3584:65536 > test-miss.R: Thinning interval = 256 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: -0.05350 1.39509 0.08949 0.08949 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -2.05761 -1.05761 -0.05761 0.94239 2.94239 > test-miss.R: > test-miss.R: Constrained sample statistics summary: > test-miss.R: > test-miss.R: Iterations = 1792:32768 > test-miss.R: Thinning interval = 128 > test-miss.R: Number of chains = 1 > test-miss.R: Sample size per chain = 243 > test-miss.R: > test-miss.R: 1. Empirical mean and standard deviation for each variable, > test-miss.R: plus standard error of the mean: > test-miss.R: > test-miss.R: Mean SD Naive SE Time-series SE > test-miss.R: 9.838e-19 2.335e-01 1.498e-02 1.763e-02 > test-miss.R: > test-miss.R: 2. Quantiles for each variable: > test-miss.R: > test-miss.R: 2.5% 25% 50% 75% 97.5% > test-miss.R: -0.05761 -0.05761 -0.05761 -0.05761 0.94239 > test-miss.R: > test-miss.R: > test-miss.R: Are unconstrained sample statistics significantly different from constrained? > test-miss.R: edges (Omni) > test-miss.R: diff. -0.05349794 NA > test-miss.R: test stat. -0.58650248 0.3476007 > test-miss.R: P-val. 0.55753790 0.5559932 > test-miss.R: > test-miss.R: Sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: Constrained sample statistics cross-correlations: > test-miss.R: edges > test-miss.R: edges 1 > test-miss.R: > test-miss.R: Sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 256 -0.07640761 > test-miss.R: Lag 512 0.04674441 > test-miss.R: Lag 768 -0.08703223 > test-miss.R: Lag 1024 -0.01273911 > test-miss.R: Lag 1280 0.08918131 > test-miss.R: Constrained sample statistics auto-correlation: > test-miss.R: Chain 1 > test-miss.R: edges > test-miss.R: Lag 0 1.00000000 > test-miss.R: Lag 128 0.01440843 > test-miss.R: Lag 256 -0.06163854 > test-miss.R: Lag 384 -0.05752332 > test-miss.R: Lag 512 0.09381586 > test-miss.R: Lag 640 0.16935966 > test-miss.R: > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 1.222791 > test-miss.R: > test-miss.R: Individual P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.2214088 > test-miss.R: Joint P-value (lower = worse): 0.530107 > test-miss.R: Sample statistics burn-in diagnostic (Geweke): > test-miss.R: Chain > test-miss.R: > test-miss.R: 1 > test-miss.R: > test-miss.R: Fraction in 1st window = 0.1 > test-miss.R: Fraction in 2nd window = 0.5 > test-miss.R: > test-miss.R: edges > test-miss.R: 0.899493 > test-miss.R: > test-miss.R: P-values (lower = worse): > test-miss.R: edges > test-miss.R: 0.3683901 > test-miss.R: Joint P-value (lower = worse): 0.530107 . > test-miss.R: > test-miss.R: Note: MCMC diagnostics shown here are from the last round of > test-miss.R: simulation, prior to computation of final parameter estimates. > test-miss.R: Because the final estimates are refinements of those used for this > test-miss.R: simulation run, these diagnostics may understate model performance. > test-miss.R: To directly assess the performance of the final model on in-model > test-miss.R: statistics, please use the GOF command: gof(ergmFitObject, > test-miss.R: GOF=~model). > test-miss.R: > test-miss.R: MCMCMLE estimate = -3.110507 with log-likelihood -8.357166 OK. > test-miss.R: Network statistics: > test-miss.R: edges esp#1 esp#2 esp#3 esp#4 esp#5 esp#6 esp#7 esp#8 esp#9 esp#10 > test-miss.R: 50 24 3 0 0 0 0 0 0 0 0 > test-miss.R: esp#11 esp#12 esp#13 esp#14 esp#15 esp#16 esp#17 esp#18 esp#19 esp#20 esp#21 > test-miss.R: 0 0 0 0 0 0 0 0 0 0 0 > test-miss.R: esp#22 esp#23 esp#24 esp#25 esp#26 esp#27 esp#28 > test-miss.R: 0 0 0 0 0 0 0 > test-miss.R: Correct estimate = -2.028148 > test-miss.R: Starting maximum pseudolikelihood estimation (MPLE): > test-miss.R: Obtaining the responsible dyads. > test-miss.R: Evaluating the predictor and response matrix. > test-miss.R: Maximizing the pseudolikelihood. > test-miss.R: Finished MPLE. > test-miss.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-miss.R: Iteration 1 of at most 5: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 5 > test-miss.R: 6 7 > test-miss.R: 8 > test-miss.R: 9 > test-miss.R: 10 11 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 2 of at most 5: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 7 8 > test-miss.R: 9 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 3 of at most 5: > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-miss.R: 1 > test-miss.R: 2 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 9 > test-miss.R: 10 > test-miss.R: 11 Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 4 of at most 5: > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Iteration 5 of at most 5: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 9 > test-miss.R: Optimizing with step length 1.0000. > test-miss.R: The log-likelihood improved by < 0.0001. > test-miss.R: Estimating equations are not within tolerance region. > test-miss.R: Estimating equations did not move closer to tolerance region more than 1 time(s) in 4 steps; increasing sample size. > test-miss.R: MCMLE estimation did not converge after 5 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-miss.R: Finished MCMLE. > test-miss.R: Evaluating log-likelihood at the estimate. > test-miss.R: Fitting the dyad-independent submodel... > test-miss.R: Bridging between the dyad-independent submodel and the full model... > test-miss.R: Setting up bridge sampling... > test-miss.R: Using 16 bridges: > test-miss.R: 1 > test-miss.R: 2 > test-miss.R: 3 > test-miss.R: 4 > test-miss.R: 5 > test-miss.R: 6 > test-miss.R: 7 > test-miss.R: 8 > test-miss.R: 9 > test-mple-cov.R: Estimating Godambe Matrix using 500 simulated networks. > test-miss.R: 10 > test-miss.R: 11 > test-miss.R: 12 > test-miss.R: 13 > test-miss.R: 14 > test-miss.R: 15 > test-miss.R: 16 > test-miss.R: . > test-miss.R: Bridging finished. > test-miss.R: > test-miss.R: This model was fit using MCMC. To examine model diagnostics and check > test-miss.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-largenetwork.R: > test-mple-largenetwork.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-largenetwork.R: Obtaining the responsible dyads. > test-mple-largenetwork.R: Evaluating the predictor and response matrix. > test-mple-largenetwork.R: Maximizing the pseudolikelihood. > test-mple-largenetwork.R: Finished MPLE. > test-mple-largenetwork.R: Evaluating log-likelihood at the estimate. > test-mple-largenetwork.R: > test-mple-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-offset.R: Obtaining the responsible dyads. > test-mple-offset.R: Evaluating the predictor and response matrix. > test-mple-offset.R: Maximizing the pseudolikelihood. > test-mple-offset.R: Finished MPLE. > test-mple-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-offset.R: Iteration 1 of at most 60: > test-mple-offset.R: 1 > test-mple-offset.R: Optimizing with step length 1.0000. > test-mple-offset.R: The log-likelihood improved by 0.0040. > test-mple-offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-mple-offset.R: Finished MCMLE. > test-mple-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-mple-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-mple-target.R: [1] 350 50 250 > test-mple-target.R: Structural check: > test-mple-target.R: Mean degree: 1.4 . > test-mple-target.R: Average degree among nodes with degree 2 or higher: 2.25 . > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-target.R: Obtaining the responsible dyads. > test-mple-target.R: Evaluating the predictor and response matrix. > test-mple-target.R: Maximizing the pseudolikelihood. > test-mple-target.R: Finished MPLE. > test-mple-target.