Last updated on 2025-04-02 23:01:00 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.3.4 | 4.53 | 220.67 | 225.20 | OK | |
r-devel-linux-x86_64-debian-gcc | 0.3.4 | 2.16 | 147.80 | 149.96 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.3.4 | 368.80 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.3.4 | 393.75 | ERROR | |||
r-devel-macos-arm64 | 0.3.4 | 171.00 | OK | |||
r-devel-macos-x86_64 | 0.3.4 | 354.00 | OK | |||
r-devel-windows-x86_64 | 0.3.4 | 6.00 | 206.00 | 212.00 | OK | |
r-patched-linux-x86_64 | 0.3.4 | 4.02 | 208.15 | 212.17 | OK | |
r-release-linux-x86_64 | 0.3.4 | 3.80 | 203.50 | 207.30 | OK | |
r-release-macos-arm64 | 0.3.4 | 164.00 | OK | |||
r-release-macos-x86_64 | 0.3.4 | 257.00 | OK | |||
r-release-windows-x86_64 | 0.3.4 | 7.00 | 201.00 | 208.00 | OK | |
r-oldrel-macos-arm64 | 0.3.4 | OK | ||||
r-oldrel-macos-x86_64 | 0.3.4 | 299.00 | OK | |||
r-oldrel-windows-x86_64 | 0.3.4 | 7.00 | 243.00 | 250.00 | OK |
Version: 0.3.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [101s/122s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(rBiasCorrection)
>
> local_edition(3)
>
> test_check("rBiasCorrection")
[20250402_172054.]: Entered 'clean_dt'-Function
[20250402_172054.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172054.]: got experimental data
[20250402_172054.]: Entered 'clean_dt'-Function
[20250402_172054.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172054.]: got calibration data
[20250402_172054.]: ### Starting with regression calculations ###
[20250402_172054.]: Entered 'regression_type1'-Function
[20250402_172054.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172054.]: Logging df_agg: CpG#1
[20250402_172054.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172054.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172054.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172054.]: Entered 'hyperbolic_regression'-Function
[20250402_172054.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172054.]: Entered 'cubic_regression'-Function
[20250402_172054.]: 'cubic_regression': minmax = FALSE
[20250402_172054.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172054.]: Logging df_agg: CpG#2
[20250402_172054.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172054.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172054.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172054.]: Entered 'hyperbolic_regression'-Function
[20250402_172054.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172055.]: Logging df_agg: CpG#3
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172055.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172055.]: Logging df_agg: CpG#4
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172055.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172055.]: Logging df_agg: CpG#5
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172055.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172055.]: Logging df_agg: CpG#6
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172055.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172055.]: Logging df_agg: CpG#7
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172055.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172055.]: Logging df_agg: CpG#8
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172055.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172055.]: Entered 'cubic_regression'-Function
[20250402_172055.]: 'cubic_regression': minmax = FALSE
[20250402_172055.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172055.]: Logging df_agg: CpG#9
[20250402_172055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172055.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172055.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172055.]: Entered 'hyperbolic_regression'-Function
[20250402_172055.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172056.]: Entered 'cubic_regression'-Function
[20250402_172056.]: 'cubic_regression': minmax = FALSE
[20250402_172056.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172056.]: Logging df_agg: row_means
[20250402_172056.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172056.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172056.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172056.]: Entered 'hyperbolic_regression'-Function
[20250402_172056.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172056.]: Entered 'cubic_regression'-Function
[20250402_172056.]: 'cubic_regression': minmax = FALSE
[20250402_172059.]: Entered 'regression_type1'-Function
[20250402_172059.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172100.]: Logging df_agg: CpG#1
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172100.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172100.]: Logging df_agg: CpG#2
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172100.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172100.]: Logging df_agg: CpG#3
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172100.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172100.]: Logging df_agg: CpG#4
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172100.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172100.]: Logging df_agg: CpG#5
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172100.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172100.]: Logging df_agg: CpG#6
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172100.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172100.]: Logging df_agg: CpG#7
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172100.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172100.]: Logging df_agg: CpG#8
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172100.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172100.]: Entered 'cubic_regression'-Function
[20250402_172100.]: 'cubic_regression': minmax = FALSE
[20250402_172100.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172100.]: Logging df_agg: CpG#9
[20250402_172100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172100.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172100.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172100.]: Entered 'hyperbolic_regression'-Function
[20250402_172100.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172101.]: Entered 'cubic_regression'-Function
[20250402_172101.]: 'cubic_regression': minmax = FALSE
[20250402_172101.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172101.]: Logging df_agg: row_means
[20250402_172101.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172101.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172101.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172101.]: Entered 'hyperbolic_regression'-Function
[20250402_172101.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172101.]: Entered 'cubic_regression'-Function
[20250402_172101.]: 'cubic_regression': minmax = FALSE
[20250402_172102.]: Entered 'clean_dt'-Function
[20250402_172102.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172102.]: got experimental data
[20250402_172102.]: Entered 'clean_dt'-Function
[20250402_172102.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172102.]: got calibration data
[20250402_172102.]: ### Starting with regression calculations ###
[20250402_172102.]: Entered 'regression_type1'-Function
[20250402_172103.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172103.]: Logging df_agg: CpG#1
[20250402_172103.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172103.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172103.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172103.]: Entered 'hyperbolic_regression'-Function
[20250402_172103.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172103.]: Entered 'cubic_regression'-Function
[20250402_172103.]: 'cubic_regression': minmax = FALSE
[20250402_172103.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172103.]: Logging df_agg: CpG#2
[20250402_172103.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172103.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172103.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172103.]: Entered 'hyperbolic_regression'-Function
[20250402_172103.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172103.]: Entered 'cubic_regression'-Function
[20250402_172103.]: 'cubic_regression': minmax = FALSE
[20250402_172103.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172103.]: Logging df_agg: CpG#3
[20250402_172103.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172103.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172103.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172103.]: Entered 'hyperbolic_regression'-Function
[20250402_172103.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172104.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172104.]: Logging df_agg: CpG#4
[20250402_172104.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172104.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172104.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172104.]: Entered 'hyperbolic_regression'-Function
[20250402_172104.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172104.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172104.]: Logging df_agg: CpG#5
[20250402_172104.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172104.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172104.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172104.]: Entered 'hyperbolic_regression'-Function
[20250402_172104.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172103.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172103.]: Logging df_agg: CpG#6
[20250402_172103.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172103.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172103.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172103.]: Entered 'hyperbolic_regression'-Function
[20250402_172103.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172104.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172104.]: Logging df_agg: CpG#7
[20250402_172104.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172104.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172104.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172104.]: Entered 'hyperbolic_regression'-Function
[20250402_172104.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172104.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172104.]: Logging df_agg: CpG#8
[20250402_172104.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172104.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172104.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172104.]: Entered 'hyperbolic_regression'-Function
[20250402_172104.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172104.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172104.]: Logging df_agg: CpG#9
[20250402_172104.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172104.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172104.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172104.]: Entered 'hyperbolic_regression'-Function
