The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

mlrv: Long-Run Variance Estimation in Time Series Regression

Plug-in and difference-based long-run covariance matrix estimation for time series regression. Two applications of hypothesis testing are also provided. The first one is for testing for structural stability in coefficient functions. The second one is aimed at detecting long memory in time series regression. Lujia Bai and Weichi Wu (2024)<doi:10.3150/23-BEJ1680> Zhou Zhou and Wei Biao Wu(2010)<doi:10.1111/j.1467-9868.2010.00743.x> Jianqing Fan and Wenyang Zhang<doi:10.1214/aos/1017939139> Lujia Bai and Weichi Wu(2024)<doi:10.1093/biomet/asae013> Dimitris N. Politis, Joseph P. Romano, Michael Wolf(1999)<doi:10.1007/978-1-4612-1554-7> Weichi Wu and Zhou Zhou(2018)<doi:10.1214/17-AOS1582>.

Version: 0.1.2
Depends: R (≥ 3.6.0)
Imports: Rcpp, numDeriv, magrittr, foreach, doParallel, RcppArmadillo, mathjaxr, xtable, stats
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, spelling, testthat (≥ 3.0.0)
Published: 2024-07-30
DOI: 10.32614/CRAN.package.mlrv
Author: Lujia Bai [aut, cre], Weichi Wu [ctb]
Maintainer: Lujia Bai <bailujia98 at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: yes
Language: en-US
Materials: NEWS
CRAN checks: mlrv results

Documentation:

Reference manual: mlrv.pdf
Vignettes: Using mlrv to anaylze data (source, R code)

Downloads:

Package source: mlrv_0.1.2.tar.gz
Windows binaries: r-devel: mlrv_0.1.2.zip, r-release: mlrv_0.1.2.zip, r-oldrel: mlrv_0.1.2.zip
macOS binaries: r-release (arm64): mlrv_0.1.2.tgz, r-oldrel (arm64): mlrv_0.1.2.tgz, r-release (x86_64): mlrv_0.1.2.tgz, r-oldrel (x86_64): mlrv_0.1.2.tgz
Old sources: mlrv archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mlrv to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.