The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
Version: | 2.7-12 |
Depends: | R (≥ 3.5.0) |
Imports: | stats, graphics, utils, methods, abind, graph, RBGL, igraph, ggm, corpcor, robustbase, vcd, Rcpp, bdsmatrix, sfsmisc (≥ 1.0-26), fastICA, clue |
LinkingTo: | Rcpp (≥ 0.11.0), RcppArmadillo, BH |
Suggests: | MASS, Matrix, Rgraphviz, mvtnorm, huge, ggplot2, dagitty |
Published: | 2024-09-12 |
DOI: | 10.32614/CRAN.package.pcalg |
Author: | Markus Kalisch [aut, cre], Alain Hauser [aut], Martin Maechler [aut], Diego Colombo [ctb], Doris Entner [ctb], Patrik Hoyer [ctb], Antti Hyttinen [ctb], Jonas Peters [ctb], Nicoletta Andri [ctb], Emilija Perkovic [ctb], Preetam Nandy [ctb], Philipp Ruetimann [ctb], Daniel Stekhoven [ctb], Manuel Schuerch [ctb], Marco Eigenmann [ctb], Leonard Henckel [ctb], Joris Mooij [ctb] |
Maintainer: | Markus Kalisch <kalisch at stat.math.ethz.ch> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://pcalg.r-forge.r-project.org/ |
NeedsCompilation: | yes |
Citation: | pcalg citation info |
Materials: | NEWS ChangeLog |
In views: | CausalInference, GraphicalModels |
CRAN checks: | pcalg results |
Reference manual: | pcalg.pdf |
Vignettes: |
Overview of the 'pcalg' Package for R (source, R code) |
Package source: | pcalg_2.7-12.tar.gz |
Windows binaries: | r-devel: pcalg_2.7-12.zip, r-release: pcalg_2.7-12.zip, r-oldrel: pcalg_2.7-12.zip |
macOS binaries: | r-release (arm64): pcalg_2.7-12.tgz, r-oldrel (arm64): pcalg_2.7-12.tgz, r-release (x86_64): pcalg_2.7-12.tgz, r-oldrel (x86_64): pcalg_2.7-12.tgz |
Old sources: | pcalg archive |
Reverse depends: | micd, qtlnet, tpc |
Reverse imports: | BiDAG, causalDisco, clustNet, dce, eff2, epiNEM, kpcalg, mDAG, miRLAB, MRPC, NetCoupler, pcgen, SID |
Reverse suggests: | backShift, CompareCausalNetworks, iTOP, ParallelPC, SCCI |
Please use the canonical form https://CRAN.R-project.org/package=pcalg to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.