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-mple-target.R: Iteration 1 of at most 60: > test-networkLite.R: Loading required package: networkLite > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Estimating Bootstrap Standard Errors using 500 simulated networks. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-mple-cov.R: Starting maximum pseudolikelihood estimation (MPLE): > test-mple-cov.R: Obtaining the responsible dyads. > test-mple-cov.R: Evaluating the predictor and response matrix. > test-mple-cov.R: Maximizing the pseudolikelihood. > test-mple-cov.R: Finished MPLE. > test-mple-cov.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: 12 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: 12 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0297. > test-networkLite.R: Convergence test p-value: 0.0001. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 9 > test-networkLite.R: 10 11 > test-networkLite.R: 12 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1793. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: 12 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0302. > test-networkLite.R: Convergence test p-value: 0.0036. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 4 > test-networkLite.R: 5 > test-networkLite.R: 6 7 > test-networkLite.R: 8 > test-networkLite.R: 9 10 > test-networkLite.R: 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-networkLite.R: Convergence test p-value: 0.0019. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1592. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0101. > test-networkLite.R: Convergence test p-value: < 0.0001. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 7 > test-networkLite.R: 8 9 > test-networkLite.R: 10 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0392. > test-networkLite.R: Convergence test p-value: 0.0019. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-networkLite.R: 1 Optimizing with step length 1.0000. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-networkLite.R: Convergence test p-value: 0.0247. > test-networkLite.R: Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 1.0000. > test-nodrop.R: The log-likelihood improved by 0.0005. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nodrop.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-nodrop.R: Finished MCMLE. > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.2247. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: The log-likelihood improved by 2.2822. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 2 > test-networkLite.R: 3 4 > test-networkLite.R: 5 > test-networkLite.R: 6 7 > test-networkLite.R: 8 > test-networkLite.R: 9 10 > test-networkLite.R: 11 12 > test-networkLite.R: 13 > test-networkLite.R: 14 > test-networkLite.R: 15 16 > test-networkLite.R: 17 18 > test-networkLite.R: 19 > test-networkLite.R: 20 > test-nodrop.R: 1 > test-networkLite.R: 21 22 > test-nodrop.R: Optimizing with step length 0.2817. > test-networkLite.R: 23 > test-networkLite.R: Optimizing with step length 1.0000. > test-nodrop.R: The log-likelihood improved by 2.4734. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nodrop.R: Obtaining the responsible dyads. > test-nodrop.R: Evaluating the predictor and response matrix. > test-nodrop.R: Maximizing the pseudolikelihood. > test-nodrop.R: Finished MPLE. > test-nodrop.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Iteration 1 of at most 2: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 10 > test-networkLite.R: 11 Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.2675. > test-nodrop.R: The log-likelihood improved by 3.3752. > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: Iteration 2 of at most 2: > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-nodrop.R: 1 > test-nodrop.R: Optimizing with step length 0.3098. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-nodrop.R: The log-likelihood improved by 2.4783. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nodrop.R: Estimating equations are not within tolerance region. > test-nodrop.R: MCMLE estimation did not converge after 2 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nodrop.R: Finished MCMLE. > test-networkLite.R: Iteration 1 of at most 60: > test-nodrop.R: This model was fit using MCMC. To examine model diagnostics and check > test-nodrop.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-networkLite.R: 1 Optimizing with step length 0.9410. > test-networkLite.R: The log-likelihood improved by 5.9387. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.8905. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1368. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 4 of at most 60: > test-nonident-test.R: 1 > test-nonident-test.R: Optimizing with step length 1.0000. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: The log-likelihood improved by 0.0176. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-networkLite.R: Convergence test p-value: 0.0247. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 5 of at most 60: > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonident-test.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonident-test.R: Iteration 1 of at most 1: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0103. > test-networkLite.R: Convergence test p-value: 0.0227. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 6 of at most 60: > test-nonident-test.R: 1 > test-nonident-test.R: Optimizing with step length 0.8147. > test-nonident-test.R: The log-likelihood improved by < 0.0001. > test-nonident-test.R: Estimating equations are not within tolerance region. > test-nonident-test.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonident-test.R: Finished MCMLE. > test-nonident-test.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonident-test.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0419. > test-networkLite.R: Convergence test p-value: 0.0085. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-networkLite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-networkLite.R: Obtaining the responsible dyads. > test-networkLite.R: Evaluating the predictor and response matrix. > test-networkLite.R: Maximizing the pseudolikelihood. > test-networkLite.R: Finished MPLE. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-nonident-test.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonident-test.R: Obtaining the responsible dyads. > test-nonident-test.R: Evaluating the predictor and response matrix. > test-nonident-test.R: Maximizing the pseudolikelihood. > test-nonident-test.R: Finished MPLE. > test-nonunique-names.R: Starting maximum pseudolikelihood estimation (MPLE): > test-nonunique-names.R: Obtaining the responsible dyads. > test-nonunique-names.R: Evaluating the predictor and response matrix. > test-nonunique-names.R: Maximizing the pseudolikelihood. > test-nonunique-names.R: Finished MPLE. > test-nonunique-names.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-nonunique-names.R: Iteration 1 of at most 1: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 5 > test-networkLite.R: 6 > test-networkLite.R: 7 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 12 > test-networkLite.R: 13 > test-networkLite.R: 14 > test-networkLite.R: 15 > test-networkLite.R: 16 > test-networkLite.R: 17 18 > test-networkLite.R: 19 > test-networkLite.R: 20 21 > test-networkLite.R: 22 23 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1680. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: 2 > test-networkLite.R: 3 > test-networkLite.R: 4 > test-networkLite.R: 5 > test-networkLite.R: 6 > test-networkLite.R: 7 > test-networkLite.R: 8 > test-networkLite.R: 9 > test-networkLite.R: 10 > test-networkLite.R: 11 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0094. > test-networkLite.R: Convergence test p-value: 0.0010. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:1e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.01081. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:8.1e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.000224. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 1.0636. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0078. > test-networkLite.R: Convergence test p-value: 0.0012. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonunique-names.R: 1 > test-nonunique-names.R: Optimizing with step length 1.0000. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-nonunique-names.R: The log-likelihood improved by 0.0084. > test-nonunique-names.R: Convergence test p-value: 0.0480. Not converged with 99% confidence; increasing sample size. > test-nonunique-names.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-nonunique-names.R: Finished MCMLE. > test-nonunique-names.R: This model was fit using MCMC. To examine model diagnostics and check > test-nonunique-names.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-networkLite.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-nonunique-names.R: Sample statistics summary: > test-nonunique-names.R: > test-nonunique-names.R: Iterations = 2304:44032 > test-nonunique-names.R: Thinning interval = 128 > test-nonunique-names.R: Number of chains = 1 > test-nonunique-names.R: Sample size per chain = 327 > test-nonunique-names.R: > test-nonunique-names.R: 1. Empirical mean and standard deviation for each variable, > test-nonunique-names.R: plus standard error of the mean: > test-nonunique-names.R: > test-nonunique-names.R: Mean SD Naive SE Time-series SE > test-nonunique-names.R: edgecov.a -0.2171 3.380 0.1869 0.3114 > test-nonunique-names.R: edgecov.a 0.1346 3.565 0.1971 0.4311 > test-nonunique-names.R: > test-nonunique-names.R: 2. Quantiles for each variable: > test-nonunique-names.R: > test-nonunique-names.R: 2.5% 25% 50% 75% 97.5% > test-nonunique-names.R: edgecov.a -7 -2 0 2 6.85 > test-nonunique-names.R: edgecov.a -7 -2 0 3 7.00 > test-nonunique-names.R: > test-nonunique-names.R: > test-nonunique-names.R: Are sample statistics significantly different from observed? > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-nonunique-names.R: edgecov.a edgecov.a (Omni) > test-nonunique-names.R: diff. -0.2171254 0.1345566 NA > test-nonunique-names.R: test stat. -0.6971750 0.3120903 1.2954084 > test-nonunique-names.R: P-val. 0.4856933 0.7549719 0.5307488 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics cross-correlations: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: edgecov.a 1.0000000 0.6853513 > test-nonunique-names.R: edgecov.a 0.6853513 1.0000000 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics auto-correlation: > test-nonunique-names.R: Chain 1 > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: Lag 0 1.000000000 1.00000000 > test-nonunique-names.R: Lag 128 0.592467538 0.65334235 > test-nonunique-names.R: Lag 256 0.298337375 0.41906307 > test-nonunique-names.R: Lag 384 0.082532656 0.22830518 > test-nonunique-names.R: Lag 512 -0.003477022 0.08811653 > test-nonunique-names.R: Lag 640 -0.090771181 0.03701357 > test-nonunique-names.R: > test-nonunique-names.R: Sample statistics burn-in diagnostic (Geweke): > test-nonunique-names.R: Chain > test-nonunique-names.R: 1 > test-nonunique-names.R: > test-nonunique-names.R: Fraction in 1st window = 0.1 > test-nonunique-names.R: Fraction in 2nd window = 0.5 > test-nonunique-names.R: > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: -0.41748721 0.04619135 > test-nonunique-names.R: > test-nonunique-names.R: Individual P-values (lower = worse): > test-nonunique-names.R: edgecov.a edgecov.a > test-nonunique-names.R: 0.6763221 0.9631577 > test-nonunique-names.R: Joint P-value (lower = worse): 0.8447246 > test-nonunique-names.R: > test-nonunique-names.R: Note: MCMC diagnostics shown here are from the last round of > test-nonunique-names.R: simulation, prior to computation of final parameter estimates. > test-nonunique-names.R: Because the final estimates are refinements of those used for this > test-nonunique-names.R: simulation run, these diagnostics may understate model performance. > test-nonunique-names.R: To directly assess the performance of the final model on in-model > test-nonunique-names.R: statistics, please use the GOF command: gof(ergmFitObject, > test-nonunique-names.R: GOF=~model). > test-nonunique-names.R: > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:9.2e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by < 0.0001. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.1926. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-networkLite.R: The log-likelihood improved by 0.0160. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: Convergence test p-value: 0.0001. > test-networkLite.R: Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse'. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-networkLite.R: Convergence test p-value: 0.0458. Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.6004. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0061. > test-offsets.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-offsets.R: Fitting the dyad-independent submodel... > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-offsets.R: Using 16 bridges: > test-offsets.R: 1 > test-offsets.R: 2 > test-networkLite.R: Starting contrastive divergence estimation via CD-MCMLE: > test-networkLite.R: Iteration 1 of at most 60: > test-networkLite.R: Convergence test P-value:3e-01 > test-networkLite.R: 1 > test-offsets.R: 3 > test-networkLite.R: The log-likelihood improved by 0.004165. > test-networkLite.R: Iteration 2 of at most 60: > test-networkLite.R: Convergence test P-value:1.2e-01 > test-networkLite.R: 1 > test-offsets.R: 4 > test-networkLite.R: The log-likelihood improved by 0.009777. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: Convergence test P-value:6.5e-01 > test-networkLite.R: Convergence detected. Stopping. > test-offsets.R: 5 > test-networkLite.R: 1 > test-networkLite.R: The log-likelihood improved by 0.0008154. > test-networkLite.R: Finished CD. > test-networkLite.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-networkLite.R: Iteration 1 of at most 60: > test-offsets.R: 6 > test-offsets.R: 7 > test-offsets.R: 8 > test-offsets.R: 9 > test-offsets.R: 10 > test-offsets.R: 11 > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-offsets.R: 12 > test-networkLite.R: The log-likelihood improved by 0.7841. > test-networkLite.R: Estimating equations are not within tolerance region. > test-networkLite.R: Iteration 2 of at most 60: > test-offsets.R: 13 > test-offsets.R: 14 > test-offsets.R: 15 > test-offsets.R: 16 > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-offsets.R: Starting maximum pseudolikelihood estimation (MPLE): > test-offsets.R: Obtaining the responsible dyads. > test-offsets.R: Evaluating the predictor and response matrix. > test-networkLite.R: The log-likelihood improved by 0.0006. > test-offsets.R: Maximizing the pseudolikelihood. > test-offsets.R: Finished MPLE. > test-offsets.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-offsets.R: Iteration 1 of at most 2: > test-networkLite.R: Convergence test p-value: 0.0458. > test-networkLite.R: Not converged with 99% confidence; increasing sample size. > test-networkLite.R: Iteration 3 of at most 60: > test-networkLite.R: 1 > test-networkLite.R: Optimizing with step length 1.0000. > test-networkLite.R: The log-likelihood improved by 0.0803. > test-networkLite.R: Convergence test p-value: 0.0031. Converged with 99% confidence. > test-networkLite.R: Finished MCMLE. > test-networkLite.R: This model was fit using MCMC. To examine model diagnostics and check > test-networkLite.R: for degeneracy, use the mcmc.diagnostics() function. > test-networkLite.