The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Data analysis in the paper of Bai and Wu (2023b).
Hong Kong circulatory and respiratory data.
library(mlrv)
library(foreach)
library(magrittr)
data(hk_data)
colnames(hk_data) = c("SO2","NO2","Dust","Ozone","Temperature",
"Humidity","num_circu","num_respir","Hospital Admission",
"w1","w2","w3","w4","w5","w6")
n = nrow(hk_data)
t = (1:n)/n
hk = list()
hk$x = as.matrix(cbind(rep(1,n), scale(hk_data[,1:3])))
hk$y = hk_data$`Hospital Admission`
pvmatrix = matrix(nrow=2, ncol=4)
###inistialization
setting = list(B = 5000, gcv = 1, neighbour = 1)
setting$lb = floor(10/7*n^(4/15)) - setting$neighbour
setting$ub = max(floor(25/7*n^(4/15))+ setting$neighbour,
setting$lb+2*setting$neighbour+1)
setting$lrvmethod =0.
i=1
# print(rule_of_thumb(y= hk$y, x = hk$x))
for(type in c("KPSS","RS","VS","KS")){
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x), setting, mvselect = -2)
print(paste("p-value",result_reg))
pvmatrix[1,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.2838"
## [1] "RS"
## [1] "p-value 0.2896"
## [1] "VS"
## [1] "p-value 0.1148"
## [1] "KS"
## [1] "p-value 0.4124"
setting$lrvmethod =1
i=1
for(type in c("KPSS","RS","VS","KS"))
{
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x), setting, mvselect = -2)
print(paste("p-value",result_reg))
pvmatrix[2,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.6866"
## [1] "RS"
## [1] "p-value 0.8066"
## [1] "VS"
## [1] "p-value 0.5126"
## [1] "KS"
## [1] "p-value 0.8346"
rownames(pvmatrix) = c("plug","diff")
colnames(pvmatrix) = c("KPSS","RS","VS","KS")
knitr::kable(pvmatrix,type="latex")
KPSS | RS | VS | KS | |
---|---|---|---|---|
plug | 0.2838 | 0.2896 | 0.1148 | 0.4124 |
diff | 0.6866 | 0.8066 | 0.5126 | 0.8346 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package
## % Tue Jul 30 21:23:49 2024
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & KPSS & RS & VS & KS \\
## \hline
## plug & 0.284 & 0.290 & 0.115 & 0.412 \\
## diff & 0.687 & 0.807 & 0.513 & 0.835 \\
## \hline
## \end{tabular}
## \end{table}
Using parameter `shift’ to multiply the GCV selected bandwidth by a factor. - Shift = 1.2 with plug-in estimator.
pvmatrix = matrix(nrow=2, ncol=4)
setting$lrvmethod = 0
i=1
for(type in c("KPSS","RS","VS","KS")){
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, shift = 1.2)
print(paste("p-value",result_reg))
pvmatrix[1,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.4256"
## [1] "RS"
## [1] "p-value 0.3638"
## [1] "VS"
## [1] "p-value 0.118"
## [1] "KS"
## [1] "p-value 0.561"
setting$lrvmethod =1
i=1
for(type in c("KPSS","RS","VS","KS"))
{
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, verbose_dist = TRUE, shift = 1.2)
print(paste("p-value",result_reg))
pvmatrix[2,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "gcv 0.193398841583897"
## [1] "m 14 tau_n 0.332134206312301"
## [1] "test statistic: 141.654657280933"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 13.81 107.33 215.16 368.80 460.94 5186.84
## [1] "p-value 0.6462"
## [1] "RS"
## [1] "gcv 0.193398841583897"
## [1] "m 15 tau_n 0.332134206312301"
## [1] "test statistic: 1067.76713443354"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 535.2 1023.8 1232.0 1302.6 1508.2 3383.7
## [1] "p-value 0.6994"
## [1] "VS"
## [1] "gcv 0.193398841583897"
## [1] "m 17 tau_n 0.332134206312301"
## [1] "test statistic: 103.342038019402"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.94 70.04 110.26 152.36 187.41 1230.74
## [1] "p-value 0.538"
## [1] "KS"
## [1] "gcv 0.193398841583897"
## [1] "m 17 tau_n 0.382134206312301"
## [1] "test statistic: 671.676091515897"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 352.6 720.4 923.3 1007.3 1213.0 3363.9
## [1] "p-value 0.8108"
rownames(pvmatrix) = c("plug","diff")
