The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane, Schnell, Peng and Mancuso (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder ('TMB') which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite or Kenward-Roger adjustment, and extract least square means estimates by using 'emmeans'.
Version: | 0.3.14 |
Depends: | R (≥ 4.0) |
Imports: | checkmate (≥ 2.0), generics, lifecycle, Matrix, methods, nlme, parallel, Rcpp, Rdpack, stats, stringr, tibble, TMB (≥ 1.9.1), utils |
LinkingTo: | Rcpp, RcppEigen, testthat, TMB (≥ 1.9.1) |
Suggests: | broom.helpers, car (≥ 3.1.2), cli, clubSandwich, clusterGeneration, dplyr, emmeans (≥ 1.6), estimability, ggplot2, glmmTMB, hardhat, knitr, lme4, MASS, microbenchmark, mockery, parallelly (≥ 1.32.0), parsnip (≥ 1.1.0), purrr, rmarkdown, sasr, scales, testthat (≥ 3.0.0), tidymodels, withr, xml2 |
Published: | 2024-09-27 |
DOI: | 10.32614/CRAN.package.mmrm |
Author: | Daniel Sabanes Bove [aut, cre], Liming Li [aut], Julia Dedic [aut], Doug Kelkhoff [aut], Kevin Kunzmann [aut], Brian Matthew Lang [aut], Christian Stock [aut], Ya Wang [aut], Craig Gower-Page [ctb], Dan James [aut], Jonathan Sidi [aut], Daniel Leibovitz [aut], Daniel D. Sjoberg [aut], Lukas A. Widmer [ctb], Boehringer Ingelheim Ltd. [cph, fnd], Gilead Sciences, Inc. [cph, fnd], F. Hoffmann-La Roche AG [cph, fnd], Merck Sharp & Dohme, Inc. [cph, fnd], AstraZeneca plc [cph, fnd], inferential.biostatistics GmbH [cph, fnd] |
Maintainer: | Daniel Sabanes Bove <daniel.sabanes_bove at rconis.com> |
BugReports: | https://github.com/openpharma/mmrm/issues |
License: | Apache License 2.0 |
URL: | https://openpharma.github.io/mmrm/ |
NeedsCompilation: | yes |
Language: | en-US |
Materials: | NEWS |
In views: | ClinicalTrials, MixedModels |
CRAN checks: | mmrm results |
Package source: | mmrm_0.3.14.tar.gz |
Windows binaries: | r-devel: mmrm_0.3.14.zip, r-release: mmrm_0.3.14.zip, r-oldrel: mmrm_0.3.14.zip |
macOS binaries: | r-release (arm64): mmrm_0.3.14.tgz, r-oldrel (arm64): mmrm_0.3.14.tgz, r-release (x86_64): mmrm_0.3.14.tgz, r-oldrel (x86_64): mmrm_0.3.14.tgz |
Old sources: | mmrm archive |
Reverse imports: | rbmi, tern.mmrm |
Reverse suggests: | brms.mmrm, broom.helpers, insight, parameters |
Please use the canonical form https://CRAN.R-project.org/package=mmrm to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.