CRAN Package Check Results for Maintainer ‘Lorenz A. Kapsner <lorenz.kapsner at gmail.com>’

Last updated on 2025-12-04 09:50:27 CET.

Package ERROR OK
autonewsmd 13
BiasCorrector 13
DQAgui 13
DQAstats 13
kdry 13
mlexperiments 13
mllrnrs 2 11
mlsurvlrnrs 2 11
rBiasCorrection 13
sjtable2df 13

Package autonewsmd

Current CRAN status: OK: 13

Package BiasCorrector

Current CRAN status: OK: 13

Package DQAgui

Current CRAN status: OK: 13

Package DQAstats

Current CRAN status: OK: 13

Package kdry

Current CRAN status: OK: 13

Package mlexperiments

Current CRAN status: OK: 13

Package mllrnrs

Current CRAN status: ERROR: 2, OK: 11

Version: 0.0.6
Check: tests
Result: ERROR Running ‘testthat.R’ [2m/14m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > # https://github.com/Rdatatable/data.table/issues/5658 > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mllrnrs) > > test_check("mllrnrs") CV fold: Fold1 CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 37.042 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 61.245 seconds 3) Running FUN 2 times in 2 thread(s)... 0.988 seconds OMP: Warning #96: Cannot form a team with 24 threads, using 2 instead. OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set). CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 30.162 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 55.36 seconds 3) Running FUN 2 times in 2 thread(s)... 2.693 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 32.292 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 107.661 seconds 3) Running FUN 2 times in 2 thread(s)... 2.562 seconds CV fold: Fold1 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold2 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold3 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold1 Saving _problems/test-binary-356.R CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold2 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold3 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold1 Saving _problems/test-multiclass-294.R CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 5 times in 2 thread(s)... 31.15 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 9.486 seconds 3) Running FUN 2 times in 2 thread(s)... 3.691 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 5 times in 2 thread(s)... 37.293 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 17.279 seconds 3) Running FUN 2 times in 2 thread(s)... 2.458 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 5 times in 2 thread(s)... 30.833 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 10.54 seconds 3) Running FUN 2 times in 2 thread(s)... 2.465 seconds CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold2 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold3 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 52.604 seconds subsample colsample_bytree min_child_weight learning_rate max_depth <num> <num> <num> <num> <num> 1: 1.0 0.8 1 0.1 5 2: 0.8 1.0 1 0.2 5 3: 1.0 1.0 5 0.2 5 4: 0.6 0.8 1 0.1 5 5: 0.6 0.8 5 0.2 5 6: 0.8 0.8 5 0.2 5 7: 0.8 0.8 1 0.1 1 8: 0.6 0.6 1 0.2 5 9: 0.6 1.0 1 0.1 1 10: 0.6 0.8 1 0.2 5 errorMessage <char> 1: FUN returned these elements with length > 1: Score,metric_optim_mean 2: FUN returned these elements with length > 1: Score,metric_optim_mean 3: FUN returned these elements with length > 1: Score,metric_optim_mean 4: FUN returned these elements with length > 1: Score,metric_optim_mean 5: FUN returned these elements with length > 1: Score,metric_optim_mean 6: FUN returned these elements with length > 1: Score,metric_optim_mean 7: FUN returned these elements with length > 1: Score,metric_optim_mean 8: FUN returned these elements with length > 1: Score,metric_optim_mean 9: FUN returned these elements with length > 1: Score,metric_optim_mean 10: FUN returned these elements with length > 1: Score,metric_optim_mean Saving _problems/test-regression-309.R CV fold: Fold1 Saving _problems/test-regression-352.R [ FAIL 4 | WARN 3 | SKIP 3 | PASS 22 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5', 'test-multiclass.R:57:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-binary.R:356:5'): test nested cv, grid, binary:logistic - xgboost ── Error in `.get_best_setting(results = outlist$summary, opt_metric = "metric_optim_mean", param_names = param_names, higher_better = metric_higher_better)`: nrow(best_row) == 1 is not TRUE Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-binary.R:356:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─mlexperiments:::.optimize_postprocessing(...) 12. └─mlexperiments:::.get_best_setting(...) 13. └─base::stopifnot(nrow(best_row) == 1) ── Error ('test-multiclass.R:294:5'): test nested cv, grid, multi:softprob - xgboost, with weights ── Error in `.get_best_setting(results = outlist$summary, opt_metric = "metric_optim_mean", param_names = param_names, higher_better = metric_higher_better)`: nrow(best_row) == 1 is not TRUE Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-multiclass.R:294:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─mlexperiments:::.optimize_postprocessing(...) 12. └─mlexperiments:::.get_best_setting(...) 13. └─base::stopifnot(nrow(best_row) == 1) ── Error ('test-regression.R:309:5'): test nested cv, bayesian, reg:squarederror - xgboost ── Error in `(function (FUN, bounds, saveFile = NULL, initGrid, initPoints = 4, iters.n = 3, iters.k = 1, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 2.576, eps = 0, parallel = FALSE, gsPoints = pmax(100, length(bounds)^3), convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1, ...) { startT <- Sys.time() optObj <- list() class(optObj) <- "bayesOpt" optObj$FUN <- FUN optObj$bounds <- bounds optObj$iters <- 0 optObj$initPars <- list() optObj$optPars <- list() optObj$GauProList <- list() optObj <- changeSaveFile(optObj, saveFile) checkParameters(bounds, iters.n, iters.k, otherHalting, acq, acqThresh, errorHandling, plotProgress, parallel, verbose) boundsDT <- boundsToDT(bounds) otherHalting <- formatOtherHalting(otherHalting) if (missing(initGrid) + missing(initPoints) != 