[20250402_172104.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172104.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172104.]: Logging df_agg: row_means
[20250402_172104.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172104.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172104.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172104.]: Entered 'hyperbolic_regression'-Function
[20250402_172104.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172104.]: Entered 'cubic_regression'-Function
[20250402_172104.]: 'cubic_regression': minmax = FALSE
[20250402_172106.]: Entered 'regression_type1'-Function
[20250402_172107.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172107.]: Logging df_agg: CpG#1
[20250402_172107.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172107.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172107.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172107.]: Entered 'hyperbolic_regression'-Function
[20250402_172107.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172108.]: Logging df_agg: CpG#2
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172108.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172108.]: Logging df_agg: CpG#3
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172108.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172108.]: Logging df_agg: CpG#4
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172108.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172108.]: Logging df_agg: CpG#5
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172108.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172108.]: Logging df_agg: CpG#6
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172108.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172108.]: Logging df_agg: CpG#7
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172108.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172108.]: Logging df_agg: CpG#8
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172108.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172108.]: Entered 'cubic_regression'-Function
[20250402_172108.]: 'cubic_regression': minmax = FALSE
[20250402_172108.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172108.]: Logging df_agg: CpG#9
[20250402_172108.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172108.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172108.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172108.]: Entered 'hyperbolic_regression'-Function
[20250402_172108.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172109.]: Entered 'cubic_regression'-Function
[20250402_172109.]: 'cubic_regression': minmax = FALSE
[20250402_172109.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172109.]: Logging df_agg: row_means
[20250402_172109.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172109.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172109.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172109.]: Entered 'hyperbolic_regression'-Function
[20250402_172109.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172109.]: Entered 'cubic_regression'-Function
[20250402_172109.]: 'cubic_regression': minmax = FALSE
[20250402_172110.]: Entered 'solving_equations'-Function
[20250402_172110.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: -2.23222990163966
[20250402_172110.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.232
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.1698489850618
[20250402_172110.]: Samplename: 12.5
Root: 12.17
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.4781920312644
[20250402_172110.]: Samplename: 25
Root: 24.478
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.173044740918
[20250402_172110.]: Samplename: 37.5
Root: 38.173
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3349371964438
[20250402_172110.]: Samplename: 50
Root: 52.335
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4582773627666
[20250402_172110.]: Samplename: 62.5
Root: 65.458
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.0090795260796
[20250402_172110.]: Samplename: 75
Root: 75.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.5271920968417
[20250402_172110.]: Samplename: 87.5
Root: 81.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.400893095062
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.401
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#2
Hyperbolic solved: 1.13660501904968
[20250402_172110.]: Samplename: 0
Root: 1.137
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.4129696733689
[20250402_172110.]: Samplename: 12.5
Root: 11.413
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.174000526428
[20250402_172110.]: Samplename: 25
Root: 26.174
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.1050449117028
[20250402_172110.]: Samplename: 37.5
Root: 35.105
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.685500330611
[20250402_172110.]: Samplename: 50
Root: 47.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.1440494417104
[20250402_172110.]: Samplename: 62.5
Root: 67.144
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7644668894086
[20250402_172110.]: Samplename: 75
Root: 75.764
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.4054158616395
[20250402_172110.]: Samplename: 87.5
Root: 84.405
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.94827248399
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.948
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0.51235653688495
[20250402_172110.]: Samplename: 0
Root: 0.512
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7523884294604
[20250402_172110.]: Samplename: 12.5
Root: 10.752
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.5218907947761
[20250402_172110.]: Samplename: 25
Root: 25.522
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5270462675211
[20250402_172110.]: Samplename: 37.5
Root: 36.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7909245028224
[20250402_172110.]: Samplename: 50
Root: 50.791
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8686317550184
[20250402_172110.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 77.5524188495235
[20250402_172110.]: Samplename: 75
Root: 77.552
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.4374617358174
[20250402_172110.]: Samplename: 87.5
Root: 80.437
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.704024900825
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.704
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: -0.519503092357606
[20250402_172110.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.52
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.4934147844872
[20250402_172110.]: Samplename: 12.5
Root: 12.493
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2685420024115
[20250402_172110.]: Samplename: 25
Root: 24.269
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.0817128465023
[20250402_172110.]: Samplename: 37.5
Root: 38.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.5843181174811
[20250402_172110.]: Samplename: 50
Root: 48.584
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.6722399183037
[20250402_172110.]: Samplename: 62.5
Root: 67.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.1549277799119
[20250402_172110.]: Samplename: 75
Root: 74.155
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.8821797890026
[20250402_172110.]: Samplename: 87.5
Root: 82.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.0791269023
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.079
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#5
Hyperbolic solved: 2.41558626275183
[20250402_172110.]: Samplename: 0
Root: 2.416
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.1649674907454
[20250402_172110.]: Samplename: 12.5
Root: 10.165
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.9830820412762
[20250402_172110.]: Samplename: 25
Root: 23.983
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2773619900429
[20250402_172110.]: Samplename: 37.5
Root: 37.277
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.8659386543864
[20250402_172110.]: Samplename: 50
Root: 50.866
--> Root in between the borders! Added to results.
Hyperbolic solved: 62.4342273571069
[20250402_172110.]: Samplename: 62.5
Root: 62.434
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.3915260534323
[20250402_172110.]: Samplename: 75
Root: 76.392
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.159788778566
[20250402_172110.]: Samplename: 87.5
Root: 86.16
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.267759893323
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.268
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0.138163748613034
[20250402_172110.]: Samplename: 0
Root: 0.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.8635558881981
[20250402_172110.]: Samplename: 12.5
Root: 11.864
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5107449550797
[20250402_172110.]: Samplename: 25
Root: 26.511
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3205073050661
[20250402_172110.]: Samplename: 37.5
Root: 35.321
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.0570767570666
[20250402_172110.]: Samplename: 50
Root: 50.057
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9602944381018
[20250402_172110.]: Samplename: 62.5
Root: 64.96
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.66890571617
[20250402_172110.]: Samplename: 75
Root: 73.669
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.1266086585036
[20250402_172110.]: Samplename: 87.5
Root: 87.127
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.261637014212
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.262
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: -1.37238087287012
[20250402_172110.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.372
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.1993162352498
[20250402_172110.]: Samplename: 12.5
Root: 10.199
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.595178967123
[20250402_172110.]: Samplename: 25
Root: 24.595
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.8310421041787
[20250402_172110.]: Samplename: 37.5
Root: 37.831
--> Root in between the borders! Added to results.
Hyperbolic solved: 53.5588739724067
[20250402_172110.]: Samplename: 50
Root: 53.559
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.9364947980258
[20250402_172110.]: Samplename: 62.5
Root: 65.936
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7361094434913
[20250402_172110.]: Samplename: 75
Root: 75.736
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.432823759854
[20250402_172110.]: Samplename: 87.5
Root: 79.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 103.004237013737
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 103.004
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#8
Hyperbolic solved: 2.80068218205093
[20250402_172110.]: Samplename: 0
Root: 2.801
--> Root in between the borders! Added to results.
Hyperbolic solved: 9.27535134596596
[20250402_172110.]: Samplename: 12.5
Root: 9.275
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4762621928197
[20250402_172110.]: Samplename: 25
Root: 25.476
--> Root in between the borders! Added to results.
