Last updated on 2025-05-15 13:51:38 CEST.
Package | ERROR | NOTE | OK |
---|---|---|---|
miesmuschel | 13 | ||
mlr | 8 | 5 | |
mlr3pipelines | 2 | 11 | |
paradox | 13 | ||
ParamHelpers | 13 |
Current CRAN status: OK: 13
Current CRAN status: NOTE: 8, OK: 5
Version: 2.19.2
Check: Rd cross-references
Result: NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
TuneMultiCritControl.Rd: OptPath
batchmark.Rd: data.table
getClassWeightParam.Rd: LearnerParam
getLearnerParamSet.Rd: ParamSet
getParamSet.Rd: ParamSet
makeBaseWrapper.Rd: ParamSet
makeExtractFDAFeatMethod.Rd: ParamSet
makeModelMultiplexerParamSet.Rd: ParamSet
makeTuneControlMBO.Rd: OptPath
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-windows-x86_64
Version: 2.19.2
Check: package dependencies
Result: NOTE
Package suggested but not available for checking: ‘Rmpi’
Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64
Version: 2.19.2
Check: installed package size
Result: NOTE
installed size is 5.6Mb
sub-directories of 1Mb or more:
R 2.0Mb
data 2.3Mb
Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64
Current CRAN status: ERROR: 2, OK: 11
Version: 0.7.2
Check: examples
Result: ERROR
Running examples in ‘mlr3pipelines-Ex.R’ failed
The error most likely occurred in:
> ### Name: mlr_pipeops_imputelearner
> ### Title: Impute Features by Fitting a Learner
> ### Aliases: mlr_pipeops_imputelearner PipeOpImputeLearner
>
> ### ** Examples
>
> ## Don't show:
> if (requireNamespace("rpart")) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf
+ ## End(Don't show)
+ library("mlr3")
+
+ task = tsk("pima")
+ task$missings()
+
+ po = po("imputelearner", lrn("regr.rpart"))
+ new_task = po$train(list(task = task))[[1]]
+ new_task$missings()
+
+ # '$state' of the "regr.rpart" Learner, trained to predict the 'mass' column:
+ po$state$model$mass
+
+ library("mlr3learners")
+ # to use the "regr.kknn" Learner, prefix it with its own imputation method!
+ # The "imputehist" PipeOp is used to train "regr.kknn"; predictions of this
+ # trained Learner are then used to impute the missing values in the Task.
+ po = po("imputelearner",
+ po("imputehist") %>>% lrn("regr.kknn")
+ )
+
+ new_task = po$train(list(task = task))[[1]]
+ new_task$missings()
+ ## Don't show:
+ }) # examplesIf
> library("mlr3")
> task = tsk("pima")
> task$missings()
diabetes age glucose insulin mass pedigree pregnant pressure
0 0 5 374 11 0 0 35
triceps
227
> po = po("imputelearner", lrn("regr.rpart"))
> new_task = po$train(list(task = task))[[1]]
> new_task$missings()
diabetes age pedigree pregnant glucose insulin mass pressure
0 0 0 0 0 0 0 0
triceps
0
> po$state$model$mass
$model
n= 757
node), split, n, deviance, yval
* denotes terminal node
1) root 757 36254.3300 32.45746
2) triceps< 25.5 219 5537.6560 27.93196
4) triceps< 20.5 144 3140.7800 26.68333 *
5) triceps>=20.5 75 1741.3150 30.32933
10) pressure< 83 64 1081.6090 29.37813 *
11) pressure>=83 11 264.8855 35.86364 *
3) triceps>=25.5 538 24405.7800 34.29963
6) triceps< 35.5 380 14414.2500 32.50474
12) pressure< 74.5 223 6772.1180 31.49013
24) glucose< 73.5 8 44.1000 24.20000 *
25) glucose>=73.5 215 6287.0300 31.76140
50) pregnant>=0.5 190 4822.6790 31.28947 *
51) pregnant< 0.5 25 1100.4420 35.34800 *
13) pressure>=74.5 157 7086.5100 33.94586
26) insulin< 187 122 4736.5000 33.05656 *
27) insulin>=187 35 1917.2070 37.04571 *
7) triceps>=35.5 158 5822.9770 38.61646
14) pregnant>=1.5 92 2351.3170 37.02174 *
15) pregnant< 1.5 66 2911.5580 40.83939 *
$param_vals
$param_vals$xval
[1] 0
$log
Empty data.table (0 rows and 3 cols): stage,class,msg
$train_time
[1] 0.025
$task_hash
[1] "a666d2778d446faf"
$feature_names
[1] "age" "glucose" "insulin" "pedigree" "pregnant" "pressure" "triceps"
$validate
NULL
$mlr3_version
[1] ‘0.23.0’
$data_prototype
Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant...
$task_prototype
Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant...