1) stop("Please provide 1 of initGrid or initPoints, but not both.") if (!missing(initGrid)) { setDT(initGrid) inBounds <- checkBounds(initGrid, bounds) inBounds <- as.logical(apply(inBounds, 1, prod)) if (any(!inBounds)) stop("initGrid not within bounds.") optObj$initPars$initialSample <- "User Provided Grid" initPoints <- nrow(initGrid) } else { initGrid <- randParams(boundsDT, initPoints) optObj$initPars$initialSample <- "Latin Hypercube Sampling" } optObj$initPars$initGrid <- initGrid if (nrow(initGrid) <= 2) stop("Cannot initialize with less than 3 samples.") optObj$initPars$initPoints <- nrow(initGrid) if (initPoints <= length(bounds)) stop("initPoints must be greater than the number of FUN inputs.") sinkFile <- file() on.exit({ while (sink.number() > 0) sink() close(sinkFile) }) `%op%` <- ParMethod(parallel) if (parallel) Workers <- getDoParWorkers() else Workers <- 1 if (verbose > 0) cat("\nRunning initial scoring function", nrow(initGrid), "times in", Workers, "thread(s)...") sink(file = sinkFile) tm <- system.time(scoreSummary <- foreach(iter = 1:nrow(initGrid), .options.multicore = list(preschedule = FALSE), .combine = list, .multicombine = TRUE, .inorder = FALSE, .errorhandling = "pass", .verbose = FALSE) %op% { Params <- initGrid[get("iter"), ] Elapsed <- system.time(Result <- tryCatch({ do.call(what = FUN, args = as.list(Params)) }, error = function(e) e)) if (any(class(Result) %in% c("simpleError", "error", "condition"))) return(Result) if (!inherits(x = Result, what = "list")) stop("Object returned from FUN was not a list.") resLengths <- lengths(Result) if (!any(names(Result) == "Score")) stop("FUN must return list with element 'Score' at a minimum.") if (!is.numeric(Result$Score)) stop("Score returned from FUN was not numeric.") if (any(resLengths != 1)) { badReturns <- names(Result)[which(resLengths != 1)] stop("FUN returned these elements with length > 1: ", paste(badReturns, collapse = ",")) } data.table(Params, Elapsed = Elapsed[[3]], as.data.table(Result)) })[[3]] while (sink.number() > 0) sink() if (verbose > 0) cat(" ", tm, "seconds\n") se <- which(sapply(scoreSummary, function(cl) any(class(cl) %in% c("simpleError", "error", "condition")))) if (length(se) > 0) { print(data.table(initGrid[se, ], errorMessage = sapply(scoreSummary[se], function(x) x$message))) stop("Errors encountered in initialization are listed above.") } else { scoreSummary <- rbindlist(scoreSummary) } scoreSummary[, `:=`(("gpUtility"), rep(as.numeric(NA), nrow(scoreSummary)))] scoreSummary[, `:=`(("acqOptimum"), rep(FALSE, nrow(scoreSummary)))] scoreSummary[, `:=`(("Epoch"), rep(0, nrow(scoreSummary)))] scoreSummary[, `:=`(("Iteration"), 1:nrow(scoreSummary))] scoreSummary[, `:=`(("inBounds"), rep(TRUE, nrow(scoreSummary)))] scoreSummary[, `:=`(("errorMessage"), rep(NA, nrow(scoreSummary)))] extraRet <- setdiff(names(scoreSummary), c("Epoch", "Iteration", boundsDT$N, "inBounds", "Elapsed", "Score", "gpUtility", "acqOptimum")) setcolorder(scoreSummary, c("Epoch", "Iteration", boundsDT$N, "gpUtility", "acqOptimum", "inBounds", "Elapsed", "Score", extraRet)) if (any(scoreSummary$Elapsed < 1) & acq == "eips") { cat("\n FUN elapsed time is too low to be precise. Switching acq to 'ei'.\n") acq <- "ei" } optObj$optPars$acq <- acq optObj$optPars$kappa <- kappa optObj$optPars$eps <- eps optObj$optPars$parallel <- parallel optObj$optPars$gsPoints <- gsPoints optObj$optPars$convThresh <- convThresh optObj$optPars$acqThresh <- acqThresh optObj$scoreSummary <- scoreSummary optObj$GauProList$gpUpToDate <- FALSE optObj$iters <- nrow(scoreSummary) optObj$stopStatus <- "OK" optObj$elapsedTime <- as.numeric(difftime(Sys.time(), startT, units = "secs")) saveSoFar(optObj, 0) optObj <- addIterations(optObj, otherHalting = otherHalting, iters.n = iters.n, iters.k = iters.k, parallel = parallel, plotProgress = plotProgress, errorHandling = errorHandling, saveFile = saveFile, verbose = verbose, ...) return(optObj) })(FUN = function (...) { kwargs <- list(...) args <- .method_params_refactor(kwargs, method_helper) set.seed(self$seed) res <- do.call(private$fun_bayesian_scoring_function, args) if (isFALSE(self$metric_optimization_higher_better)) { res$Score <- as.numeric(I(res$Score * -1L)) } return(res) }, bounds = list(subsample = c(0.2, 1), colsample_bytree = c(0.2, 1), min_child_weight = c(1L, 10L), learning_rate = c(0.1, 0.2), max_depth = c(1L, 10L)), initGrid = structure(list(subsample = c(1, 0.8, 1, 0.6, 0.6, 0.8, 0.8, 0.6, 0.6, 0.6), colsample_bytree = c(0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.6, 1, 0.8), min_child_weight = c(1, 1, 5, 1, 5, 5, 1, 1, 1, 1), learning_rate = c(0.1, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.2, 0.1, 0.2), max_depth = c(5, 5, 5, 5, 5, 5, 1, 5, 1, 5)), out.attrs = list(dim = c(subsample = 3L, colsample_bytree = 3L, min_child_weight = 2L, learning_rate = 2L, max_depth = 2L), dimnames = list(subsample = c("subsample=0.6", "subsample=0.8", "subsample=1.0"), colsample_bytree = c("colsample_bytree=0.6", "colsample_bytree=0.8", "colsample_bytree=1.0"), min_child_weight = c("min_child_weight=1", "min_child_weight=5"), learning_rate = c("learning_rate=0.1", "learning_rate=0.2"), max_depth = c("max_depth=1", "max_depth=5"))), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x555d20bccd10>), iters.n = 2L, iters.k = 2L, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 3.5, eps = 0, parallel = TRUE, gsPoints = 125, convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1)`: Errors encountered in initialization are listed above. Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-regression.R:309:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper) 12. ├─base::do.call(...) 13. └─mlexperiments (local) `<fn>`(...) 14. ├─base::do.call(ParBayesianOptimization::bayesOpt, args) 15. └─ParBayesianOptimization (local) `<fn>`(...) ── Error ('test-regression.R:352:5'): test nested cv, grid - xgboost ─────────── Error in `.get_best_setting(results = outlist$summary, opt_metric = "metric_optim_mean", param_names = param_names, higher_better = metric_higher_better)`: nrow(best_row) == 1 is not TRUE Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-regression.R:352:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─mlexperiments:::.optimize_postprocessing(...) 12. └─mlexperiments:::.get_best_setting(...) 13. └─base::stopifnot(nrow(best_row) == 1) [ FAIL 4 | WARN 3 | SKIP 3 | PASS 22 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.0.6
