The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

rstanarm: Bayesian Applied Regression Modeling via Stan

Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.

Version: 2.32.1
Depends: R (≥ 3.4.0), Rcpp (≥ 0.12.0), methods
Imports: bayesplot (≥ 1.7.0), ggplot2 (≥ 2.2.1), lme4 (≥ 1.1-8), loo (≥ 2.1.0), Matrix (≥ 1.2-13), nlme (≥ 3.1-124), posterior, rstan (≥ 2.32.0), rstantools (≥ 2.1.0), shinystan (≥ 2.3.0), stats, survival (≥ 2.40.1), RcppParallel (≥ 5.0.1), utils
LinkingTo: StanHeaders (≥ 2.32.0), rstan (≥ 2.32.0), BH (≥ 1.72.0-2), Rcpp (≥ 0.12.0), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1)
Suggests: biglm, betareg, data.table (≥ 1.10.0), digest, gridExtra, HSAUR3, knitr (≥ 1.15.1), MASS, mgcv (≥ 1.8-13), rmarkdown, roxygen2, StanHeaders (≥ 2.21.0), testthat (≥ 1.0.2), gamm4, shiny, V8
Published: 2024-01-18
DOI: 10.32614/CRAN.package.rstanarm
Author: Jonah Gabry [aut], Imad Ali [ctb], Sam Brilleman [ctb], Jacqueline Buros Novik [ctb] (R/stan_jm.R), AstraZeneca [ctb] (R/stan_jm.R), Trustees of Columbia University [cph], Simon Wood [cph] (R/stan_gamm4.R), R Core Deveopment Team [cph] (R/stan_aov.R), Douglas Bates [cph] (R/pp_data.R), Martin Maechler [cph] (R/pp_data.R), Ben Bolker [cph] (R/pp_data.R), Steve Walker [cph] (R/pp_data.R), Brian Ripley [cph] (R/stan_aov.R, R/stan_polr.R), William Venables [cph] (R/stan_polr.R), Paul-Christian Burkner [cph] (R/misc.R), Ben Goodrich [cre, aut]
Maintainer: Ben Goodrich <benjamin.goodrich at columbia.edu>
BugReports: https://github.com/stan-dev/rstanarm/issues
License: GPL (≥ 3)
URL: https://mc-stan.org/rstanarm/, https://discourse.mc-stan.org
NeedsCompilation: yes
SystemRequirements: GNU make, pandoc (>= 1.12.3), pandoc-citeproc
Citation: rstanarm citation info
Materials: NEWS
In views: Bayesian, MixedModels, Survival
CRAN checks: rstanarm results

Documentation:

Reference manual: rstanarm.pdf
Vignettes: Probabilistic A/B Testing with rstanarm
stan_aov: ANOVA Models
stan_betareg: Models for Rate/Proportion Data
stan_glm: GLMs for Binary and Binomial Data
stan_glm: GLMs for Continuous Data
stan_glm: GLMs for Count Data
stan_glmer: GLMs with Group-Specific Terms
stan_jm: Joint Models for Longitudinal and Time-to-Event Data
stan_lm: Regularized Linear Models
MRP with rstanarm
stan_polr: Ordinal Models
Hierarchical Partial Pooling
Prior Distributions
How to Use the rstanarm Package

Downloads:

Package source: rstanarm_2.32.1.tar.gz
Windows binaries: r-devel: rstanarm_2.32.1.zip, r-release: rstanarm_2.32.1.zip, r-oldrel: rstanarm_2.32.1.zip
macOS binaries: r-release (arm64): rstanarm_2.32.1.tgz, r-oldrel (arm64): rstanarm_2.32.1.tgz, r-release (x86_64): rstanarm_2.32.1.tgz, r-oldrel (x86_64): rstanarm_2.32.1.tgz
Old sources: rstanarm archive

Reverse dependencies:

Reverse depends: AuxSurvey, evidence, fbst
Reverse imports: BayesPostEst, bayesrules, IRexamples, jmBIG, tidyposterior, webSDM
Reverse suggests: afex, bayesMeanScale, bayesplot, bayestestR, bridgesampling, broom.helpers, broom.mixed, conformalbayes, correlation, datawizard, effectsize, embed, fastml, ggeffects, INLAjoint, insight, loo, marginaleffects, merTools, modelbased, modelsummary, orbital, parameters, performance, projpred, RBesT, report, SAMprior, see, shinybrms, shinystan, sjPlot, tidyAML, tidybayes
Reverse enhances: emmeans, interactions, jtools

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rstanarm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.