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-operators.R: Starting maximum pseudolikelihood estimation (MPLE): > test-operators.R: Obtaining the responsible dyads. > test-operators.R: Evaluating the predictor and response matrix. > test-operators.R: Maximizing the pseudolikelihood. > test-operators.R: Finished MPLE. > test-parallel.R: parallel test(s) skipped. Set ENABLE_statnet_TESTS environment variable to run. > test-parallel.R: Skipping OpenMP test. This package installation was built without OpenMP support. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-predict.ergm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-predict.ergm.R: Obtaining the responsible dyads. > test-predict.ergm.R: Evaluating the predictor and response matrix. > test-predict.ergm.R: Maximizing the pseudolikelihood. > test-predict.ergm.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.7959. > test-offsets.R: Estimating equations are not within tolerance region. > test-offsets.R: Iteration 2 of at most 2: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 1 > test-offsets.R: Optimizing with step length 1.0000. > test-offsets.R: The log-likelihood improved by 0.0207. > test-offsets.R: Convergence test p-value: 0.0005. Converged with 99% confidence. > test-offsets.R: Finished MCMLE. > test-offsets.R: Evaluating log-likelihood at the estimate. > test-offsets.R: Fitting the dyad-independent submodel... > test-offsets.R: Bridging between the dyad-independent submodel and the full model... > test-offsets.R: Setting up bridge sampling... > test-offsets.R: Using 16 bridges: > test-offsets.R: 1 > test-offsets.R: 2 > test-offsets.R: 3 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 4 > test-offsets.R: 5 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 6 > test-offsets.R: 7 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 8 > test-offsets.R: 9 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 10 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 11 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 12 > test-offsets.R: 13 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 14 > test-offsets.R: 15 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-offsets.R: 16 > test-offsets.R: . > test-offsets.R: Bridging finished. > test-offsets.R: > test-offsets.R: This model was fit using MCMC. To examine model diagnostics and check > test-offsets.R: for degeneracy, use the mcmc.diagnostics() function. > test-runtime-diags.R: Starting maximum pseudolikelihood estimation (MPLE): > test-runtime-diags.R: Obtaining the responsible dyads. > test-runtime-diags.R: Evaluating the predictor and response matrix. > test-runtime-diags.R: Maximizing the pseudolikelihood. > test-runtime-diags.R: Finished MPLE. > test-runtime-diags.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-runtime-diags.R: Iteration 1 of at most 60: > test-runtime-diags.R: 1 > test-runtime-diags.R: Optimizing with step length 1.0000. > test-runtime-diags.R: The log-likelihood improved by 0.0414. > test-runtime-diags.R: Convergence test p-value: 0.0016. Converged with 99% confidence. > test-runtime-diags.R: Finished MCMLE. > test-runtime-diags.R: This model was fit using MCMC. To examine model diagnostics and check > test-runtime-diags.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-scoping.R: 1 > test-scoping.R: Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: > test-scoping.R: 1 > test-scoping.R: 2 > test-scoping.R: 3 > test-scoping.R: 4 > test-scoping.R: 5 > test-scoping.R: 6 > test-scoping.R: 7 > test-scoping.R: 8 > test-scoping.R: 9 > test-scoping.R: 10 > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 > test-scoping.R: 15 > test-scoping.R: 16 > test-scoping.R: . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-scoping.R: Starting maximum pseudolikelihood estimation (MPLE): > test-scoping.R: Obtaining the responsible dyads. > test-scoping.R: Evaluating the predictor and response matrix. > test-scoping.R: Maximizing the pseudolikelihood. > test-scoping.R: Finished MPLE. > test-scoping.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-scoping.R: Iteration 1 of at most 1: > test-scoping.R: 1 > test-scoping.R: Optimizing with step length 1.0000. > test-scoping.R: The log-likelihood improved by 0.2011. > test-scoping.R: Estimating equations are not within tolerance region. > test-scoping.R: MCMLE estimation did not converge after 1 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-scoping.R: Finished MCMLE. > test-scoping.R: Evaluating log-likelihood at the estimate. > test-scoping.R: Fitting the dyad-independent submodel... > test-scoping.R: Bridging between the dyad-independent submodel and the full model... > test-scoping.R: Setting up bridge sampling... > test-scoping.R: Using 16 bridges: 1 > test-scoping.R: 2 > test-scoping.R: 3 > test-scoping.R: 4 > test-scoping.R: 5 > test-scoping.R: 6 > test-scoping.R: 7 > test-scoping.R: 8 > test-scoping.R: 9 > test-scoping.R: 10 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-scoping.R: 11 > test-scoping.R: 12 > test-scoping.R: 13 > test-scoping.R: 14 > test-scoping.R: 15 > test-scoping.R: 16 > test-scoping.R: . > test-scoping.R: Bridging finished. > test-scoping.R: > test-scoping.R: This model was fit using MCMC. To examine model diagnostics and check > test-scoping.R: for degeneracy, use the mcmc.diagnostics() function. > test-shrink-into-CH.R: 1 > test-shrink-into-CH.R: 2 > test-shrink-into-CH.R: 3 > test-shrink-into-CH.R: 4 5 > test-shrink-into-CH.R: 6 > test-shrink-into-CH.R: 7 > test-shrink-into-CH.R: 8 > test-shrink-into-CH.R: 9 > test-shrink-into-CH.R: 10 > test-shrink-into-CH.R: 11 > test-shrink-into-CH.R: 12 > test-shrink-into-CH.R: 13 14 > test-shrink-into-CH.R: 15 > test-shrink-into-CH.R: 16 > test-shrink-into-CH.R: 17 > test-shrink-into-CH.R: 18 19 > test-shrink-into-CH.R: 20 > test-shrink-into-CH.R: 1 > test-shrink-into-CH.R: 2 > test-shrink-into-CH.R: 3 > test-shrink-into-CH.R: 4 > test-shrink-into-CH.R: 5 > test-shrink-into-CH.R: 6 > test-shrink-into-CH.R: 7 > test-shrink-into-CH.R: 8 > test-shrink-into-CH.R: 9 > test-shrink-into-CH.R: 10 > test-shrink-into-CH.R: 11 > test-shrink-into-CH.R: 12 > test-shrink-into-CH.R: 13 > test-shrink-into-CH.R: 14 > test-shrink-into-CH.R: 15 > test-shrink-into-CH.R: 16 > test-shrink-into-CH.R: 17 > test-shrink-into-CH.R: 18 > test-shrink-into-CH.R: 19 > test-shrink-into-CH.R: 20 > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: > test-skip.R: Starting maximum pseudolikelihood estimation (MPLE): > test-skip.R: Obtaining the responsible dyads. > test-skip.R: Evaluating the predictor and response matrix. > test-skip.R: Maximizing the pseudolikelihood. > test-skip.R: Finished MPLE. > test-skip.R: Evaluating log-likelihood at the estimate. > test-skip.R: > test-skip.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-skip.R: Iteration 1 of at most 60: > test-skip.R: 1 > test-skip.R: Optimizing with step length 1.0000. > test-skip.R: The log-likelihood improved by 0.0360. > test-skip.R: Convergence test p-value: < 0.0001. > test-skip.R: Converged with 99% confidence. > test-skip.R: Finished MCMLE. > test-skip.R: This model was fit using MCMC. To examine model diagnostics and check > test-skip.