Check: tests
Result: ERROR Running ‘testthat.R’ [3m/14m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > # https://github.com/Rdatatable/data.table/issues/5658 > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mllrnrs) > > test_check("mllrnrs") CV fold: Fold1 CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 23.138 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 59.287 seconds 3) Running FUN 2 times in 2 thread(s)... 2.352 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 32.088 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 53.526 seconds 3) Running FUN 2 times in 2 thread(s)... 2.494 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 32.707 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 81.392 seconds 3) Running FUN 2 times in 2 thread(s)... 2.429 seconds CV fold: Fold1 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold2 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold3 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold1 Saving _problems/test-binary-356.R CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold2 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold3 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold1 Saving _problems/test-multiclass-294.R CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 5 times in 2 thread(s)... 27.978 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 7.647 seconds 3) Running FUN 2 times in 2 thread(s)... 2.898 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 5 times in 2 thread(s)... 31.776 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 10.418 seconds 3) Running FUN 2 times in 2 thread(s)... 1.84 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 5 times in 2 thread(s)... 30.625 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 9.991 seconds 3) Running FUN 2 times in 2 thread(s)... 2.61 seconds CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold2 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold3 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 33.651 seconds subsample colsample_bytree min_child_weight learning_rate max_depth <num> <num> <num> <num> <num> 1: 1.0 0.8 1 0.1 5 2: 0.8 1.0 1 0.2 5 3: 1.0 1.0 5 0.2 5 4: 0.6 0.8 1 0.1 5 5: 0.6 0.8 5 0.2 5 6: 0.8 0.8 5 0.2 5 7: 0.8 0.8 1 0.1 1 8: 0.6 0.6 1 0.2 5 9: 0.6 1.0 1 0.1 1 10: 0.6 0.8 1 0.2 5 errorMessage <char> 1: FUN returned these elements with length > 1: Score,metric_optim_mean 2: FUN returned these elements with length > 1: Score,metric_optim_mean 3: FUN returned these elements with length > 1: Score,metric_optim_mean 4: FUN returned these elements with length > 1: Score,metric_optim_mean 5: FUN returned these elements with length > 1: Score,metric_optim_mean 6: FUN returned these elements with length > 1: Score,metric_optim_mean 7: FUN returned these elements with length > 1: Score,metric_optim_mean 8: FUN returned these elements with length > 1: Score,metric_optim_mean 9: FUN returned these elements with length > 1: Score,metric_optim_mean 10: FUN returned these elements with length > 1: Score,metric_optim_mean Saving _problems/test-regression-309.R CV fold: Fold1 Saving _problems/test-regression-352.R [ FAIL 4 | WARN 3 | SKIP 3 | PASS 22 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5', 'test-multiclass.R:57:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-binary.R:356:5'): test nested cv, grid, binary:logistic - xgboost ── Error in `.get_best_setting(results = outlist$summary, opt_metric = "metric_optim_mean", param_names = param_names, higher_better = metric_higher_better)`: nrow(best_row) == 1 is not TRUE Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-binary.R:356:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─mlexperiments:::.optimize_postprocessing(...) 12. └─mlexperiments:::.get_best_setting(...) 13. └─base::stopifnot(nrow(best_row) == 1) ── Error ('test-multiclass.R:294:5'): test nested cv, grid, multi:softprob - xgboost, with weights ── Error in `.get_best_setting(results = outlist$summary, opt_metric = "metric_optim_mean", param_names = param_names, higher_better = metric_higher_better)`: nrow(best_row) == 1 is not TRUE Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-multiclass.R:294:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─mlexperiments:::.optimize_postprocessing(...) 12. └─mlexperiments:::.get_best_setting(...) 13. └─base::stopifnot(nrow(best_row) == 1) ── Error ('test-regression.R:309:5'): test nested cv, bayesian, reg:squarederror - xgboost ── Error in `(function (FUN, bounds, saveFile = NULL, initGrid, initPoints = 4, iters.n = 3, iters.k = 1, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 2.576, eps = 0, parallel = FALSE, gsPoints = pmax(100, length(bounds)^3), convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1, ...) { startT <- Sys.time() optObj <- list() class(optObj) <- "bayesOpt" optObj$FUN <- FUN optObj$bounds <- bounds optObj$iters <- 0 optObj$initPars <- list() optObj$optPars <- list() optObj$GauProList <- list() optObj <- changeSaveFile(optObj, saveFile) checkParameters(bounds, iters.n, iters.k, otherHalting, acq, acqThresh, errorHandling, plotProgress, parallel, verbose) boundsDT <- boundsToDT(bounds) otherHalting <- formatOtherHalting(otherHalting) if (missing(initGrid) + missing(initPoints) != 1) stop("Please provide 1 of initGrid or initPoints, but not both.") if (!missing(initGrid)) { setDT(initGrid) inBounds <- checkBounds(initGrid, bounds) inBounds <- as.logical(apply(inBounds, 1, prod)) if (any(!inBounds)) stop("initGrid not within bounds.") optObj$initPars$initialSample <- "User Provided Grid" initPoints <- nrow(initGrid) } else { initGrid <- randParams(boundsDT, initPoints) optObj$initPars$initialSample <- "Latin Hypercube Sampling" } optObj$initPars$initGrid <- initGrid if (nrow(initGrid) <= 2) stop("Cannot initialize with less than 3 samples.") optObj$initPars$initPoints <- nrow(initGrid) if (initPoints <= length(bounds)) stop("initPoints must be greater than the number of FUN inputs.") sinkFile <- file() on.exit({ while (sink.number() > 0) sink() close(sinkFile) }) `%op%` <- ParMethod(parallel) if (parallel) Workers <- getDoParWorkers() else Workers <- 1 if (verbose > 0) cat("\nRunning initial scoring function", nrow(initGrid), "times in", Workers, "thread(s)...") sink(file = sinkFile) tm <- system.time(scoreSummary <- foreach(iter = 1:nrow(initGrid), .options.multicore = list(preschedule = FALSE), .combine = list, .multicombine = TRUE, .inorder = FALSE, .errorhandling = "pass", .verbose = FALSE) %op% { Params <- initGrid[get("iter"), ] Elapsed <- system.time(Result <- tryCatch({ do.call(what = FUN, args = as.list(Params)) }, error = function(e) e)) if (any(class(Result) %in% c("simpleError", "error", "condition"))) return(Result) if (!inherits(x = Result, what = "list")) stop("Object returned from FUN was not a list.") resLengths <- lengths(Result) if (!any(names(Result) == "Score")) stop("FUN must return list with element 'Score' at a minimum.") if (!is.numeric(Result$Score)) stop("Score returned from FUN was not numeric.") if (any(resLengths != 1)) { badReturns <- names(Result)[which(resLengths != 1)] stop("FUN returned these elements with length > 1: ", paste(badReturns, collapse = ",")) } data.table(Params, Elapsed = Elapsed[[3]], as.data.table(Result)) })[[3]] while (sink.number() > 0) sink() if (verbose > 0) cat(" ", tm, "seconds\n") se <- which(sapply(scoreSummary, function(cl) any(class(cl) %in% c("simpleError", "error", "condition")))) if (length(se) > 0) { print(data.table(initGrid[se, ], errorMessage = sapply(scoreSummary[se], function(x) x$message))) stop("Errors encountered in initialization are listed above.") } else { scoreSummary <- rbindlist(scoreSummary) } scoreSummary[, `:=`(("gpUtility"), rep(as.numeric(NA), nrow(scoreSummary)))] scoreSummary[, `:=`(("acqOptimum"), rep(FALSE, nrow(scoreSummary)))] scoreSummary[, `:=`(("Epoch"), rep(0, nrow(scoreSummary)))] scoreSummary[, `:=`(("Iteration"), 1:nrow(scoreSummary))] scoreSummary[, `:=`(("inBounds"), rep(TRUE, nrow(scoreSummary)))] scoreSummary[, `:=`(("errorMessage"), rep(NA, nrow(scoreSummary)))] extraRet <- setdiff(names(scoreSummary), c("Epoch", "Iteration", boundsDT$N, "inBounds", "Elapsed", "Score", "gpUtility", "acqOptimum")) setcolorder(scoreSummary, c("Epoch", "Iteration", boundsDT$N, "gpUtility", "acqOptimum", "inBounds", "Elapsed", "Score", extraRet)) if (any(scoreSummary$Elapsed < 1) & acq == "eips") { cat("\n FUN elapsed time is too low to be precise. Switching acq to 'ei'.\n") acq <- "ei" } optObj$optPars$acq <- acq optObj$optPars$kappa <- kappa optObj$optPars$eps <- eps optObj$optPars$parallel <- parallel optObj$optPars$gsPoints <- gsPoints optObj$optPars$convThresh <- convThresh optObj$optPars$acqThresh <- acqThresh optObj$scoreSummary <- scoreSummary optObj$GauProList$gpUpToDate <- FALSE optObj$iters <- nrow(scoreSummary) optObj$stopStatus <- "OK" optObj$elapsedTime <- as.numeric(difftime(Sys.time(), startT, units = "secs")) saveSoFar(optObj, 0) optObj <- addIterations(optObj, otherHalting = otherHalting, iters.n = iters.n, iters.k = iters.k, parallel = parallel, plotProgress = plotProgress, errorHandling = errorHandling, saveFile = saveFile, verbose = verbose, ...) return(optObj) })(FUN = function (...) { kwargs <- list(...) args <- .method_params_refactor(kwargs, method_helper) set.seed(self$seed) res <- do.call(private$fun_bayesian_scoring_function, args) if (isFALSE(self$metric_optimization_higher_better)) { res$Score <- as.numeric(I(res$Score * -1L)) } return(res) }, bounds = list(subsample = c(0.2, 1), colsample_bytree = c(0.2, 1), min_child_weight = c(1L, 10L), learning_rate = c(0.1, 0.2), max_depth = c(1L, 10L)), initGrid = structure(list(subsample = c(1, 0.8, 1, 0.6, 0.6, 0.8, 0.8, 0.6, 0.6, 0.6), colsample_bytree = c(0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.6, 1, 0.8), min_child_weight = c(1, 1, 5, 1, 5, 5, 1, 1, 1, 1), learning_rate = c(0.1, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.2, 0.1, 0.2), max_depth = c(5, 5, 5, 5, 5, 5, 1, 5, 1, 5)), out.attrs = list(dim = c(subsample = 3L, colsample_bytree = 3L, min_child_weight = 2L, learning_rate = 2L, max_depth = 2L), dimnames = list(subsample = c("subsample=0.6", "subsample=0.8", "subsample=1.0"), colsample_bytree = c("colsample_bytree=0.6", "colsample_bytree=0.8", "colsample_bytree=1.0"), min_child_weight = c("min_child_weight=1", "min_child_weight=5"), learning_rate = c("learning_rate=0.1", "learning_rate=0.2"), max_depth = c("max_depth=1", "max_depth=5"))), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x1bf794a0>), iters.n = 2L, iters.k = 2L, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 3.5, eps = 0, parallel = TRUE, gsPoints = 125, convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1)`: Errors encountered in initialization are listed above. Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-regression.R:309:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper) 12. ├─base::do.call(...) 13. └─mlexperiments (local) `<fn>`(...) 14. ├─base::do.call(ParBayesianOptimization::bayesOpt, args) 15. └─ParBayesianOptimization (local) `<fn>`(...) ── Error ('test-regression.R:352:5'): test nested cv, grid - xgboost ─────────── Error in `.get_best_setting(results = outlist$summary, opt_metric = "metric_optim_mean", param_names = param_names, higher_better = metric_higher_better)`: nrow(best_row) == 1 is not TRUE Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-regression.R:352:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─mlexperiments:::.optimize_postprocessing(...) 12. └─mlexperiments:::.get_best_setting(...) 13. └─base::stopifnot(nrow(best_row) == 1) [ FAIL 4 | WARN 3 | SKIP 3 | PASS 22 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlsurvlrnrs

Current CRAN status: ERROR: 2, OK: 11

Additional issues

donttest

Version: 0.0.6
Check: tests
Result: ERROR Running ‘testthat.R’ [2m/22m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 45.792 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 12.811 seconds 3) Running FUN 2 times in 2 thread(s)... 9.047 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 53.416 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 10.214 seconds 3) Running FUN 2 times in 2 thread(s)... 6.682 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 49.207 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.111 seconds 3) Running FUN 2 times in 2 thread(s)... 6.285 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 36.011 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 456.806 seconds 3) Running FUN 2 times in 2 thread(s)... 3.212 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 35.469 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 164.892 seconds 3) Running FUN 2 times in 2 thread(s)... 2.571 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 35.796 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 21.354 seconds 3) Running FUN 2 times in 2 thread(s)... 1.889 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 38.85 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.304 seconds 3) Running FUN 2 times in 2 thread(s)... 2.544 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 33.681 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.302 seconds 3) Running FUN 2 times in 2 thread(s)... 3.72 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 39.529 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 4.655 seconds 3) Running FUN 2 times in 2 thread(s)... 2.705 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 43.088 seconds Starting Epoch 1 1) Fitting Gaussian Process... Saving _problems/test-surv_xgboost_aft-116.R CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 33.942 seconds subsample colsample_bytree min_child_weight learning_rate max_depth <num> <num> <num> <num> <num> 1: 0.6 0.8 5 0.2 1 2: 1.0 0.8 5 0.1 5 3: 0.8 0.8 5 0.1 1 4: 0.6 0.8 5 0.2 5 5: 1.0 0.8 1 0.1 5 6: 0.8 0.8 5 0.1 5 7: 0.6 1.0 1 0.1 5 8: 0.6 1.0 5 0.2 5 9: 1.0 1.0 5 0.1 5 10: 0.6 1.0 1 0.2 1 errorMessage <char> 1: FUN returned these elements with length > 1: Score,metric_optim_mean 2: FUN returned these elements with length > 1: Score,metric_optim_mean 3: FUN returned these elements with length > 1: Score,metric_optim_mean 4: FUN returned these elements with length > 1: Score,metric_optim_mean 5: FUN returned these elements with length > 1: Score,metric_optim_mean 6: FUN returned these elements with length > 1: Score,metric_optim_mean 7: FUN returned these elements with length > 1: Score,metric_optim_mean 8: FUN returned these elements with length > 1: Score,metric_optim_mean 9: FUN returned these elements with length > 1: Score,metric_optim_mean 10: FUN returned these elements with length > 1: Score,metric_optim_mean Saving _problems/test-surv_xgboost_cox-115.R [ FAIL 2 | WARN 0 | SKIP 1 | PASS 11 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error in `if (r == 0) stop("Results from FUN have 0 variance, cannot build GP.")`: missing value where TRUE/FALSE needed Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper) 12. ├─base::do.call(...) 13. └─mlexperiments (local) `<fn>`(...) 14. ├─base::do.call(ParBayesianOptimization::bayesOpt, args) 15. └─ParBayesianOptimization (local) `<fn>`(...) 16. └─ParBayesianOptimization::addIterations(...) 17. └─ParBayesianOptimization::updateGP(...) 18. └─ParBayesianOptimization:::zeroOneScale(scoreSummary$Score) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error in `(function (FUN, bounds, saveFile = NULL, initGrid, initPoints = 4, iters.n = 3, iters.k = 1, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 2.576, eps = 0, parallel = FALSE, gsPoints = pmax(100, length(bounds)^3), convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1, ...) { startT <- Sys.time() optObj <- list() class(optObj) <- "bayesOpt" optObj$FUN <- FUN optObj$bounds <- bounds optObj$iters <- 0 optObj$initPars <- list() optObj$optPars <- list() optObj$GauProList <- list() optObj <- changeSaveFile(optObj, saveFile) checkParameters(bounds, iters.n, iters.k, otherHalting, acq, acqThresh, errorHandling, plotProgress, parallel, verbose) boundsDT <- boundsToDT(bounds) otherHalting <- formatOtherHalting(otherHalting) if (missing(initGrid) + missing(initPoints) != 1) stop("Please provide 1 of initGrid or initPoints, but not both.") if (!missing(initGrid)) { setDT(initGrid) inBounds <- checkBounds(initGrid, bounds) inBounds <- as.logical(apply(inBounds, 1, prod)) if (any(!inBounds)) stop("initGrid not within bounds.") optObj$initPars$initialSample <- "User Provided Grid" initPoints <- nrow(initGrid) } else { initGrid <- randParams(boundsDT, initPoints) optObj$initPars$initialSample <- "Latin Hypercube Sampling" } optObj$initPars$initGrid <- initGrid if (nrow(initGrid) <= 2) stop("Cannot initialize with less than 3 samples.") optObj$initPars$initPoints <- nrow(initGrid) if (initPoints <= length(bounds)) stop("initPoints must be greater than the number of FUN inputs.") sinkFile <- file() on.exit({ while (sink.number() > 0) sink() close(sinkFile) }) `%op%` <- ParMethod(parallel) if (parallel) Workers <- getDoParWorkers() else Workers <- 1 if (verbose > 0) cat("\nRunning initial scoring function", nrow(initGrid), "times in", Workers, "thread(s)...") sink(file = sinkFile) tm <- system.time(scoreSummary <- foreach(iter = 1:nrow(initGrid), .options.multicore = list(preschedule = FALSE), .combine = list, .multicombine = TRUE, .inorder = FALSE, .errorhandling = "pass", .verbose = FALSE) %op% { Params <- initGrid[get("iter"), ] Elapsed <- system.time(Result <- tryCatch({ do.call(what = FUN, args = as.list(Params)) }, error = function(e) e)) if (any(class(Result) %in% c("simpleError", "error", "condition"))) return(Result) if (!inherits(x = Result, what = "list")) stop("Object returned from FUN was not a list.") resLengths <- lengths(Result) if (!any(names(Result) == "Score")) stop("FUN must return list with element 'Score' at a minimum.") if (!is.numeric(Result$Score)) stop("Score returned from FUN was not numeric.") if (any(resLengths != 1)) { badReturns <- names(Result)[which(resLengths != 1)] stop("FUN returned these elements with length > 1: ", paste(badReturns, collapse = ",")) } data.table(Params, Elapsed = Elapsed[[3]], as.data.table(Result)) })[[3]] while (sink.number() > 0) sink() if (verbose > 0) cat(" ", tm, "seconds\n") se <- which(sapply(scoreSummary, function(cl) any(class(cl) %in% c("simpleError", "error", "condition")))) if (length(se) > 0) { print(data.table(initGrid[se, ], errorMessage = sapply(scoreSummary[se], function(x) x$message))) stop("Errors encountered in initialization are listed above.") } else { scoreSummary <- rbindlist(scoreSummary) } scoreSummary[, `:=`(("gpUtility"), rep(as.numeric(NA), nrow(scoreSummary)))] scoreSummary[, `:=`(("acqOptimum"), rep(FALSE, nrow(scoreSummary)))] scoreSummary[, `:=`(("Epoch"), rep(0, nrow(scoreSummary)))] scoreSummary[, `:=`(("Iteration"), 1:nrow(scoreSummary))] scoreSummary[, `:=`(("inBounds"), rep(TRUE, nrow(scoreSummary)))] scoreSummary[, `:=`(("errorMessage"), rep(NA, nrow(scoreSummary)))] extraRet <- setdiff(names(scoreSummary), c("Epoch", "Iteration", boundsDT$N, "inBounds", "Elapsed", "Score", "gpUtility", "acqOptimum")) setcolorder(scoreSummary, c("Epoch", "Iteration", boundsDT$N, "gpUtility", "acqOptimum", "inBounds", "Elapsed", "Score", extraRet)) if (any(scoreSummary$Elapsed < 1) & acq == "eips") { cat("\n FUN elapsed time is too low to be precise. Switching acq to 'ei'.\n") acq <- "ei" } optObj$optPars$acq <- acq optObj$optPars$kappa <- kappa optObj$optPars$eps <- eps optObj$optPars$parallel <- parallel optObj$optPars$gsPoints <- gsPoints optObj$optPars$convThresh <- convThresh optObj$optPars$acqThresh <- acqThresh optObj$scoreSummary <- scoreSummary optObj$GauProList$gpUpToDate <- FALSE optObj$iters <- nrow(scoreSummary) optObj$stopStatus <- "OK" optObj$elapsedTime <- as.numeric(difftime(Sys.time(), startT, units = "secs")) saveSoFar(optObj, 0) optObj <- addIterations(optObj, otherHalting = otherHalting, iters.n = iters.n, iters.k = iters.k, parallel = parallel, plotProgress = plotProgress, errorHandling = errorHandling, saveFile = saveFile, verbose = verbose, ...) return(optObj) })(FUN = function (...) { kwargs <- list(...) args <- .method_params_refactor(kwargs, method_helper) set.seed(self$seed) res <- do.call(private$fun_bayesian_scoring_function, args) if (isFALSE(self$metric_optimization_higher_better)) { res$Score <- as.numeric(I(res$Score * -1L)) } return(res) }, bounds = list(subsample = c(0.2, 1), colsample_bytree = c(0.2, 1), min_child_weight = c(1L, 10L), learning_rate = c(0.1, 0.2), max_depth = c(1L, 10L)), initGrid = structure(list(subsample = c(0.6, 1, 0.8, 0.6, 1, 0.8, 0.6, 0.6, 1, 0.6), colsample_bytree = c(0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 1, 1, 1), min_child_weight = c(5, 5, 5, 5, 1, 5, 1, 5, 5, 1), learning_rate = c(0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.2), max_depth = c(1, 5, 1, 5, 5, 5, 5, 5, 5, 1)), out.attrs = list(dim = c(objective = 1L, eval_metric = 1L, subsample = 3L, colsample_bytree = 3L, min_child_weight = 2L, learning_rate = 2L, max_depth = 2L), dimnames = list(objective = "objective=survival:cox", eval_metric = "eval_metric=cox-nloglik", subsample = c("subsample=0.6", "subsample=0.8", "subsample=1.0"), colsample_bytree = c("colsample_bytree=0.6", "colsample_bytree=0.8", "colsample_bytree=1.0"), min_child_weight = c("min_child_weight=1", "min_child_weight=5"), learning_rate = c("learning_rate=0.1", "learning_rate=0.2"), max_depth = c("max_depth=1", "max_depth=5"))), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55bcc6834d10>), iters.n = 2L, iters.k = 2L, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 3.5, eps = 0, parallel = TRUE, gsPoints = 125, convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1)`: Errors encountered in initialization are listed above. Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper) 12. ├─base::do.call(...) 13. └─mlexperiments (local) `<fn>`(...) 14. ├─base::do.call(ParBayesianOptimization::bayesOpt, args) 15. └─ParBayesianOptimization (local) `<fn>`(...) [ FAIL 2 | WARN 0 | SKIP 1 | PASS 11 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.0.6
Check: tests