Hyperbolic solved: 34.0122075735416
[20250402_172110.]: Samplename: 37.5
Root: 34.012
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.7842655662325
[20250402_172110.]: Samplename: 50
Root: 51.784
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.6732311906145
[20250402_172110.]: Samplename: 62.5
Root: 64.673
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.4326978859189
[20250402_172110.]: Samplename: 75
Root: 78.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.3427232852719
[20250402_172110.]: Samplename: 87.5
Root: 81.343
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.964406640583
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.964
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: -2.13403721845678
[20250402_172110.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.134
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.5082192457956
[20250402_172110.]: Samplename: 12.5
Root: 10.508
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.9164567253388
[20250402_172110.]: Samplename: 25
Root: 26.916
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.8334779159501
[20250402_172110.]: Samplename: 37.5
Root: 36.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.0097895977263
[20250402_172110.]: Samplename: 50
Root: 52.01
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8930527921581
[20250402_172110.]: Samplename: 62.5
Root: 64.893
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.5671055499357
[20250402_172110.]: Samplename: 75
Root: 74.567
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.5294954832669
[20250402_172110.]: Samplename: 87.5
Root: 84.529
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.047146466811
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.047
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0.290941088603071
[20250402_172110.]: Samplename: 0
Root: 0.291
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0412408065783
[20250402_172110.]: Samplename: 12.5
Root: 11.041
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4081501047696
[20250402_172110.]: Samplename: 25
Root: 25.408
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5243719024532
[20250402_172110.]: Samplename: 37.5
Root: 36.524
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7348824329668
[20250402_172110.]: Samplename: 50
Root: 50.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.3135209766198
[20250402_172110.]: Samplename: 62.5
Root: 65.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.5342709041132
[20250402_172110.]: Samplename: 75
Root: 75.534
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.2411228425212
[20250402_172110.]: Samplename: 87.5
Root: 83.241
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.666942781592
[20250402_172110.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.667
--> '100 < root < 110' --> substitute 100
[20250402_172110.]: ### Starting with regression calculations ###
[20250402_172110.]: Entered 'regression_type1'-Function
[20250402_172111.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.1698489850618, 24.4781920312644, 38.173044740918, 52.3349371964438, 65.4582773627666, 75.0090795260796, 81.5271920968417, 100)
[20250402_172111.]: Logging df_agg: CpG#1
[20250402_172111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172111.]: c(0, 12.1698489850618, 24.4781920312644, 38.173044740918, 52.3349371964438, 65.4582773627666, 75.0090795260796, 81.5271920968417, 100)
[20250402_172111.]: Entered 'hyperbolic_regression'-Function
[20250402_172111.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172111.]: Entered 'cubic_regression'-Function
[20250402_172111.]: 'cubic_regression': minmax = FALSE
[20250402_172111.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.13660501904968, 11.4129696733689, 26.174000526428, 35.1050449117028, 47.685500330611, 67.1440494417104, 75.7644668894086, 84.4054158616395, 100)
[20250402_172111.]: Logging df_agg: CpG#2
[20250402_172111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172111.]: c(1.13660501904968, 11.4129696733689, 26.174000526428, 35.1050449117028, 47.685500330611, 67.1440494417104, 75.7644668894086, 84.4054158616395, 100)
[20250402_172111.]: Entered 'hyperbolic_regression'-Function
[20250402_172111.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172111.]: Entered 'cubic_regression'-Function
[20250402_172111.]: 'cubic_regression': minmax = FALSE
[20250402_172111.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.51235653688495, 10.7523884294604, 25.5218907947761, 36.5270462675211, 50.7909245028224, 64.8686317550184, 77.5524188495235, 80.4374617358174, 100)
[20250402_172111.]: Logging df_agg: CpG#3
[20250402_172111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172111.]: c(0.51235653688495, 10.7523884294604, 25.5218907947761, 36.5270462675211, 50.7909245028224, 64.8686317550184, 77.5524188495235, 80.4374617358174, 100)
[20250402_172111.]: Entered 'hyperbolic_regression'-Function
[20250402_172111.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172111.]: Entered 'cubic_regression'-Function
[20250402_172111.]: 'cubic_regression': minmax = FALSE
[20250402_172111.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.4934147844872, 24.2685420024115, 38.0817128465023, 48.5843181174811, 67.6722399183037, 74.1549277799119, 82.8821797890026, 100)
[20250402_172111.]: Logging df_agg: CpG#4
[20250402_172111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172111.]: c(0, 12.4934147844872, 24.2685420024115, 38.0817128465023, 48.5843181174811, 67.6722399183037, 74.1549277799119, 82.8821797890026, 100)
[20250402_172111.]: Entered 'hyperbolic_regression'-Function
[20250402_172111.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172112.]: Entered 'cubic_regression'-Function
[20250402_172112.]: 'cubic_regression': minmax = FALSE
[20250402_172112.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.41558626275183, 10.1649674907454, 23.9830820412762, 37.2773619900429, 50.8659386543864, 62.4342273571069, 76.3915260534323, 86.159788778566, 100)
[20250402_172112.]: Logging df_agg: CpG#5
[20250402_172112.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172112.]: c(2.41558626275183, 10.1649674907454, 23.9830820412762, 37.2773619900429, 50.8659386543864, 62.4342273571069, 76.3915260534323, 86.159788778566, 100)
[20250402_172112.]: Entered 'hyperbolic_regression'-Function
[20250402_172112.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172112.]: Entered 'cubic_regression'-Function
[20250402_172112.]: 'cubic_regression': minmax = FALSE
[20250402_172111.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.138163748613034, 11.8635558881981, 26.5107449550797, 35.3205073050661, 50.0570767570666, 64.9602944381018, 73.66890571617, 87.1266086585036, 100)
[20250402_172111.]: Logging df_agg: CpG#6
[20250402_172111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172111.]: c(0.138163748613034, 11.8635558881981, 26.5107449550797, 35.3205073050661, 50.0570767570666, 64.9602944381018, 73.66890571617, 87.1266086585036, 100)
[20250402_172111.]: Entered 'hyperbolic_regression'-Function
[20250402_172111.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172111.]: Entered 'cubic_regression'-Function
[20250402_172111.]: 'cubic_regression': minmax = FALSE
[20250402_172111.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.1993162352498, 24.595178967123, 37.8310421041787, 53.5588739724067, 65.9364947980258, 75.7361094434913, 79.432823759854, 100)
[20250402_172111.]: Logging df_agg: CpG#7
[20250402_172111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172111.]: c(0, 10.1993162352498, 24.595178967123, 37.8310421041787, 53.5588739724067, 65.9364947980258, 75.7361094434913, 79.432823759854, 100)
[20250402_172111.]: Entered 'hyperbolic_regression'-Function
[20250402_172111.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172112.]: Entered 'cubic_regression'-Function
[20250402_172112.]: 'cubic_regression': minmax = FALSE
[20250402_172112.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.80068218205093, 9.27535134596596, 25.4762621928197, 34.0122075735416, 51.7842655662325, 64.6732311906145, 78.4326978859189, 81.3427232852719, 100)
[20250402_172112.]: Logging df_agg: CpG#8
[20250402_172112.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172112.]: c(2.80068218205093, 9.27535134596596, 25.4762621928197, 34.0122075735416, 51.7842655662325, 64.6732311906145, 78.4326978859189, 81.3427232852719, 100)
[20250402_172112.]: Entered 'hyperbolic_regression'-Function
[20250402_172112.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172112.]: Entered 'cubic_regression'-Function
[20250402_172112.]: 'cubic_regression': minmax = FALSE
[20250402_172112.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.5082192457956, 26.9164567253388, 36.8334779159501, 52.0097895977263, 64.8930527921581, 74.5671055499357, 84.5294954832669, 100)
[20250402_172112.]: Logging df_agg: CpG#9
[20250402_172112.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172112.]: c(0, 10.5082192457956, 26.9164567253388, 36.8334779159501, 52.0097895977263, 64.8930527921581, 74.5671055499357, 84.5294954832669, 100)
[20250402_172112.]: Entered 'hyperbolic_regression'-Function
[20250402_172112.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172112.]: Entered 'cubic_regression'-Function
[20250402_172112.]: 'cubic_regression': minmax = FALSE
[20250402_172112.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.290941088603071, 11.0412408065783, 25.4081501047696, 36.5243719024532, 50.7348824329668, 65.3135209766198, 75.5342709041132, 83.2411228425212, 100)
[20250402_172112.]: Logging df_agg: row_means
[20250402_172112.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172112.]: c(0.290941088603071, 11.0412408065783, 25.4081501047696, 36.5243719024532, 50.7348824329668, 65.3135209766198, 75.5342709041132, 83.2411228425212, 100)
[20250402_172112.]: Entered 'hyperbolic_regression'-Function
[20250402_172112.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172112.]: Entered 'cubic_regression'-Function
[20250402_172112.]: 'cubic_regression': minmax = FALSE
[20250402_172113.]: Entered 'solving_equations'-Function
[20250402_172113.]: Solving cubic regression for CpG#1
Coefficients: -1.03617340067344Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 0
Root: 1.334
--> Root in between the borders! Added to results.
Coefficients: -8.34150673400678Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 12.5
Root: 11.446
--> Root in between the borders! Added to results.
Coefficients: -15.3881734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 25
Root: 22.228
--> Root in between the borders! Added to results.
Coefficients: -24.2801734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 37.5
Root: 36.374
--> Root in between the borders! Added to results.
Coefficients: -34.9006734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 50
Root: 52.044
--> Root in between the borders! Added to results.
Coefficients: -46.3541734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 62.5
Root: 66.144
--> Root in between the borders! Added to results.