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-snctrl.R: Starting maximum pseudolikelihood estimation (MPLE): > test-snctrl.R: Obtaining the responsible dyads. > test-snctrl.R: Evaluating the predictor and response matrix. > test-snctrl.R: Maximizing the pseudolikelihood. > test-snctrl.R: Finished MPLE. > test-snctrl.R: Evaluating log-likelihood at the estimate. > test-snctrl.R: > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.7009355 0.2208488 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges triangle > test-stocapprox.R: -1.6617183 0.1405334 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 > test-stocapprox.R: Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0034. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.5333754 -0.1317716 0.6729982 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: edges gwdegree gwdegree.decay > test-stocapprox.R: -1.57231795 -0.05712682 0.44962020 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Starting maximum pseudolikelihood estimation (MPLE): > test-stocapprox.R: Obtaining the responsible dyads. > test-stocapprox.R: Evaluating the predictor and response matrix. > test-stocapprox.R: Maximizing the pseudolikelihood. > test-stocapprox.R: Finished MPLE. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: 1 > test-stocapprox.R: Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0007. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Convergence test p-value: 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.1e-111 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.945. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-44 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.5962. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:4e-07 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.06364. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:5.6e-05 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.04097. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.3e-03 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.01842. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:5.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.743217 0.112619 > test-stocapprox.R: Starting burnin of 16384 steps > test-stocapprox.R: The log-likelihood improved by 0.002083. > test-stocapprox.R: Finished CD. > test-stocapprox.R: Stochastic approximation algorithm with theta_0 equal to: > test-stocapprox.R: Phase 1: 200 steps (interval = 1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Stochastic Approximation estimate: > test-stocapprox.R: nonzero transitiveweights.min.max.min > test-stocapprox.R: -1.7631980 0.1383531 > test-stocapprox.R: Phase 3: 1000 iterations (interval=1024) > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-stocapprox.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-stocapprox.R: Starting contrastive divergence estimation via CD-MCMLE: > test-stocapprox.R: Iteration 1 of at most 60: > test-stocapprox.R: Convergence test P-value:1.4e-98 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 1.862. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: Iteration 2 of at most 60: > test-stocapprox.R: Convergence test P-value:3.5e-30 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.3427. > test-stocapprox.R: Iteration 3 of at most 60: > test-stocapprox.R: Convergence test P-value:3e-09 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.08204. > test-stocapprox.R: Iteration 4 of at most 60: > test-stocapprox.R: Convergence test P-value:3.9e-02 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.01313. > test-stocapprox.R: Iteration 5 of at most 60: > test-stocapprox.R: Convergence test P-value:9.2e-02 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.009411. > test-stocapprox.R: Iteration 6 of at most 60: > test-stocapprox.R: Convergence test P-value:2.6e-01 > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.005336. > test-stocapprox.R: Iteration 7 of at most 60: > test-stocapprox.R: Convergence test P-value:7.9e-01 > test-stocapprox.R: Convergence detected. Stopping. > test-stocapprox.R: 1 > test-stocapprox.R: The log-likelihood improved by 0.0009177. > test-stocapprox.R: Finished CD. > test-stocapprox.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-stocapprox.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: 1 Optimizing with step length 1.0000. > test-stocapprox.R: The log-likelihood improved by 0.0022. > test-stocapprox.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-stocapprox.R: Finished MCMLE. > test-stocapprox.R: This model was fit using MCMC. To examine model diagnostics and check > test-stocapprox.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-stocapprox.R: > test-stocapprox.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-stocapprox.R: * 'news(package="ergm.count")' for changes since last version > test-stocapprox.R: * 'citation("ergm.count")' for citation information > test-stocapprox.R: * 'https://statnet.org' for help, support, and other information > test-stocapprox.R: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 1 Optimizing with step length 1.0000. > test-target-offset.R: The log-likelihood improved by 0.0210. > test-target-offset.R: Convergence test p-value: 0.0002. Converged with 99% confidence. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-target-offset.R: Fitting the dyad-independent submodel... > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: > test-target-offset.R: 1 > test-target-offset.R: 2 > test-target-offset.R: 3 > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 > test-target-offset.R: 10 > test-target-offset.R: 11 > test-target-offset.R: 12 > test-target-offset.R: 13 > test-target-offset.R: 14 > test-target-offset.R: 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 14336:262144 > test-target-offset.R: Thinning interval = 1024 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 0.55556 4.490 0.2880 0.2880 > test-target-offset.R: degree1 0.04527 2.005 0.1286 0.1286 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges -7 -2.5 0 3 9.00 > test-target-offset.R: degree1 -3 -1.0 0 1 4.95 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Are sample statistics significantly different from observed? > test-target-offset.R: > test-target-offset.R: edges degree1 (Omni) > test-target-offset.R: diff. 0.55555556 0.04526749 NA > test-target-offset.R: test stat. 1.92893422 0.35200754 9.455405747 > test-target-offset.R: P-val. 0.05373903 0.72483261 0.009922641 > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges degree1 > test-target-offset.R: edges 1.0000000 -0.7250142 > test-target-offset.R: degree1 -0.7250142 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges degree1 > test-target-offset.R: Lag 0 1.000000000 1.000000000 > test-target-offset.R: Lag 1024 -0.061427219 0.030194492 > test-target-offset.R: Lag 2048 0.007868535 0.092075103 > test-target-offset.R: Lag 3072 0.018624816 0.047810603 > test-target-offset.R: Lag 4096 -0.047471894 0.007659206 > test-target-offset.R: Lag 5120 -0.073593205 -0.009870131 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain > test-target-offset.R: > test-target-offset.R: 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges degree1 > test-target-offset.R: 0.4498910 -0.1601093 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges degree1 > test-target-offset.R: 0.652789 0.872795 > test-target-offset.R: Joint P-value (lower = worse): 0.8380775 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-target-offset.R: Unable to match target stats. Using MCMLE estimation. > test-target-offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-target-offset.R: Obtaining the responsible dyads. > test-target-offset.R: Evaluating the predictor and response matrix. > test-target-offset.R: Maximizing the pseudolikelihood. > test-target-offset.R: Finished MPLE. > test-target-offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-target-offset.R: Iteration 1 of at most 3: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.7240. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 2 of at most 3: > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.6386. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: Iteration 3 of at most 3: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: 1 > test-target-offset.R: Optimizing with step length 0.8376. > test-target-offset.R: The log-likelihood improved by < 0.0001. > test-target-offset.R: MCMLE estimation did not converge after 3 iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details. > test-target-offset.R: Finished MCMLE. > test-target-offset.R: Evaluating log-likelihood at the estimate. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-target-offset.R: Fitting the dyad-independent submodel... > test-target-offset.R: Bridging between the dyad-independent submodel and the full model... > test-target-offset.R: Setting up bridge sampling... > test-target-offset.R: Using 16 bridges: 1 > test-target-offset.R: 2 > test-target-offset.R: 3 > test-target-offset.R: 4 > test-target-offset.R: 5 > test-target-offset.R: 6 > test-target-offset.R: 7 > test-target-offset.R: 8 > test-target-offset.R: 9 > test-target-offset.R: 10 > test-target-offset.R: 11 > test-target-offset.R: 12 > test-target-offset.R: 13 > test-target-offset.R: 14 > test-target-offset.R: 15 > test-target-offset.R: 16 > test-target-offset.R: . > test-target-offset.R: Bridging finished. > test-target-offset.R: > test-target-offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-target-offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-target-offset.R: Sample statistics summary: > test-target-offset.R: > test-target-offset.R: Iterations = 3584:65536 > test-target-offset.R: Thinning interval = 256 > test-target-offset.R: Number of chains = 1 > test-target-offset.R: Sample size per chain = 243 > test-target-offset.R: > test-target-offset.R: 1. Empirical mean and standard deviation for each variable, > test-target-offset.R: plus standard error of the mean: > test-target-offset.R: > test-target-offset.R: Mean SD Naive SE Time-series SE > test-target-offset.R: edges 12.77778 5.118432 0.32835 0.3283476 > test-target-offset.R: gwdegree 0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: gwdegree.decay 0.01236 0.002961 0.00019 0.0001293 > test-target-offset.R: degree0 -0.84362 0.386003 0.02476 0.0247621 > test-target-offset.R: > test-target-offset.R: 2. Quantiles for each variable: > test-target-offset.R: > test-target-offset.R: 2.5% 25% 50% 75% 97.5% > test-target-offset.R: edges 3.000e+00 9.00000 13.00000 16.00000 23.00000 > test-target-offset.R: gwdegree 1.063e-12 1.00000 1.00000 1.00000 1.00000 > test-target-offset.R: gwdegree.decay 5.955e-03 0.01191 0.01191 0.01489 0.01489 > test-target-offset.R: degree0 -1.000e+00 -1.00000 -1.00000 -1.00000 0.00000 > test-target-offset.R: > test-target-offset.R: > test-target-offset.R: Sample statistics cross-correlations: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: edges 1.0000000 0.2709648 0.6049364 -0.2709648 > test-target-offset.R: gwdegree 0.2709648 1.0000000 0.5143643 -1.0000000 > test-target-offset.R: gwdegree.decay 0.6049364 0.5143643 1.0000000 -0.5143643 > test-target-offset.R: degree0 -0.2709648 -1.0000000 -0.5143643 1.0000000 > test-target-offset.R: > test-target-offset.R: Sample statistics auto-correlation: > test-target-offset.R: Chain 1 > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: Lag 0 1.000000000 1.00000000 1.000000000 1.00000000 > test-target-offset.R: Lag 256 0.006056003 0.02865300 -0.034893817 0.02865300 > test-target-offset.R: Lag 512 0.062813023 -0.07862186 0.002608612 -0.07862186 > test-target-offset.R: Lag 768 -0.089332866 -0.07930006 -0.150790861 -0.07930006 > test-target-offset.R: Lag 1024 -0.091496281 -0.07564135 -0.189123113 -0.07564135 > test-target-offset.R: Lag 1280 0.030192390 0.03461402 0.073975025 0.03461402 > test-target-offset.R: > test-target-offset.R: Sample statistics burn-in diagnostic (Geweke): > test-target-offset.R: Chain 1 > test-target-offset.R: > test-target-offset.R: Fraction in 1st window = 0.1 > test-target-offset.R: Fraction in 2nd window = 0.5 > test-target-offset.R: > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.05663036 -1.34419649 0.38772965 1.34419649 > test-target-offset.R: > test-target-offset.R: Individual P-values (lower = worse): > test-target-offset.R: edges gwdegree gwdegree.decay degree0 > test-target-offset.R: 0.9548397 0.1788849 0.6982161 0.1788849 > test-target-offset.R: Joint P-value (lower = worse): 0.3850888 > test-target-offset.R: > test-target-offset.R: Note: MCMC diagnostics shown here are from the last round of > test-target-offset.R: simulation, prior to computation of final parameter estimates. > test-target-offset.R: Because the final estimates are refinements of those used for this > test-target-offset.R: simulation run, these diagnostics may understate model performance. > test-target-offset.R: To directly assess the performance of the final model on in-model > test-target-offset.R: statistics, please use the GOF command: gof(ergmFitObject, > test-target-offset.R: GOF=~model). > test-target-offset.R: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: 1 > test-term-Offset.R: Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0066. > test-term-Offset.R: Convergence test p-value: < 0.0001. > test-term-Offset.R: Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-Offset.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-Offset.R: Obtaining the responsible dyads. > test-term-Offset.R: Evaluating the predictor and response matrix. > test-term-Offset.R: Maximizing the pseudolikelihood. > test-term-Offset.R: Finished MPLE. > test-term-Offset.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-Offset.R: Iteration 1 of at most 60: > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-Offset.R: 1 > test-term-Offset.R: Optimizing with step length 1.0000. > test-term-Offset.R: The log-likelihood improved by 0.0024. > test-term-Offset.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-Offset.R: Finished MCMLE. > test-term-Offset.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-Offset.R: for degeneracy, use the mcmc.diagnostics() function. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-b12nodematch.R: In term 'b1nodematch' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latte > test-term-b12nodematch.R: r. Note that its interpretation may be different. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b1dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-proposal-bdstrattnt.R: Best valid proposal 'BDStratTNT' cannot take into account hint(s) 'triadic'. > test-term-bipartite.R: In term 'b1factor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. > test-term-bipartite.R: Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: In term 'b1twostar' in package 'ergm': Argument 'base' has been superseded by 'levels2', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Observed statistic(s) b2dsp3 are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: In term 'asymmetric' in package 'ergm': Argument 'keep' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) ideg7+.homophily.group and ideg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) gwodeg.fixed.0 are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-bipartite.R: Obtaining the responsible dyads. > test-term-bipartite.R: Evaluating the predictor and response matrix. > test-term-bipartite.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-bipartite.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: In term 'nodeifactor' in package 'ergm': Argument 'base' has been superseded by 'levels', and it is recommended to use the latter. Note that its interpretation may be different. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg7+ and odeg8+ are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Observed statistic(s) odeg6+.homophily.group, odeg7+.homophily.group, and odeg8+.homophily.group are at their smallest attainable values. Their coefficients will be fixed at -Inf. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Observed statistic(s) edgecov.YearsTrusted are at their greatest attainable values. Their coefficients will be fixed at +Inf. > test-term-flexible.R: All terms are either offsets or extreme values. No optimization is performed. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-directed.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-directed.R: Obtaining the responsible dyads. > test-term-directed.R: Evaluating the predictor and response matrix. > test-term-directed.R: Maximizing the pseudolikelihood. > test-term-directed.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-flexible.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-flexible.R: Obtaining the responsible dyads. > test-term-flexible.R: Evaluating the predictor and response matrix. > test-term-flexible.R: Maximizing the pseudolikelihood. > test-term-flexible.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Note: Term 'mm(~Grade >= 10, levels = -1)' skipped because it contributes no statistics. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-mm.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-mm.R: Obtaining the responsible dyads. > test-term-mm.R: Evaluating the predictor and response matrix. > test-term-mm.R: Maximizing the pseudolikelihood. > test-term-mm.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: 1 Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0013. > test-term-options.R: Convergence test p-value: < 0.0001. > test-term-options.R: Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: Evaluating log-likelihood at the estimate. > test-term-options.R: Fitting the dyad-independent submodel... > test-term-options.R: Bridging between the dyad-independent submodel and the full model... > test-term-options.R: Setting up bridge sampling... > test-term-options.R: Using 16 bridges: 1 > test-term-options.R: 2 > test-term-options.R: 3 > test-term-options.R: 4 > test-term-options.R: 5 > test-term-options.R: 6 > test-term-options.R: 7 > test-term-options.R: 8 > test-term-options.R: 9 > test-term-options.R: 10 > test-term-options.R: 11 > test-term-options.R: 12 > test-term-options.R: 13 > test-term-options.R: 14 > test-term-options.R: 15 > test-term-options.R: 16 > test-term-options.R: . > test-term-options.R: Bridging finished. > test-term-options.R: > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-options.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-options.R: Obtaining the responsible dyads. > test-term-options.R: Evaluating the predictor and response matrix. > test-term-options.R: Maximizing the pseudolikelihood. > test-term-options.R: Finished MPLE. > test-term-options.R: Starting Monte Carlo maximum likelihood estimation (MCMLE): > test-term-options.R: Iteration 1 of at most 60: > test-term-options.R: 1 > test-term-options.R: Optimizing with step length 1.0000. > test-term-options.R: The log-likelihood improved by 0.0003. > test-term-options.R: Convergence test p-value: < 0.0001. Converged with 99% confidence. > test-term-options.R: Finished MCMLE. > test-term-options.R: This model was fit using MCMC. To examine model diagnostics and check > test-term-options.R: for degeneracy, use the mcmc.diagnostics() function. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Finished MPLE. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-undirected.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-undirected.R: Obtaining the responsible dyads. > test-term-undirected.R: Evaluating the predictor and response matrix. > test-term-undirected.R: Maximizing the pseudolikelihood. > test-term-undirected.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-term-gw-sp.R: Starting maximum pseudolikelihood estimation (MPLE): > test-term-gw-sp.R: Obtaining the responsible dyads. > test-term-gw-sp.R: Evaluating the predictor and response matrix. > test-term-gw-sp.R: Maximizing the pseudolikelihood. > test-term-gw-sp.R: Finished MPLE. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'CondDegree' cannot take into account hint(s) 'triadic'. > test-u-function.R: Best valid proposal 'DiscUnif2' cannot take into account hint(s) 'sparse' and 'triadic'. > test-u-function.R: Best valid proposal 'DiscTNT' cannot take into account hint(s) 'triadic'. > test-valued-sim.R: mean=1, var=4, corr=0.3 > test-valued-sim.R: eta=(0.192307692307692,0.0824175824175824,0.362637362637363) > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated mean (stats only):0.9964445 > test-valued-sim.R: Best valid proposal 'StdNormal' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: Simulated means (target=1): > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 1.0034478 0.9683903 > test-valued-sim.R: [2,] 1.0302079 NA 0.8923730 > test-valued-sim.R: [3,] 0.6870641 0.7628159 NA > test-valued-sim.R: Simulated vars (target=4): > test-valued-sim.R: > test-valued-sim.R: [,1] [,2] [,3] > test-valued-sim.R: [1,] NA 3.863045 4.034701 > test-valued-sim.R: [2,] 3.944388 NA 3.888997 > test-valued-sim.R: [3,] 3.740890 4.202553 NA > test-valued-sim.R: Simulated correlations (1,2) (1,3) (2,3) (target=0.3): > test-valued-sim.R: [1] 0.2781206 0.2324470 0.3420405 > test-valued-sim.R: ==== output='stats', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.380183 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=2.8858 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='stats', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: ==== output='network', coef=0 > test-valued-sim.R: Best valid proposal 'Unif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-sim.R: > test-valued-sim.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-sim.R: * 'news(package="ergm.count")' for changes since last version > test-valued-sim.R: * 'citation("ergm.count")' for citation information > test-valued-sim.R: * 'https://statnet.org' for help, support, and other information > test-valued-sim.R: > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: Best valid proposal 'DiscUnif' cannot take into account hint(s) 'sparse' and 'triadic'. > test-valued-terms.R: > test-valued-terms.R: 'ergm.count' 4.1.3 (2025-09-10), part of the Statnet Project > test-valued-terms.R: * 'news(package="ergm.count")' for changes since last version > test-valued-terms.R: * 'citation("ergm.count")' for citation information > test-valued-terms.R: * 'https://statnet.org' for help, support, and other information > test-valued-terms.R: [ FAIL 1 | WARN 0 | SKIP 1 | PASS 4300 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • empty test (1): ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-miss.CD.R:76:3'): curved+missing ───────────────────────────── Expected `abs(coef(cdfit)[1] - truth)/sqrt(cdfit$covar[1])` < 2. Actual comparison: 2.95 >= 2.00 Difference: 0.95 >= 0 [ FAIL 1 | WARN 0 | SKIP 1 | PASS 4300 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 4.11.0
Flags: --no-vignettes
Check: whether package can be installed
Result: WARN Found the following significant warnings: Rd warning: no hsearch.rds meta data for package ergm See ‘/home/hornik/tmp/R.check/r-patched-gcc/Work/PKGS/ergm.Rcheck/00install.out’ for details. * used C compiler: ‘gcc-14 (Debian 14.3.0-12) 14.3.0’ * used C++ compiler: ‘g++-14 (Debian 14.3.0-12) 14.3.0’ Flavor: r-patched-linux-x86_64

