The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

lddmm: Longitudinal Drift-Diffusion Mixed Models (LDDMM)

Implementation of the drift-diffusion mixed model for category learning as described in Paulon et al. (2021) <doi:10.1080/01621459.2020.1801448>.

Version: 0.4.2
Depends: R (≥ 4.1.0)
Imports: Rcpp (≥ 1.0.6), gtools, LaplacesDemon, dplyr, plyr, tidyr, ggplot2, latex2exp, reshape2, RColorBrewer
LinkingTo: Rcpp, RcppArmadillo, RcppProgress, rgen
Suggests: rmarkdown, knitr
Published: 2024-01-17
DOI: 10.32614/CRAN.package.lddmm
Author: Giorgio Paulon [aut, cre], Abhra Sarkar [aut, ctb]
Maintainer: Giorgio Paulon <giorgio.paulon at utexas.edu>
License: MIT + file LICENSE
NeedsCompilation: yes
Language: en-US
Materials: README
CRAN checks: lddmm results

Documentation:

Reference manual: lddmm.pdf
Vignettes: minimal_example

Downloads:

Package source: lddmm_0.4.2.tar.gz
Windows binaries: r-devel: lddmm_0.4.2.zip, r-release: lddmm_0.4.2.zip, r-oldrel: lddmm_0.4.2.zip
macOS binaries: r-release (arm64): lddmm_0.4.2.tgz, r-oldrel (arm64): lddmm_0.4.2.tgz, r-release (x86_64): lddmm_0.4.2.tgz, r-oldrel (x86_64): lddmm_0.4.2.tgz
Old sources: lddmm archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=lddmm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.