Coefficients: -55.8931734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 75
Root: 75.864
--> Root in between the borders! Added to results.
Coefficients: -63.0981734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 87.5
Root: 82.254
--> Root in between the borders! Added to results.
Coefficients: -91.0461734006735Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.877
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#2
Coefficients: -0.283329966329966Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 0
Root: 0.549
--> Root in between the borders! Added to results.
Coefficients: -6.33999663299663Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 12.5
Root: 11.533
--> Root in between the borders! Added to results.
Coefficients: -15.93932996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 25
Root: 26.628
--> Root in between the borders! Added to results.
Coefficients: -22.33732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 37.5
Root: 35.509
--> Root in between the borders! Added to results.
Coefficients: -32.22832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 50
Root: 47.851
--> Root in between the borders! Added to results.
Coefficients: -49.96332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 62.5
Root: 66.893
--> Root in between the borders! Added to results.
Coefficients: -58.96582996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 75
Root: 75.431
--> Root in between the borders! Added to results.
Coefficients: -68.8366632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 87.5
Root: 84.118
--> Root in between the borders! Added to results.
Coefficients: -90.57732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.287
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#3
Coefficients: -0.90294781144782Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 0
Root: 1.441
--> Root in between the borders! Added to results.
Coefficients: -6.57294781144782Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 12.5
Root: 10.568
--> Root in between the borders! Added to results.
Coefficients: -15.4289478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 25
Root: 24.796
--> Root in between the borders! Added to results.
Coefficients: -22.6129478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 37.5
Root: 35.952
--> Root in between the borders! Added to results.
Coefficients: -32.7754478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 50
Root: 50.684
--> Root in between the borders! Added to results.
Coefficients: -43.8889478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 62.5
Root: 65.142
--> Root in between the borders! Added to results.
Coefficients: -54.9754478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 75
Root: 77.905
--> Root in between the borders! Added to results.
Coefficients: -57.6562811447812Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 87.5
Root: 80.767
--> Root in between the borders! Added to results.
Coefficients: -80.6649478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.38
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#4
Coefficients: -0.597449494949524Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 0
Root: 0.858
--> Root in between the borders! Added to results.
Coefficients: -8.25278282828286Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 12.5
Root: 12.086
--> Root in between the borders! Added to results.
Coefficients: -15.8034494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 25
Root: 23.316
--> Root in between the borders! Added to results.
Coefficients: -25.5274494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 37.5
Root: 37.383
--> Root in between the borders! Added to results.
Coefficients: -33.6369494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 50
Root: 48.353
--> Root in between the borders! Added to results.
Coefficients: -50.2554494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 62.5
Root: 68.082
--> Root in between the borders! Added to results.
Coefficients: -56.5394494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 75
Root: 74.615
--> Root in between the borders! Added to results.
Coefficients: -65.5927828282829Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 87.5
Root: 83.254
--> Root in between the borders! Added to results.
Coefficients: -88.3214494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.715
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#5
Coefficients: -0.623961279461278Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 0
Root: 1.458
--> Root in between the borders! Added to results.
Coefficients: -4.76796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 12.5
Root: 10.347
--> Root in between the borders! Added to results.
Coefficients: -12.7259612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 25
Root: 24.815
--> Root in between the borders! Added to results.
Coefficients: -21.1599612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 37.5
Root: 37.902
--> Root in between the borders! Added to results.
Coefficients: -30.6954612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 50
Root: 50.977
--> Root in between the borders! Added to results.
Coefficients: -39.6579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 62.5
Root: 62.126
--> Root in between the borders! Added to results.
Coefficients: -51.6829612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 75
Root: 75.852
--> Root in between the borders! Added to results.
Coefficients: -61.0146279461279Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 87.5
Root: 85.767
--> Root in between the borders! Added to results.
Coefficients: -76.0699612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.743
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#6
Coefficients: -0.196072390572403Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 0
Root: 0.349
--> Root in between the borders! Added to results.
Coefficients: -6.73873905723907Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 12.5
Root: 11.718
--> Root in between the borders! Added to results.
Coefficients: -15.8880723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 25
Root: 26.396
--> Root in between the borders! Added to results.
Coefficients: -22.0000723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 37.5
Root: 35.301
--> Root in between the borders! Added to results.
Coefficients: -33.4445723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 50
Root: 50.134
--> Root in between the borders! Added to results.
Coefficients: -46.9000723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 62.5
Root: 64.993
--> Root in between the borders! Added to results.
Coefficients: -55.8320723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 75
Root: 73.639
--> Root in between the borders! Added to results.
Coefficients: -71.5454057239057Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 87.5
Root: 87.043
--> Root in between the borders! Added to results.
Coefficients: -89.6560723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.329
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#7
Coefficients: -1.21495454545456Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 0
Root: 2.13
--> Root in between the borders! Added to results.
Coefficients: -5.39562121212123Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 12.5
Root: 9.973
--> Root in between the borders! Added to results.
Coefficients: -11.2649545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 25
Root: 22.206
--> Root in between the borders! Added to results.
Coefficients: -17.4509545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 37.5
Root: 35.814
--> Root in between the borders! Added to results.
Coefficients: -26.0314545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 50
Root: 53.28
--> Root in between the borders! Added to results.
Coefficients: -33.9649545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 62.5
Root: 66.598
--> Root in between the borders! Added to results.
Coefficients: -41.1689545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 75
Root: 76.575
--> Root in between the borders! Added to results.
Coefficients: -44.1356212121212Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 87.5
Root: 80.219
--> Root in between the borders! Added to results.
Coefficients: -67.2229545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.506
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#8
Coefficients: -1.09618518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 0
Root: 2.016
--> Root in between the borders! Added to results.
Coefficients: -5.44685185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 12.5
Root: 9.458
--> Root in between the borders! Added to results.
Coefficients: -16.9301851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 25
Root: 26.35
--> Root in between the borders! Added to results.
Coefficients: -23.3501851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 37.5
Root: 34.728
--> Root in between the borders! Added to results.
Coefficients: -37.6251851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 50
Root: 51.781
--> Root in between the borders! Added to results.
Coefficients: -48.8261851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 62.5
Root: 64.192
--> Root in between the borders! Added to results.
Coefficients: -61.6676851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 75
Root: 77.804
--> Root in between the borders! Added to results.
Coefficients: -64.5101851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 87.5
Root: 80.758
--> Root in between the borders! Added to results.
Coefficients: -86.0601851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.834
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for CpG#9
Coefficients: -0.989865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 0
Root: 1.475
--> Root in between the borders! Added to results.
Coefficients: -6.39586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 12.5
Root: 10.12
--> Root in between the borders! Added to results.
Coefficients: -14.7058653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 25
Root: 24.844
--> Root in between the borders! Added to results.
Coefficients: -20.6238653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 37.5
Root: 35.327
--> Root in between the borders! Added to results.
Coefficients: -31.3958653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 50
Root: 51.855
--> Root in between the borders! Added to results.
Coefficients: -42.6858653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 62.5
Root: 65.265
--> Root in between the borders! Added to results.
Coefficients: -52.9033653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 75
Root: 74.915
--> Root in between the borders! Added to results.
Coefficients: -65.492531986532Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 87.5
Root: 84.67
--> Root in between the borders! Added to results.
Coefficients: -92.9898653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.082
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: Solving cubic regression for row_means
Coefficients: -0.771215488215478Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 0
Root: 1.287
--> Root in between the borders! Added to results.
Coefficients: -6.47247474747474Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 12.5
Root: 10.847
--> Root in between the borders! Added to results.
Coefficients: -14.8972154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 25
Root: 24.737
--> Root in between the borders! Added to results.
Coefficients: -22.1492154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 37.5
Root: 36.02
--> Root in between the borders! Added to results.
Coefficients: -32.5259932659933Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 50
Root: 50.639
--> Root in between the borders! Added to results.
Coefficients: -44.7218821548821Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 62.5
Root: 65.497
--> Root in between the borders! Added to results.