colnames(pvmatrix) = c("KPSS","RS","VS","KS")
knitr::kable(pvmatrix,type="latex")
KPSS | RS | VS | KS | |
---|---|---|---|---|
plug | 0.4256 | 0.3638 | 0.118 | 0.5610 |
diff | 0.6462 | 0.6994 | 0.538 | 0.8108 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package
## % Tue Jul 30 21:25:13 2024
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & KPSS & RS & VS & KS \\
## \hline
## plug & 0.426 & 0.364 & 0.118 & 0.561 \\
## diff & 0.646 & 0.699 & 0.538 & 0.811 \\
## \hline
## \end{tabular}
## \end{table}
pvmatrix = matrix(nrow=2, ncol=4)
setting$lrvmethod =0
i=1
for(type in c("KPSS","RS","VS","KS")){
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, shift = 0.8)
print(paste("p-value",result_reg))
pvmatrix[1,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.2458"
## [1] "RS"
## [1] "p-value 0.1662"
## [1] "VS"
## [1] "p-value 0.1234"
## [1] "KS"
## [1] "p-value 0.2726"
setting$lrvmethod =1
i=1
for(type in c("KPSS","RS","VS","KS"))
{
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, verbose_dist = TRUE, shift = 0.8)
print(paste("p-value",result_reg))
pvmatrix[2,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "gcv 0.128932561055931"
## [1] "m 8 tau_n 0.382134206312301"
## [1] "test statistic: 166.543448031107"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.78 99.10 200.38 331.58 421.82 3152.45
## [1] "p-value 0.571"
## [1] "RS"
## [1] "gcv 0.128932561055931"
## [1] "m 18 tau_n 0.382134206312301"
## [1] "test statistic: 998.08124125936"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 699.6 1276.2 1535.9 1614.1 1874.8 3730.1
## [1] "p-value 0.9464"
## [1] "VS"
## [1] "gcv 0.128932561055931"
## [1] "m 9 tau_n 0.332134206312301"
## [1] "test statistic: 78.0587445148255"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 14.07 63.32 110.68 157.21 199.91 1498.85
## [1] "p-value 0.6586"
## [1] "KS"
## [1] "gcv 0.128932561055931"
## [1] "m 9 tau_n 0.332134206312301"
## [1] "test statistic: 709.345279801765"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 290.6 695.8 910.2 986.8 1200.7 2953.0
## [1] "p-value 0.7344"
rownames(pvmatrix) = c("plug","diff")
colnames(pvmatrix) = c("KPSS","RS","VS","KS")
knitr::kable(pvmatrix,type="latex")
KPSS | RS | VS | KS | |
---|---|---|---|---|
plug | 0.2458 | 0.1662 | 0.1234 | 0.2726 |
diff | 0.5710 | 0.9464 | 0.6586 | 0.7344 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package
## % Tue Jul 30 21:26:26 2024
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & KPSS & RS & VS & KS \\
## \hline
## plug & 0.246 & 0.166 & 0.123 & 0.273 \\
## diff & 0.571 & 0.946 & 0.659 & 0.734 \\
## \hline
## \end{tabular}
## \end{table}
Test if the coefficient function of “SO2”,“NO2”,“Dust” of the second year is constant.
hk$x = as.matrix(cbind(rep(1,n), (hk_data[,1:3])))
hk$y = hk_data$`Hospital Admission`
setting$type = 0
setting$bw_set = c(0.1, 0.35)
setting$eta = 0.2
setting$lrvmethod = 1
setting$lb = 10
setting$ub = 15
hk1 = list()
hk1$x = hk$x[366:730,]
hk1$y = hk$y[366:730]
p1 <- heter_gradient(hk1, setting, mvselect = -2, verbose = T)
## [1] "m 12 tau_n 0.364293094094381"
## [1] 10464.35
## V1
## Min. : 1537
## 1st Qu.: 3809
## Median : 4838
## Mean : 5239
## 3rd Qu.: 6296
## Max. :15552
## [1] 0.0158
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.