CRAN Package Check Results for Maintainer ‘Martin Binder <mlr.developer at mb706.com>’

Last updated on 2025-05-15 13:51:38 CEST.

Package ERROR NOTE OK
miesmuschel 13
mlr 8 5
mlr3pipelines 2 11
paradox 13
ParamHelpers 13

Package miesmuschel

Current CRAN status: OK: 13

Package mlr

Current CRAN status: NOTE: 8, OK: 5

Version: 2.19.2
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: TuneMultiCritControl.Rd: OptPath batchmark.Rd: data.table getClassWeightParam.Rd: LearnerParam getLearnerParamSet.Rd: ParamSet getParamSet.Rd: ParamSet makeBaseWrapper.Rd: ParamSet makeExtractFDAFeatMethod.Rd: ParamSet makeModelMultiplexerParamSet.Rd: ParamSet makeTuneControlMBO.Rd: OptPath Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-windows-x86_64

Version: 2.19.2
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘Rmpi’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64

Version: 2.19.2
Check: installed package size
Result: NOTE installed size is 5.6Mb sub-directories of 1Mb or more: R 2.0Mb data 2.3Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64

Package mlr3pipelines

Current CRAN status: ERROR: 2, OK: 11

Additional issues

noSuggests

Version: 0.7.2
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_pipeops_imputelearner > ### Title: Impute Features by Fitting a Learner > ### Aliases: mlr_pipeops_imputelearner PipeOpImputeLearner > > ### ** Examples > > ## Don't show: > if (requireNamespace("rpart")) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + library("mlr3") + + task = tsk("pima") + task$missings() + + po = po("imputelearner", lrn("regr.rpart")) + new_task = po$train(list(task = task))[[1]] + new_task$missings() + + # '$state' of the "regr.rpart" Learner, trained to predict the 'mass' column: + po$state$model$mass + + library("mlr3learners") + # to use the "regr.kknn" Learner, prefix it with its own imputation method! + # The "imputehist" PipeOp is used to train "regr.kknn"; predictions of this + # trained Learner are then used to impute the missing values in the Task. + po = po("imputelearner", + po("imputehist") %>>% lrn("regr.kknn") + ) + + new_task = po$train(list(task = task))[[1]] + new_task$missings() + ## Don't show: + }) # examplesIf > library("mlr3") > task = tsk("pima") > task$missings() diabetes age glucose insulin mass pedigree pregnant pressure 0 0 5 374 11 0 0 35 triceps 227 > po = po("imputelearner", lrn("regr.rpart")) > new_task = po$train(list(task = task))[[1]] > new_task$missings() diabetes age pedigree pregnant glucose insulin mass pressure 0 0 0 0 0 0 0 0 triceps 0 > po$state$model$mass $model n= 757 node), split, n, deviance, yval * denotes terminal node 1) root 757 36254.3300 32.45746 2) triceps< 25.5 219 5537.6560 27.93196 4) triceps< 20.5 144 3140.7800 26.68333 * 5) triceps>=20.5 75 1741.3150 30.32933 10) pressure< 83 64 1081.6090 29.37813 * 11) pressure>=83 11 264.8855 35.86364 * 3) triceps>=25.5 538 24405.7800 34.29963 6) triceps< 35.5 380 14414.2500 32.50474 12) pressure< 74.5 223 6772.1180 31.49013 24) glucose< 73.5 8 44.1000 24.20000 * 25) glucose>=73.5 215 6287.0300 31.76140 50) pregnant>=0.5 190 4822.6790 31.28947 * 51) pregnant< 0.5 25 1100.4420 35.34800 * 13) pressure>=74.5 157 7086.5100 33.94586 26) insulin< 187 122 4736.5000 33.05656 * 27) insulin>=187 35 1917.2070 37.04571 * 7) triceps>=35.5 158 5822.9770 38.61646 14) pregnant>=1.5 92 2351.3170 37.02174 * 15) pregnant< 1.5 66 2911.5580 40.83939 * $param_vals $param_vals$xval [1] 0 $log Empty data.table (0 rows and 3 cols): stage,class,msg $train_time [1] 0.025 $task_hash [1] "a666d2778d446faf" $feature_names [1] "age" "glucose" "insulin" "pedigree" "pregnant" "pressure" "triceps" $validate NULL $mlr3_version [1] ‘0.23.0’ $data_prototype Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant... $task_prototype Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant... $train_task <TaskRegr:imputing> (768 x 8) * Target: .impute_col * Properties: - * Features (7): - dbl (7): age, glucose, insulin, pedigree, pregnant, pressure, triceps attr(,"class") [1] "learner_state" "list" > library("mlr3learners") > po = po("imputelearner", po("imputehist") %>>% lrn("regr.kknn")) Warning: Package 'kknn' required but not installed for Learner 'regr.kknn' Warning: Package 'kknn' required but not installed for Learner 'imputehist.regr.kknn' > new_task = po$train(list(task = task))[[1]] Error: The following packages could not be loaded: kknn This happened PipeOp imputelearner's $train() Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.7.2