Coefficients: -54.4032154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 75
Root: 75.751
--> Root in between the borders! Added to results.
Coefficients: -62.4313636363636Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 87.5
Root: 83.403
--> Root in between the borders! Added to results.
Coefficients: -84.7343265993266Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_172113.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.573
--> '100 < root < 110' --> substitute 100
[20250402_172113.]: ### Starting with regression calculations ###
[20250402_172113.]: Entered 'regression_type1'-Function
[20250402_172114.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.33401421032361, 11.4464168649749, 22.2276337872205, 36.3736525123061, 52.0438002576114, 66.1443249010516, 75.864353455204, 82.2543632311352, 100)
[20250402_172114.]: Logging df_agg: CpG#1
[20250402_172114.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172114.]: c(1.33401421032361, 11.4464168649749, 22.2276337872205, 36.3736525123061, 52.0438002576114, 66.1443249010516, 75.864353455204, 82.2543632311352, 100)
[20250402_172114.]: Entered 'hyperbolic_regression'-Function
[20250402_172114.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172114.]: Entered 'cubic_regression'-Function
[20250402_172114.]: 'cubic_regression': minmax = FALSE
[20250402_172114.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.548629212600373, 11.5334942360619, 26.6282428579604, 35.509046298922, 47.8509004857888, 66.8931714037845, 75.4313106569591, 84.1184829423144, 100)
[20250402_172114.]: Logging df_agg: CpG#2
[20250402_172114.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172114.]: c(0.548629212600373, 11.5334942360619, 26.6282428579604, 35.509046298922, 47.8509004857888, 66.8931714037845, 75.4313106569591, 84.1184829423144, 100)
[20250402_172114.]: Entered 'hyperbolic_regression'-Function
[20250402_172114.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.44072654766676, 10.5677206698424, 24.7956529081379, 35.9519154174756, 50.6840128730794, 65.1415439321287, 77.905329956603, 80.767122912268, 100)
[20250402_172115.]: Logging df_agg: CpG#3
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(1.44072654766676, 10.5677206698424, 24.7956529081379, 35.9519154174756, 50.6840128730794, 65.1415439321287, 77.905329956603, 80.767122912268, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.858335161098707, 12.0855313705714, 23.3164186343997, 37.3830070750476, 48.3526815121735, 68.0824341519511, 74.6152796890845, 83.2536964524017, 100)
[20250402_172115.]: Logging df_agg: CpG#4
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(0.858335161098707, 12.0855313705714, 23.3164186343997, 37.3830070750476, 48.3526815121735, 68.0824341519511, 74.6152796890845, 83.2536964524017, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.45815885872158, 10.3470047908467, 24.8150085082726, 37.902202434763, 50.9768599213374, 62.1264944886855, 75.8515940245021, 85.766767827257, 100)
[20250402_172115.]: Logging df_agg: CpG#5
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(1.45815885872158, 10.3470047908467, 24.8150085082726, 37.902202434763, 50.9768599213374, 62.1264944886855, 75.8515940245021, 85.766767827257, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172114.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.349289777689709, 11.718186424346, 26.3959840124278, 35.3009019621403, 50.1335677299922, 64.9927731962402, 73.6385743787925, 87.0433563205787, 100)
[20250402_172114.]: Logging df_agg: CpG#6
[20250402_172114.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172114.]: c(0.349289777689709, 11.718186424346, 26.3959840124278, 35.3009019621403, 50.1335677299922, 64.9927731962402, 73.6385743787925, 87.0433563205787, 100)
[20250402_172114.]: Entered 'hyperbolic_regression'-Function
[20250402_172114.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.12953119975094, 9.97257098314617, 22.2059559709309, 35.8143078912917, 53.2798169545709, 66.5977007121001, 76.5753720723248, 80.2192820049015, 100)
[20250402_172115.]: Logging df_agg: CpG#7
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(2.12953119975094, 9.97257098314617, 22.2059559709309, 35.8143078912917, 53.2798169545709, 66.5977007121001, 76.5753720723248, 80.2192820049015, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.01554288922103, 9.4575966611002, 26.3496745529898, 34.7279879576046, 51.7805031081493, 64.1918409049086, 77.803935663705, 80.7580214011447, 100)
[20250402_172115.]: Logging df_agg: CpG#8
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(2.01554288922103, 9.4575966611002, 26.3496745529898, 34.7279879576046, 51.7805031081493, 64.1918409049086, 77.803935663705, 80.7580214011447, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.4748520772151, 10.1196517054927, 24.843641290935, 35.3267260117639, 51.8546848506009, 65.2652545321194, 74.9150847744697, 84.6698630277555, 100)
[20250402_172115.]: Logging df_agg: CpG#9
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(1.4748520772151, 10.1196517054927, 24.843641290935, 35.3267260117639, 51.8546848506009, 65.2652545321194, 74.9150847744697, 84.6698630277555, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172115.]: Entered 'cubic_regression'-Function
[20250402_172115.]: 'cubic_regression': minmax = FALSE
[20250402_172115.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.28674218034491, 10.8474062821721, 24.737384351039, 36.0200815402329, 50.6393222494118, 65.4974814516656, 75.7507242961973, 83.4027053898488, 100)
[20250402_172115.]: Logging df_agg: row_means
[20250402_172115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172115.]: c(1.28674218034491, 10.8474062821721, 24.737384351039, 36.0200815402329, 50.6393222494118, 65.4974814516656, 75.7507242961973, 83.4027053898488, 100)
[20250402_172115.]: Entered 'hyperbolic_regression'-Function
[20250402_172115.]: 'hyperbolic_regression': minmax = FALSE
[20250402_172116.]: Entered 'cubic_regression'-Function
[20250402_172116.]: 'cubic_regression': minmax = FALSE
[20250402_172116.]: Entered 'solving_equations'-Function
[20250402_172116.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 79.8673456895745
[20250402_172116.]: Samplename: Sample#1
Root: 79.867
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.7900184340805
[20250402_172116.]: Samplename: Sample#10
Root: 29.79
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.6525415639691
[20250402_172116.]: Samplename: Sample#2
Root: 41.653
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.4652090254513
[20250402_172116.]: Samplename: Sample#3
Root: 57.465
--> Root in between the borders! Added to results.
Hyperbolic solved: 9.2007130627765
[20250402_172116.]: Samplename: Sample#4
Root: 9.201
--> Root in between the borders! Added to results.
Hyperbolic solved: 21.8059600538131
[20250402_172116.]: Samplename: Sample#5
Root: 21.806
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.083796735881
[20250402_172116.]: Samplename: Sample#6
Root: 23.084
--> Root in between the borders! Added to results.
Hyperbolic solved: 45.5034245569385
[20250402_172116.]: Samplename: Sample#7
Root: 45.503
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6987904075704
[20250402_172116.]: Samplename: Sample#8
Root: 85.699
--> Root in between the borders! Added to results.
Hyperbolic solved: -3.66512807265101
[20250402_172116.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -3.665
--> '-10 < root < 0' --> substitute 0
[20250402_172116.]: Solving cubic regression for CpG#2
Coefficients: -60.0166632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172116.]: Samplename: Sample#1
Root: 76.388
--> Root in between the borders! Added to results.
Coefficients: -19.33132996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172116.]: Samplename: Sample#10
Root: 31.437
--> Root in between the borders! Added to results.
Coefficients: -28.1616632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172116.]: Samplename: Sample#2
Root: 42.956
--> Root in between the borders! Added to results.
Coefficients: -42.07832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172116.]: Samplename: Sample#3
Root: 58.838
--> Root in between the borders! Added to results.
Coefficients: -2.49332996632996Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: Sample#4
Root: 4.715
--> Root in between the borders! Added to results.
Coefficients: -11.94832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: Sample#5
Root: 20.644
--> Root in between the borders! Added to results.
Coefficients: -10.36332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: Sample#6
Root: 18.159
--> Root in between the borders! Added to results.
Coefficients: -26.77132996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: Sample#7
Root: 41.228
--> Root in between the borders! Added to results.
