CRAN Package Check Results for Package mlexperiments

Last updated on 2026-01-19 11:49:04 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.0.8 10.92 207.23 218.15 ERROR
r-devel-linux-x86_64-debian-gcc 1.0.0 7.67 335.51 343.18 OK
r-devel-linux-x86_64-fedora-clang 1.0.0 21.00 860.61 881.61 OK
r-devel-windows-x86_64 0.0.8 12.00 415.00 427.00 OK
r-patched-linux-x86_64 0.0.8 13.05 203.99 217.04 ERROR
r-release-linux-x86_64 1.0.0 11.31 557.08 568.39 OK
r-release-macos-arm64 1.0.0 2.00 166.00 168.00 OK
r-release-macos-x86_64 1.0.0 8.00 444.00 452.00 OK
r-release-windows-x86_64 1.0.0 13.00 431.00 444.00 OK
r-oldrel-macos-arm64 1.0.0 2.00 159.00 161.00 OK
r-oldrel-macos-x86_64 1.0.0 8.00 821.00 829.00 OK
r-oldrel-windows-x86_64 1.0.0 15.00 492.00 507.00 OK

Check Details

Version: 0.0.8
Check: Rd cross-references
Result: NOTE Unknown package ‘ParBayesianOptimization’ in Rd xrefs Flavors: r-devel-linux-x86_64-debian-clang, r-patched-linux-x86_64

Version: 0.0.8
Check: tests
Result: ERROR Running ‘testthat.R’ [116s/118s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlexperiments) > > test_check("mlexperiments") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold4 CV fold: Fold5 Testing for identical folds in 2 and 1. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 Saving _problems/test-knn-115.R Saving _problems/test-knn-182.R CV fold: Fold1 Saving _problems/test-knn-257.R CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_classification-125.R Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_classification-205.R CV fold: Fold1 Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold2 Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold3 Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_regression-125.R Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_regression-203.R CV fold: Fold1 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold2 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold3 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. [ FAIL 7 | WARN 0 | SKIP 1 | PASS 58 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-knn.R:115:5'): test bayesian tuner, initGrid - knn ───────────── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─knn_optimization$execute(k = 3) at test-knn.R:115:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-knn.R:182:5'): test bayesian tuner, initPoints - LearnerKnn ──── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─knn_optimization$execute(k = 3) at test-knn.R:182:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-knn.R:257:5'): test nested cv, bayesian - knn ────────────────── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─knn_optimization$execute() at test-knn.R:257:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<list>`, fold_test = `<list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_classification.R:125:5'): test bayesian tuner, initGrid, classification - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute(k = 3) at test-rpart_classification.R:125:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_classification.R:205:5'): test nested cv, bayesian, classification - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute() at test-rpart_classification.R:205:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<list>`, fold_test = `<list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_regression.R:125:5'): test bayesian tuner, initGrid, regression - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute(k = 3) at test-rpart_regression.R:125:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_regression.R:203:5'): test nested cv, bayesian, regression - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute() at test-rpart_regression.R:203:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<list>`, fold_test = `<list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) [ FAIL 7 | WARN 0 | SKIP 1 | PASS 58 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.0.8
Check: tests
Result: ERROR Running ‘testthat.R’ [120s/146s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlexperiments) > > test_check("mlexperiments") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold4 CV fold: Fold5 Testing for identical folds in 2 and 1. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerGlm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold4 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold5 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 Saving _problems/test-knn-115.R Saving _problems/test-knn-182.R CV fold: Fold1 Saving _problems/test-knn-257.R CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerLm'. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_classification-125.R Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_classification-205.R CV fold: Fold1 Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold2 Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold3 Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. Classification: using 'mean misclassification error' as optimization metric. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_regression-125.R Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-rpart_regression-203.R CV fold: Fold1 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold2 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold3 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. [ FAIL 7 | WARN 0 | SKIP 1 | PASS 58 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-knn.R:115:5'): test bayesian tuner, initGrid - knn ───────────── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─knn_optimization$execute(k = 3) at test-knn.R:115:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-knn.R:182:5'): test bayesian tuner, initPoints - LearnerKnn ──── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─knn_optimization$execute(k = 3) at test-knn.R:182:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-knn.R:257:5'): test nested cv, bayesian - knn ────────────────── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─knn_optimization$execute() at test-knn.R:257:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<list>`, fold_test = `<list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_classification.R:125:5'): test bayesian tuner, initGrid, classification - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute(k = 3) at test-rpart_classification.R:125:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_classification.R:205:5'): test nested cv, bayesian, classification - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute() at test-rpart_classification.R:205:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<list>`, fold_test = `<list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_regression.R:125:5'): test bayesian tuner, initGrid, regression - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute(k = 3) at test-rpart_regression.R:125:5 2. └─private$select_optimizer(self, private) 3. └─BayesianOptimizer$new(...) 4. └─mlexperiments (local) initialize(...) ── Error ('test-rpart_regression.R:203:5'): test nested cv, bayesian, regression - rpart ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─rpart_optimization$execute() at test-rpart_regression.R:203:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<list>`, fold_test = `<list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) [ FAIL 7 | WARN 0 | SKIP 1 | PASS 58 ] Error: ! Test failures. Execution halted Flavor: r-patched-linux-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.