Check: examples
Result: ERROR Running examples in ‘mlr3pipelines-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_pipeops_imputelearner > ### Title: Impute Features by Fitting a Learner > ### Aliases: mlr_pipeops_imputelearner PipeOpImputeLearner > > ### ** Examples > > ## Don't show: > if (requireNamespace("rpart")) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + library("mlr3") + + task = tsk("pima") + task$missings() + + po = po("imputelearner", lrn("regr.rpart")) + new_task = po$train(list(task = task))[[1]] + new_task$missings() + + # '$state' of the "regr.rpart" Learner, trained to predict the 'mass' column: + po$state$model$mass + + library("mlr3learners") + # to use the "regr.kknn" Learner, prefix it with its own imputation method! + # The "imputehist" PipeOp is used to train "regr.kknn"; predictions of this + # trained Learner are then used to impute the missing values in the Task. + po = po("imputelearner", + po("imputehist") %>>% lrn("regr.kknn") + ) + + new_task = po$train(list(task = task))[[1]] + new_task$missings() + ## Don't show: + }) # examplesIf > library("mlr3") > task = tsk("pima") > task$missings() diabetes age glucose insulin mass pedigree pregnant pressure 0 0 5 374 11 0 0 35 triceps 227 > po = po("imputelearner", lrn("regr.rpart")) > new_task = po$train(list(task = task))[[1]] > new_task$missings() diabetes age pedigree pregnant glucose insulin mass pressure 0 0 0 0 0 0 0 0 triceps 0 > po$state$model$mass $model n= 757 node), split, n, deviance, yval * denotes terminal node 1) root 757 36254.3300 32.45746 2) triceps< 25.5 219 5537.6560 27.93196 4) triceps< 20.5 144 3140.7800 26.68333 * 5) triceps>=20.5 75 1741.3150 30.32933 10) pressure< 83 64 1081.6090 29.37813 * 11) pressure>=83 11 264.8855 35.86364 * 3) triceps>=25.5 538 24405.7800 34.29963 6) triceps< 35.5 380 14414.2500 32.50474 12) pressure< 74.5 223 6772.1180 31.49013 24) glucose< 73.5 8 44.1000 24.20000 * 25) glucose>=73.5 215 6287.0300 31.76140 50) pregnant>=0.5 190 4822.6790 31.28947 * 51) pregnant< 0.5 25 1100.4420 35.34800 * 13) pressure>=74.5 157 7086.5100 33.94586 26) insulin< 187 122 4736.5000 33.05656 * 27) insulin>=187 35 1917.2070 37.04571 * 7) triceps>=35.5 158 5822.9770 38.61646 14) pregnant>=1.5 92 2351.3170 37.02174 * 15) pregnant< 1.5 66 2911.5580 40.83939 * $param_vals $param_vals$xval [1] 0 $log Empty data.table (0 rows and 3 cols): stage,class,msg $train_time [1] 0.015 $task_hash [1] "a666d2778d446faf" $feature_names [1] "age" "glucose" "insulin" "pedigree" "pregnant" "pressure" "triceps" $validate NULL $mlr3_version [1] ‘0.23.0’ $data_prototype Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant... $task_prototype Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant... $train_task <TaskRegr:imputing> (768 x 8) * Target: .impute_col * Properties: - * Features (7): - dbl (7): age, glucose, insulin, pedigree, pregnant, pressure, triceps attr(,"class") [1] "learner_state" "list" > library("mlr3learners") > po = po("imputelearner", po("imputehist") %>>% lrn("regr.kknn")) Warning: Package 'kknn' required but not installed for Learner 'regr.kknn' Warning: Package 'kknn' required but not installed for Learner 'imputehist.regr.kknn' > new_task = po$train(list(task = task))[[1]] Error: The following packages could not be loaded: kknn This happened PipeOp imputelearner's $train() Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package paradox

Current CRAN status: OK: 13

Package ParamHelpers

Current CRAN status: OK: 13

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.