Coefficients: -70.81532996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: Sample#8
Root: 85.785
--> Root in between the borders! Added to results.
Coefficients: -1.41332996632996Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: Sample#9
Root: 2.703
--> Root in between the borders! Added to results.
[20250402_172117.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 74.9349254100163
[20250402_172117.]: Samplename: Sample#1
Root: 74.935
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.6844381581493
[20250402_172117.]: Samplename: Sample#10
Root: 27.684
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.852019114379
[20250402_172117.]: Samplename: Sample#2
Root: 41.852
--> Root in between the borders! Added to results.
Hyperbolic solved: 55.8325180209418
[20250402_172117.]: Samplename: Sample#3
Root: 55.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.03519251633153
[20250402_172117.]: Samplename: Sample#4
Root: 8.035
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.1066315721853
[20250402_172117.]: Samplename: Sample#5
Root: 24.107
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2419820027673
[20250402_172117.]: Samplename: Sample#6
Root: 26.242
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.0944922703422
[20250402_172117.]: Samplename: Sample#7
Root: 44.094
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.8279382585787
[20250402_172117.]: Samplename: Sample#8
Root: 85.828
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.666482392725758
[20250402_172117.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.666
--> '-10 < root < 0' --> substitute 0
[20250402_172117.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 76.3495278640236
[20250402_172117.]: Samplename: Sample#1
Root: 76.35
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.2568553570941
[20250402_172117.]: Samplename: Sample#10
Root: 28.257
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.4089839390807
[20250402_172117.]: Samplename: Sample#2
Root: 43.409
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.5435236860146
[20250402_172117.]: Samplename: Sample#3
Root: 58.544
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.3087045690571
[20250402_172117.]: Samplename: Sample#4
Root: 10.309
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.183045165659
[20250402_172117.]: Samplename: Sample#5
Root: 22.183
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.1337769553499
[20250402_172117.]: Samplename: Sample#6
Root: 27.134
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.8321096080155
[20250402_172117.]: Samplename: Sample#7
Root: 41.832
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6890189074743
[20250402_172117.]: Samplename: Sample#8
Root: 85.689
--> Root in between the borders! Added to results.
Hyperbolic solved: 2.42232098177269
[20250402_172117.]: Samplename: Sample#9
Root: 2.422
--> Root in between the borders! Added to results.
[20250402_172117.]: Solving cubic regression for CpG#5
Coefficients: -48.4612946127946Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#1
Root: 72.291
--> Root in between the borders! Added to results.
Coefficients: -14.2119612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#10
Root: 27.256
--> Root in between the borders! Added to results.
Coefficients: -25.9451041366041Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#2
Root: 44.648
--> Root in between the borders! Added to results.
Coefficients: -32.6879612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#3
Root: 53.538
--> Root in between the borders! Added to results.
Coefficients: -4.69796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#4
Root: 10.206
--> Root in between the borders! Added to results.
Coefficients: -12.0579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#5
Root: 23.695
--> Root in between the borders! Added to results.
Coefficients: -13.9179612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#6
Root: 26.778
--> Root in between the borders! Added to results.
Coefficients: -24.9119612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#7
Root: 43.226
--> Root in between the borders! Added to results.
Coefficients: -63.7579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#8
Root: 88.581
--> Root in between the borders! Added to results.
Coefficients: -0.587961279461277Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: Sample#9
Root: 1.375
--> Root in between the borders! Added to results.
[20250402_172117.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 79.2780593622711
[20250402_172117.]: Samplename: Sample#1
Root: 79.278
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.2012458984074
[20250402_172117.]: Samplename: Sample#10
Root: 30.201
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.8474393624107
[20250402_172117.]: Samplename: Sample#2
Root: 41.847
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.8423517321508
[20250402_172117.]: Samplename: Sample#3
Root: 56.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.87856046118588
[20250402_172117.]: Samplename: Sample#4
Root: 8.879
--> Root in between the borders! Added to results.
Hyperbolic solved: 18.69015950004
[20250402_172117.]: Samplename: Sample#5
Root: 18.69
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.9309263534749
[20250402_172117.]: Samplename: Sample#6
Root: 29.931
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.8148560027697
[20250402_172117.]: Samplename: Sample#7
Root: 42.815
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.7501831416152
[20250402_172117.]: Samplename: Sample#8
Root: 86.75
--> Root in between the borders! Added to results.
Hyperbolic solved: 1.51516194985267
[20250402_172117.]: Samplename: Sample#9
Root: 1.515
--> Root in between the borders! Added to results.
[20250402_172117.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 78.2565592569279
[20250402_172117.]: Samplename: Sample#1
Root: 78.257
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.488739349283
[20250402_172117.]: Samplename: Sample#10
Root: 25.489
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.3712258915285
[20250402_172117.]: Samplename: Sample#2
Root: 47.371
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.3142673189298
[20250402_172117.]: Samplename: Sample#3
Root: 58.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7212231360573
[20250402_172117.]: Samplename: Sample#4
Root: 11.721
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.3797485992238
[20250402_172117.]: Samplename: Sample#5
Root: 25.38
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.4095133062523
[20250402_172117.]: Samplename: Sample#6
Root: 29.41
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.5755071469546
[20250402_172117.]: Samplename: Sample#7
Root: 44.576
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.9628731021447
[20250402_172117.]: Samplename: Sample#8
Root: 85.963
--> Root in between the borders! Added to results.
Hyperbolic solved: -4.1645647175353
[20250402_172117.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -4.165
--> '-10 < root < 0' --> substitute 0
[20250402_172117.]: Solving cubic regression for CpG#8
Coefficients: -56.4535185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#1
Root: 72.337
--> Root in between the borders! Added to results.
Coefficients: -18.6701851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#10
Root: 28.678
--> Root in between the borders! Added to results.
Coefficients: -24.0387566137566Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#2
Root: 35.595
--> Root in between the borders! Added to results.
Coefficients: -43.9451851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#3
Root: 58.861
--> Root in between the borders! Added to results.
Coefficients: -5.70018518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#4
Root: 9.868
--> Root in between the borders! Added to results.
Coefficients: -12.4851851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#5
Root: 20.166
--> Root in between the borders! Added to results.
Coefficients: -26.8801851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#6
Root: 39.117
--> Root in between the borders! Added to results.
Coefficients: -31.8421851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#7
Root: 45.08
--> Root in between the borders! Added to results.
Coefficients: -68.0081851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#8
Root: 84.373
--> Root in between the borders! Added to results.
Coefficients: 2.07981481481482Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -4.026
--> '-10 < root < 0' --> substitute 0
[20250402_172117.]: Solving cubic regression for CpG#9
Coefficients: -60.8091986531987Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#1
Root: 81.262
--> Root in between the borders! Added to results.
Coefficients: -14.5538653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#10
Root: 24.569
--> Root in between the borders! Added to results.
Coefficients: -26.6344367484368Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#2
Root: 45.035
--> Root in between the borders! Added to results.
Coefficients: -35.4783653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#3
Root: 57.113
--> Root in between the borders! Added to results.
Coefficients: -4.73586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#4
Root: 7.362
--> Root in between the borders! Added to results.
Coefficients: -12.5308653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#5
Root: 20.907
--> Root in between the borders! Added to results.
Coefficients: -21.9358653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#6
Root: 37.545
--> Root in between the borders! Added to results.
Coefficients: -25.1998653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#7
Root: 42.828
--> Root in between the borders! Added to results.
Coefficients: -70.5118653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#8
Root: 88.082
--> Root in between the borders! Added to results.
Coefficients: -0.505865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: Sample#9
Root: 0.749
--> Root in between the borders! Added to results.
[20250402_172117.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 77.0692797356261
[20250402_172117.]: Samplename: Sample#1
Root: 77.069
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.3620040447844
[20250402_172117.]: Samplename: Sample#10
Root: 28.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.5026170660315
[20250402_172117.]: Samplename: Sample#2
Root: 42.503
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.2972045344154
[20250402_172117.]: Samplename: Sample#3
Root: 57.297
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.82704040274281
[20250402_172117.]: Samplename: Sample#4
Root: 8.827
--> Root in between the borders! Added to results.