$train_task
<TaskRegr:imputing> (768 x 8)
* Target: .impute_col
* Properties: -
* Features (7):
- dbl (7): age, glucose, insulin, pedigree, pregnant, pressure,
triceps
attr(,"class")
[1] "learner_state" "list"
> library("mlr3learners")
> po = po("imputelearner", po("imputehist") %>>% lrn("regr.kknn"))
Warning: Package 'kknn' required but not installed for Learner 'regr.kknn'
Warning: Package 'kknn' required but not installed for Learner 'imputehist.regr.kknn'
> new_task = po$train(list(task = task))[[1]]
Error: The following packages could not be loaded: kknn
This happened PipeOp imputelearner's $train()
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.7.2
Check: examples
Result: ERROR
Running examples in ‘mlr3pipelines-Ex.R’ failed
The error most likely occurred in:
> ### Name: mlr_pipeops_imputelearner
> ### Title: Impute Features by Fitting a Learner
> ### Aliases: mlr_pipeops_imputelearner PipeOpImputeLearner
>
> ### ** Examples
>
> ## Don't show:
> if (requireNamespace("rpart")) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf
+ ## End(Don't show)
+ library("mlr3")
+
+ task = tsk("pima")
+ task$missings()
+
+ po = po("imputelearner", lrn("regr.rpart"))
+ new_task = po$train(list(task = task))[[1]]
+ new_task$missings()
+
+ # '$state' of the "regr.rpart" Learner, trained to predict the 'mass' column:
+ po$state$model$mass
+
+ library("mlr3learners")
+ # to use the "regr.kknn" Learner, prefix it with its own imputation method!
+ # The "imputehist" PipeOp is used to train "regr.kknn"; predictions of this
+ # trained Learner are then used to impute the missing values in the Task.
+ po = po("imputelearner",
+ po("imputehist") %>>% lrn("regr.kknn")
+ )
+
+ new_task = po$train(list(task = task))[[1]]
+ new_task$missings()
+ ## Don't show:
+ }) # examplesIf
> library("mlr3")
> task = tsk("pima")
> task$missings()
diabetes age glucose insulin mass pedigree pregnant pressure
0 0 5 374 11 0 0 35
triceps
227
> po = po("imputelearner", lrn("regr.rpart"))
> new_task = po$train(list(task = task))[[1]]
> new_task$missings()
diabetes age pedigree pregnant glucose insulin mass pressure
0 0 0 0 0 0 0 0
triceps
0
> po$state$model$mass
$model
n= 757
node), split, n, deviance, yval
* denotes terminal node
1) root 757 36254.3300 32.45746
2) triceps< 25.5 219 5537.6560 27.93196
4) triceps< 20.5 144 3140.7800 26.68333 *
5) triceps>=20.5 75 1741.3150 30.32933
10) pressure< 83 64 1081.6090 29.37813 *
11) pressure>=83 11 264.8855 35.86364 *
3) triceps>=25.5 538 24405.7800 34.29963
6) triceps< 35.5 380 14414.2500 32.50474
12) pressure< 74.5 223 6772.1180 31.49013
24) glucose< 73.5 8 44.1000 24.20000 *
25) glucose>=73.5 215 6287.0300 31.76140
50) pregnant>=0.5 190 4822.6790 31.28947 *
51) pregnant< 0.5 25 1100.4420 35.34800 *
13) pressure>=74.5 157 7086.5100 33.94586
26) insulin< 187 122 4736.5000 33.05656 *
27) insulin>=187 35 1917.2070 37.04571 *
7) triceps>=35.5 158 5822.9770 38.61646
14) pregnant>=1.5 92 2351.3170 37.02174 *
15) pregnant< 1.5 66 2911.5580 40.83939 *
$param_vals
$param_vals$xval
[1] 0
$log
Empty data.table (0 rows and 3 cols): stage,class,msg
$train_time
[1] 0.015
$task_hash
[1] "a666d2778d446faf"
$feature_names
[1] "age" "glucose" "insulin" "pedigree" "pregnant" "pressure" "triceps"
$validate
NULL
$mlr3_version
[1] ‘0.23.0’
$data_prototype
Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant...
$task_prototype
Empty data.table (0 rows and 8 cols): .impute_col,age,glucose,insulin,pedigree,pregnant...
$train_task
<TaskRegr:imputing> (768 x 8)
* Target: .impute_col
* Properties: -
* Features (7):
- dbl (7): age, glucose, insulin, pedigree, pregnant, pressure,
triceps
attr(,"class")
[1] "learner_state" "list"
> library("mlr3learners")
> po = po("imputelearner", po("imputehist") %>>% lrn("regr.kknn"))
Warning: Package 'kknn' required but not installed for Learner 'regr.kknn'
Warning: Package 'kknn' required but not installed for Learner 'imputehist.regr.kknn'
> new_task = po$train(list(task = task))[[1]]
Error: The following packages could not be loaded: kknn
This happened PipeOp imputelearner's $train()
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Current CRAN status: OK: 13
Current CRAN status: OK: 13
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.