Version: 4.11.0
Check: installed package size
Result: NOTE installed size is 8.8Mb sub-directories of 1Mb or more: R 2.0Mb doc 1.3Mb help 1.1Mb libs 3.5Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64

Version: 4.11.0
Flags: --no-examples --no-tests --no-vignettes
Check: installed package size
Result: NOTE installed size is 5.0Mb sub-directories of 1Mb or more: R 1.1Mb doc 1.3Mb help 1.1Mb Flavor: r-oldrel-windows-x86_64

Package ergm.count

Current CRAN status: OK: 14

Package ergm.ego

Current CRAN status: OK: 14

Package ergm.multi

Current CRAN status: OK: 14

Package ergm.rank

Current CRAN status: OK: 14

Package latentnet

Current CRAN status: NOTE: 3, OK: 11

Version: 2.12.0
Check: for GNU extensions in Makefiles
Result: NOTE GNU make is a SystemRequirements. Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package piecemeal

Current CRAN status: OK: 14

Package rle

Current CRAN status: ERROR: 1, OK: 13

Version: 0.10.0
Check: whether package can be installed
Result: ERROR Installation failed. Flavor: r-oldrel-windows-x86_64

Package statnet.common

Current CRAN status: NOTE: 14

Version: 4.13.0
Check: R code for possible problems
Result: NOTE Found the following possibly unsafe calls: File ‘statnet.common/R/control.utilities.R’: unlockBinding("snctrl", environment(snctrl)) unlockBinding("snctrl", environment(update_my_snctrl)) Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-macos-arm64, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package tergm

Current CRAN status: NOTE: 5, OK: 9

Version: 4.2.2
Check: HTML version of manual
Result: NOTE Found the following HTML validation problems: tergm-package.html:223:72 (tergm-package.Rd:133): Warning: missing </p> before <a> tergm-package.html:223:5 (tergm-package.Rd:133): Warning: missing </a> before <a> tergm-package.html:223:192 (tergm-package.Rd:133): Warning: inserting implicit <p> tergm-package.html:223:196 (tergm-package.Rd:133): Warning: discarding unexpected </a> tergm-package.html:223:192 (tergm-package.Rd:133): Warning: trimming empty <p> Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 4.2.2
Flags: --no-vignettes
Check: HTML version of manual
Result: NOTE Found the following HTML validation problems: tergm-package.html:223:60 (tergm-package.Rd:133): Warning: missing </p> before <a> tergm-package.html:223:5 (tergm-package.Rd:133): Warning: missing </a> before <a> tergm-package.html:223:180 (tergm-package.Rd:133): Warning: inserting implicit <p> tergm-package.html:223:184 (tergm-package.Rd:133): Warning: discarding unexpected </a> tergm-package.html:223:180 (tergm-package.Rd:133): Warning: trimming empty <p> Flavor: r-devel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.