Hyperbolic solved: 21.8102591233667
[20250402_172117.]: Samplename: Sample#5
Root: 21.81
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.722865717687
[20250402_172117.]: Samplename: Sample#6
Root: 28.723
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.4105098027891
[20250402_172117.]: Samplename: Sample#7
Root: 43.411
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.4143551699061
[20250402_172117.]: Samplename: Sample#8
Root: 86.414
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.237019926848022
[20250402_172117.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.237
--> '-10 < root < 0' --> substitute 0
[20250402_172117.]: Entered 'solving_equations'-Function
[20250402_172117.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: -2.23222990163966
[20250402_172117.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.232
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.1698489850618
[20250402_172117.]: Samplename: 12.5
Root: 12.17
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.4781920312644
[20250402_172117.]: Samplename: 25
Root: 24.478
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.173044740918
[20250402_172117.]: Samplename: 37.5
Root: 38.173
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3349371964438
[20250402_172117.]: Samplename: 50
Root: 52.335
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4582773627666
[20250402_172117.]: Samplename: 62.5
Root: 65.458
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.0090795260796
[20250402_172117.]: Samplename: 75
Root: 75.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.5271920968417
[20250402_172117.]: Samplename: 87.5
Root: 81.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.400893095062
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.401
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving cubic regression for CpG#2
Coefficients: -0.283329966329966Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 0
Root: 0.549
--> Root in between the borders! Added to results.
Coefficients: -6.33999663299663Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 12.5
Root: 11.533
--> Root in between the borders! Added to results.
Coefficients: -15.93932996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 25
Root: 26.628
--> Root in between the borders! Added to results.
Coefficients: -22.33732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 37.5
Root: 35.509
--> Root in between the borders! Added to results.
Coefficients: -32.22832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 50
Root: 47.851
--> Root in between the borders! Added to results.
Coefficients: -49.96332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 62.5
Root: 66.893
--> Root in between the borders! Added to results.
Coefficients: -58.96582996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 75
Root: 75.431
--> Root in between the borders! Added to results.
Coefficients: -68.8366632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 87.5
Root: 84.118
--> Root in between the borders! Added to results.
Coefficients: -90.57732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.287
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0.51235653688495
[20250402_172117.]: Samplename: 0
Root: 0.512
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7523884294604
[20250402_172117.]: Samplename: 12.5
Root: 10.752
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.5218907947761
[20250402_172117.]: Samplename: 25
Root: 25.522
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5270462675211
[20250402_172117.]: Samplename: 37.5
Root: 36.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7909245028224
[20250402_172117.]: Samplename: 50
Root: 50.791
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8686317550184
[20250402_172117.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 77.5524188495235
[20250402_172117.]: Samplename: 75
Root: 77.552
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.4374617358174
[20250402_172117.]: Samplename: 87.5
Root: 80.437
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.704024900825
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.704
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: -0.519503092357606
[20250402_172117.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.52
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.4934147844872
[20250402_172117.]: Samplename: 12.5
Root: 12.493
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2685420024115
[20250402_172117.]: Samplename: 25
Root: 24.269
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.0817128465023
[20250402_172117.]: Samplename: 37.5
Root: 38.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.5843181174811
[20250402_172117.]: Samplename: 50
Root: 48.584
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.6722399183037
[20250402_172117.]: Samplename: 62.5
Root: 67.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.1549277799119
[20250402_172117.]: Samplename: 75
Root: 74.155
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.8821797890026
[20250402_172117.]: Samplename: 87.5
Root: 82.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.0791269023
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.079
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving cubic regression for CpG#5
Coefficients: -0.623961279461278Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 0
Root: 1.458
--> Root in between the borders! Added to results.
Coefficients: -4.76796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 12.5
Root: 10.347
--> Root in between the borders! Added to results.
Coefficients: -12.7259612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 25
Root: 24.815
--> Root in between the borders! Added to results.
Coefficients: -21.1599612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 37.5
Root: 37.902
--> Root in between the borders! Added to results.
Coefficients: -30.6954612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 50
Root: 50.977
--> Root in between the borders! Added to results.
Coefficients: -39.6579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 62.5
Root: 62.126
--> Root in between the borders! Added to results.
Coefficients: -51.6829612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 75
Root: 75.852
--> Root in between the borders! Added to results.
Coefficients: -61.0146279461279Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 87.5
Root: 85.767
--> Root in between the borders! Added to results.
Coefficients: -76.0699612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.743
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0.138163748613034
[20250402_172117.]: Samplename: 0
Root: 0.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.8635558881981
[20250402_172117.]: Samplename: 12.5
Root: 11.864
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5107449550797
[20250402_172117.]: Samplename: 25
Root: 26.511
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3205073050661
[20250402_172117.]: Samplename: 37.5
Root: 35.321
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.0570767570666
[20250402_172117.]: Samplename: 50
Root: 50.057
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9602944381018
[20250402_172117.]: Samplename: 62.5
Root: 64.96
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.66890571617
[20250402_172117.]: Samplename: 75
Root: 73.669
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.1266086585036
[20250402_172117.]: Samplename: 87.5
Root: 87.127
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.261637014212
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.262
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: -1.37238087287012
[20250402_172117.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.372
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.1993162352498
[20250402_172117.]: Samplename: 12.5
Root: 10.199
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.595178967123
[20250402_172117.]: Samplename: 25
Root: 24.595
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.8310421041787
[20250402_172117.]: Samplename: 37.5
Root: 37.831
--> Root in between the borders! Added to results.
Hyperbolic solved: 53.5588739724067
[20250402_172117.]: Samplename: 50
Root: 53.559
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.9364947980258
[20250402_172117.]: Samplename: 62.5
Root: 65.936
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7361094434913
[20250402_172117.]: Samplename: 75
Root: 75.736
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.432823759854
[20250402_172117.]: Samplename: 87.5
Root: 79.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 103.004237013737
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 103.004
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving cubic regression for CpG#8
Coefficients: -1.09618518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 0
Root: 2.016
--> Root in between the borders! Added to results.
Coefficients: -5.44685185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 12.5
Root: 9.458
--> Root in between the borders! Added to results.
Coefficients: -16.9301851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 25
Root: 26.35
--> Root in between the borders! Added to results.
Coefficients: -23.3501851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 37.5
Root: 34.728
--> Root in between the borders! Added to results.
Coefficients: -37.6251851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 50
Root: 51.781
--> Root in between the borders! Added to results.
Coefficients: -48.8261851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 62.5
Root: 64.192
--> Root in between the borders! Added to results.
Coefficients: -61.6676851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 75
Root: 77.804
--> Root in between the borders! Added to results.
Coefficients: -64.5101851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 87.5
Root: 80.758
--> Root in between the borders! Added to results.
Coefficients: -86.0601851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.834
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving cubic regression for CpG#9
Coefficients: -0.989865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 0
Root: 1.475
--> Root in between the borders! Added to results.
Coefficients: -6.39586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 12.5
Root: 10.12
--> Root in between the borders! Added to results.
Coefficients: -14.7058653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 25
Root: 24.844
--> Root in between the borders! Added to results.
Coefficients: -20.6238653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 37.5
Root: 35.327
--> Root in between the borders! Added to results.
Coefficients: -31.3958653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 50
Root: 51.855
--> Root in between the borders! Added to results.
Coefficients: -42.6858653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 62.5
Root: 65.265
--> Root in between the borders! Added to results.
Coefficients: -52.9033653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 75
Root: 74.915
--> Root in between the borders! Added to results.
Coefficients: -65.492531986532Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 87.5
Root: 84.67
--> Root in between the borders! Added to results.
