The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

fmf: Fast Class Noise Detector with Multi-Factor-Based Learning

A fast class noise detector which provides noise score for each observations. The package takes advantage of 'RcppArmadillo' to speed up the calculation of distances between observations.

Version: 1.1.1
Depends: R (≥ 2.10.0)
Imports: Rcpp, caret, solitude, kernlab, C50, e1071, FactoMineR, dplyr, factoextra, ggplot2
LinkingTo: Rcpp, RcppArmadillo
Suggests: testthat, covr, knitr, rmarkdown
Published: 2020-09-03
DOI: 10.32614/CRAN.package.fmf
Author: Wanwan Zheng [aut, cre], Mingzhe Jin [aut], Lampros Mouselimis [ctb, cph]
Maintainer: Wanwan Zheng <teiwanwan at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: yes
SystemRequirements: libarmadillo: apt-get install -y libarmadillo-dev (deb), libblas: apt-get install -y libblas-dev (deb), liblapack: apt-get install -y liblapack-dev (deb), libarpack++2: apt-get install -y libarpack++2-dev (deb), gfortran: apt-get install -y gfortran (deb)
CRAN checks: fmf results

Documentation:

Reference manual: fmf.pdf

Downloads:

Package source: fmf_1.1.1.tar.gz
Windows binaries: r-devel: fmf_1.1.1.zip, r-release: fmf_1.1.1.zip, r-oldrel: fmf_1.1.1.zip
macOS binaries: r-release (arm64): fmf_1.1.1.tgz, r-oldrel (arm64): fmf_1.1.1.tgz, r-release (x86_64): fmf_1.1.1.tgz, r-oldrel (x86_64): fmf_1.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fmf to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.