Result: ERROR Running ‘testthat.R’ [1m/15m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 42.656 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 10.44 seconds 3) Running FUN 2 times in 2 thread(s)... 6.043 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 49.692 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 7.875 seconds 3) Running FUN 2 times in 2 thread(s)... 5.798 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 39.088 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 5.747 seconds 3) Running FUN 2 times in 2 thread(s)... 7.002 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 36.944 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 58.207 seconds 3) Running FUN 2 times in 2 thread(s)... 2.263 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 38.087 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 154.334 seconds 3) Running FUN 2 times in 2 thread(s)... 3.901 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 36.473 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... 4.045 seconds 3) Running FUN 2 times in 2 thread(s)... 2.601 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 33.409 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.023 seconds 3) Running FUN 2 times in 2 thread(s)... 3.56 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 40.704 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 3.225 seconds 3) Running FUN 2 times in 2 thread(s)... 2.454 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 43.669 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 4.733 seconds 3) Running FUN 2 times in 2 thread(s)... 2.63 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 38.037 seconds Starting Epoch 1 1) Fitting Gaussian Process... Saving _problems/test-surv_xgboost_aft-116.R CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 38.798 seconds subsample colsample_bytree min_child_weight learning_rate max_depth <num> <num> <num> <num> <num> 1: 0.6 0.8 5 0.2 1 2: 1.0 0.8 5 0.1 5 3: 0.8 0.8 5 0.1 1 4: 0.6 0.8 5 0.2 5 5: 1.0 0.8 1 0.1 5 6: 0.8 0.8 5 0.1 5 7: 0.6 1.0 1 0.1 5 8: 0.6 1.0 5 0.2 5 9: 1.0 1.0 5 0.1 5 10: 0.6 1.0 1 0.2 1 errorMessage <char> 1: FUN returned these elements with length > 1: Score,metric_optim_mean 2: FUN returned these elements with length > 1: Score,metric_optim_mean 3: FUN returned these elements with length > 1: Score,metric_optim_mean 4: FUN returned these elements with length > 1: Score,metric_optim_mean 5: FUN returned these elements with length > 1: Score,metric_optim_mean 6: FUN returned these elements with length > 1: Score,metric_optim_mean 7: FUN returned these elements with length > 1: Score,metric_optim_mean 8: FUN returned these elements with length > 1: Score,metric_optim_mean 9: FUN returned these elements with length > 1: Score,metric_optim_mean 10: FUN returned these elements with length > 1: Score,metric_optim_mean Saving _problems/test-surv_xgboost_cox-115.R [ FAIL 2 | WARN 1 | SKIP 1 | PASS 11 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error in `if (r == 0) stop("Results from FUN have 0 variance, cannot build GP.")`: missing value where TRUE/FALSE needed Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper) 12. ├─base::do.call(...) 13. └─mlexperiments (local) `<fn>`(...) 14. ├─base::do.call(ParBayesianOptimization::bayesOpt, args) 15. └─ParBayesianOptimization (local) `<fn>`(...) 16. └─ParBayesianOptimization::addIterations(...) 17. └─ParBayesianOptimization::updateGP(...) 18. └─ParBayesianOptimization:::zeroOneScale(scoreSummary$Score) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error in `(function (FUN, bounds, saveFile = NULL, initGrid, initPoints = 4, iters.n = 3, iters.k = 1, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 2.576, eps = 0, parallel = FALSE, gsPoints = pmax(100, length(bounds)^3), convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1, ...) { startT <- Sys.time() optObj <- list() class(optObj) <- "bayesOpt" optObj$FUN <- FUN optObj$bounds <- bounds optObj$iters <- 0 optObj$initPars <- list() optObj$optPars <- list() optObj$GauProList <- list() optObj <- changeSaveFile(optObj, saveFile) checkParameters(bounds, iters.n, iters.k, otherHalting, acq, acqThresh, errorHandling, plotProgress, parallel, verbose) boundsDT <- boundsToDT(bounds) otherHalting <- formatOtherHalting(otherHalting) if (missing(initGrid) + missing(initPoints) != 1) stop("Please provide 1 of initGrid or initPoints, but not both.") if (!missing(initGrid)) { setDT(initGrid) inBounds <- checkBounds(initGrid, bounds) inBounds <- as.logical(apply(inBounds, 1, prod)) if (any(!inBounds)) stop("initGrid not within bounds.") optObj$initPars$initialSample <- "User Provided Grid" initPoints <- nrow(initGrid) } else { initGrid <- randParams(boundsDT, initPoints) optObj$initPars$initialSample <- "Latin Hypercube Sampling" } optObj$initPars$initGrid <- initGrid if (nrow(initGrid) <= 2) stop("Cannot initialize with less than 3 samples.") optObj$initPars$initPoints <- nrow(initGrid) if (initPoints <= length(bounds)) stop("initPoints must be greater than the number of FUN inputs.") sinkFile <- file() on.exit({ while (sink.number() > 0) sink() close(sinkFile) }) `%op%` <- ParMethod(parallel) if (parallel) Workers <- getDoParWorkers() else Workers <- 1 if (verbose > 0) cat("\nRunning initial scoring function", nrow(initGrid), "times in", Workers, "thread(s)...") sink(file = sinkFile) tm <- system.time(scoreSummary <- foreach(iter = 1:nrow(initGrid), .options.multicore = list(preschedule = FALSE), .combine = list, .multicombine = TRUE, .inorder = FALSE, .errorhandling = "pass", .verbose = FALSE) %op% { Params <- initGrid[get("iter"), ] Elapsed <- system.time(Result <- tryCatch({ do.call(what = FUN, args = as.list(Params)) }, error = function(e) e)) if (any(class(Result) %in% c("simpleError", "error", "condition"))) return(Result) if (!inherits(x = Result, what = "list")) stop("Object returned from FUN was not a list.") resLengths <- lengths(Result) if (!any(names(Result) == "Score")) stop("FUN must return list with element 'Score' at a minimum.") if (!is.numeric(Result$Score)) stop("Score returned from FUN was not numeric.") if (any(resLengths != 1)) { badReturns <- names(Result)[which(resLengths != 1)] stop("FUN returned these elements with length > 1: ", paste(badReturns, collapse = ",")) } data.table(Params, Elapsed = Elapsed[[3]], as.data.table(Result)) })[[3]] while (sink.number() > 0) sink() if (verbose > 0) cat(" ", tm, "seconds\n") se <- which(sapply(scoreSummary, function(cl) any(class(cl) %in% c("simpleError", "error", "condition")))) if (length(se) > 0) { print(data.table(initGrid[se, ], errorMessage = sapply(scoreSummary[se], function(x) x$message))) stop("Errors encountered in initialization are listed above.") } else { scoreSummary <- rbindlist(scoreSummary) } scoreSummary[, `:=`(("gpUtility"), rep(as.numeric(NA), nrow(scoreSummary)))] scoreSummary[, `:=`(("acqOptimum"), rep(FALSE, nrow(scoreSummary)))] scoreSummary[, `:=`(("Epoch"), rep(0, nrow(scoreSummary)))] scoreSummary[, `:=`(("Iteration"), 1:nrow(scoreSummary))] scoreSummary[, `:=`(("inBounds"), rep(TRUE, nrow(scoreSummary)))] scoreSummary[, `:=`(("errorMessage"), rep(NA, nrow(scoreSummary)))] extraRet <- setdiff(names(scoreSummary), c("Epoch", "Iteration", boundsDT$N, "inBounds", "Elapsed", "Score", "gpUtility", "acqOptimum")) setcolorder(scoreSummary, c("Epoch", "Iteration", boundsDT$N, "gpUtility", "acqOptimum", "inBounds", "Elapsed", "Score", extraRet)) if (any(scoreSummary$Elapsed < 1) & acq == "eips") { cat("\n FUN elapsed time is too low to be precise. Switching acq to 'ei'.\n") acq <- "ei" } optObj$optPars$acq <- acq optObj$optPars$kappa <- kappa optObj$optPars$eps <- eps optObj$optPars$parallel <- parallel optObj$optPars$gsPoints <- gsPoints optObj$optPars$convThresh <- convThresh optObj$optPars$acqThresh <- acqThresh optObj$scoreSummary <- scoreSummary optObj$GauProList$gpUpToDate <- FALSE optObj$iters <- nrow(scoreSummary) optObj$stopStatus <- "OK" optObj$elapsedTime <- as.numeric(difftime(Sys.time(), startT, units = "secs")) saveSoFar(optObj, 0) optObj <- addIterations(optObj, otherHalting = otherHalting, iters.n = iters.n, iters.k = iters.k, parallel = parallel, plotProgress = plotProgress, errorHandling = errorHandling, saveFile = saveFile, verbose = verbose, ...) return(optObj) })(FUN = function (...) { kwargs <- list(...) args <- .method_params_refactor(kwargs, method_helper) set.seed(self$seed) res <- do.call(private$fun_bayesian_scoring_function, args) if (isFALSE(self$metric_optimization_higher_better)) { res$Score <- as.numeric(I(res$Score * -1L)) } return(res) }, bounds = list(subsample = c(0.2, 1), colsample_bytree = c(0.2, 1), min_child_weight = c(1L, 10L), learning_rate = c(0.1, 0.2), max_depth = c(1L, 10L)), initGrid = structure(list(subsample = c(0.6, 1, 0.8, 0.6, 1, 0.8, 0.6, 0.6, 1, 0.6), colsample_bytree = c(0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 1, 1, 1), min_child_weight = c(5, 5, 5, 5, 1, 5, 1, 5, 5, 1), learning_rate = c(0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.2), max_depth = c(1, 5, 1, 5, 5, 5, 5, 5, 5, 1)), out.attrs = list(dim = c(objective = 1L, eval_metric = 1L, subsample = 3L, colsample_bytree = 3L, min_child_weight = 2L, learning_rate = 2L, max_depth = 2L), dimnames = list(objective = "objective=survival:cox", eval_metric = "eval_metric=cox-nloglik", subsample = c("subsample=0.6", "subsample=0.8", "subsample=1.0"), colsample_bytree = c("colsample_bytree=0.6", "colsample_bytree=0.8", "colsample_bytree=1.0"), min_child_weight = c("min_child_weight=1", "min_child_weight=5"), learning_rate = c("learning_rate=0.1", "learning_rate=0.2"), max_depth = c("max_depth=1", "max_depth=5"))), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x250a4550>), iters.n = 2L, iters.k = 2L, otherHalting = list(timeLimit = Inf, minUtility = 0), acq = "ucb", kappa = 3.5, eps = 0, parallel = TRUE, gsPoints = 125, convThresh = 1e+08, acqThresh = 1, errorHandling = "stop", plotProgress = FALSE, verbose = 1)`: Errors encountered in initialization are listed above. Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer) 10. └─mlexperiments:::.run_optimizer(...) 11. └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper) 12. ├─base::do.call(...) 13. └─mlexperiments (local) `<fn>`(...) 14. ├─base::do.call(ParBayesianOptimization::bayesOpt, args) 15. └─ParBayesianOptimization (local) `<fn>`(...) [ FAIL 2 | WARN 1 | SKIP 1 | PASS 11 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package rBiasCorrection

Current CRAN status: OK: 13

Package sjtable2df

Current CRAN status: OK: 13

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.