Coefficients: -92.9898653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.082
--> '100 < root < 110' --> substitute 100
[20250402_172117.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0.290941088603071
[20250402_172117.]: Samplename: 0
Root: 0.291
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0412408065783
[20250402_172117.]: Samplename: 12.5
Root: 11.041
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4081501047696
[20250402_172117.]: Samplename: 25
Root: 25.408
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5243719024532
[20250402_172117.]: Samplename: 37.5
Root: 36.524
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7348824329668
[20250402_172117.]: Samplename: 50
Root: 50.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.3135209766198
[20250402_172117.]: Samplename: 62.5
Root: 65.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.5342709041132
[20250402_172117.]: Samplename: 75
Root: 75.534
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.2411228425212
[20250402_172117.]: Samplename: 87.5
Root: 83.241
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.666942781592
[20250402_172117.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.667
--> '100 < root < 110' --> substitute 100
[20250402_172118.]: Entered 'clean_dt'-Function
[20250402_172118.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172118.]: got experimental data
[20250402_172118.]: Entered 'clean_dt'-Function
[20250402_172118.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172118.]: got calibration data
[20250402_172118.]: ### Starting with regression calculations ###
[20250402_172118.]: Entered 'regression_type1'-Function
[20250402_172118.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172118.]: Logging df_agg: CpG#1
[20250402_172118.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172118.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172118.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172118.]: Entered 'hyperbolic_regression'-Function
[20250402_172118.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: Entered 'cubic_regression'-Function
[20250402_172119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172119.]: Logging df_agg: CpG#2
[20250402_172119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172119.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172119.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172119.]: Entered 'hyperbolic_regression'-Function
[20250402_172119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: Entered 'cubic_regression'-Function
[20250402_172119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172119.]: Logging df_agg: CpG#3
[20250402_172119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172119.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172119.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172119.]: Entered 'hyperbolic_regression'-Function
[20250402_172119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: Entered 'cubic_regression'-Function
[20250402_172119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172119.]: Logging df_agg: CpG#4
[20250402_172119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172119.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172119.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172119.]: Entered 'hyperbolic_regression'-Function
[20250402_172119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: Entered 'cubic_regression'-Function
[20250402_172120.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172120.]: Logging df_agg: CpG#5
[20250402_172120.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172120.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172120.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172120.]: Entered 'hyperbolic_regression'-Function
[20250402_172120.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: Entered 'cubic_regression'-Function
[20250402_172120.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172119.]: Logging df_agg: CpG#6
[20250402_172119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172119.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172119.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172119.]: Entered 'hyperbolic_regression'-Function
[20250402_172119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: Entered 'cubic_regression'-Function
[20250402_172119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172119.]: Logging df_agg: CpG#7
[20250402_172119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172119.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172119.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172119.]: Entered 'hyperbolic_regression'-Function
[20250402_172119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: Entered 'cubic_regression'-Function
[20250402_172119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172119.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172119.]: Logging df_agg: CpG#8
[20250402_172119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172119.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172119.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172119.]: Entered 'hyperbolic_regression'-Function
[20250402_172119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: Entered 'cubic_regression'-Function
[20250402_172120.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172120.]: Logging df_agg: CpG#9
[20250402_172120.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172120.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172120.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172120.]: Entered 'hyperbolic_regression'-Function
[20250402_172120.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: Entered 'cubic_regression'-Function
[20250402_172120.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172120.]: Logging df_agg: row_means
[20250402_172120.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172120.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172120.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172120.]: Entered 'hyperbolic_regression'-Function
[20250402_172120.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172120.]: Entered 'cubic_regression'-Function
[20250402_172120.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172122.]: Entered 'regression_type1'-Function
[20250402_172123.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172123.]: Logging df_agg: CpG#1
[20250402_172123.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172123.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172123.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172123.]: Entered 'hyperbolic_regression'-Function
[20250402_172123.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: Entered 'cubic_regression'-Function
[20250402_172124.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172124.]: Logging df_agg: CpG#2
[20250402_172124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172124.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172124.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172124.]: Entered 'hyperbolic_regression'-Function
[20250402_172124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: Entered 'cubic_regression'-Function
[20250402_172124.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172124.]: Logging df_agg: CpG#3
[20250402_172124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172124.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172124.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172124.]: Entered 'hyperbolic_regression'-Function
[20250402_172124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: Entered 'cubic_regression'-Function
[20250402_172124.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172124.]: Logging df_agg: CpG#4
[20250402_172124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172124.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172124.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172124.]: Entered 'hyperbolic_regression'-Function
[20250402_172124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: Entered 'cubic_regression'-Function
[20250402_172125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172125.]: Logging df_agg: CpG#5
[20250402_172125.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172125.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172125.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172125.]: Entered 'hyperbolic_regression'-Function
[20250402_172125.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: Entered 'cubic_regression'-Function
[20250402_172125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172123.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172124.]: Logging df_agg: CpG#6
[20250402_172124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172124.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172124.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172124.]: Entered 'hyperbolic_regression'-Function
[20250402_172124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: Entered 'cubic_regression'-Function
[20250402_172124.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172124.]: Logging df_agg: CpG#7
[20250402_172124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172124.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172124.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172124.]: Entered 'hyperbolic_regression'-Function
[20250402_172124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: Entered 'cubic_regression'-Function
[20250402_172124.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172124.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172124.]: Logging df_agg: CpG#8
[20250402_172124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172124.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172124.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172124.]: Entered 'hyperbolic_regression'-Function
[20250402_172124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: Entered 'cubic_regression'-Function
[20250402_172125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172125.]: Logging df_agg: CpG#9
[20250402_172125.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172125.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172125.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172125.]: Entered 'hyperbolic_regression'-Function
[20250402_172125.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: Entered 'cubic_regression'-Function
[20250402_172125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172125.]: Logging df_agg: row_means
[20250402_172125.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172125.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172125.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172125.]: Entered 'hyperbolic_regression'-Function
[20250402_172125.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172125.]: Entered 'cubic_regression'-Function
[20250402_172125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172127.]: Entered 'clean_dt'-Function
[20250402_172127.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172127.]: got experimental data
[20250402_172127.]: Entered 'clean_dt'-Function
[20250402_172127.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172127.]: got calibration data
[20250402_172127.]: ### Starting with regression calculations ###
[20250402_172127.]: Entered 'regression_type1'-Function
[20250402_172127.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172128.]: Logging df_agg: CpG#1
[20250402_172128.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172128.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172128.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172128.]: Entered 'hyperbolic_regression'-Function
[20250402_172128.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172128.]: Entered 'cubic_regression'-Function
[20250402_172128.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172128.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172128.]: Logging df_agg: CpG#2
[20250402_172128.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172128.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172128.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172128.]: Entered 'hyperbolic_regression'-Function
[20250402_172128.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172128.]: Entered 'cubic_regression'-Function
[20250402_172128.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172128.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172128.]: Logging df_agg: CpG#3
[20250402_172128.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172128.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172128.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172128.]: Entered 'hyperbolic_regression'-Function
[20250402_172129.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: Entered 'cubic_regression'-Function
[20250402_172129.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172129.]: Logging df_agg: CpG#4
[20250402_172129.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172129.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172129.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172129.]: Entered 'hyperbolic_regression'-Function
[20250402_172129.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: Entered 'cubic_regression'-Function
[20250402_172129.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172129.]: Logging df_agg: CpG#5
[20250402_172129.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172129.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172129.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172129.]: Entered 'hyperbolic_regression'-Function
[20250402_172129.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172130.]: Entered 'cubic_regression'-Function
[20250402_172130.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172128.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172128.]: Logging df_agg: CpG#6
[20250402_172128.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172128.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172128.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172128.]: Entered 'hyperbolic_regression'-Function
[20250402_172128.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: Entered 'cubic_regression'-Function
[20250402_172129.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172129.]: Logging df_agg: CpG#7
[20250402_172129.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172129.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172129.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172129.]: Entered 'hyperbolic_regression'-Function
[20250402_172129.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: Entered 'cubic_regression'-Function
[20250402_172129.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172129.]: Logging df_agg: CpG#8
[20250402_172129.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172129.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172129.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172129.]: Entered 'hyperbolic_regression'-Function
[20250402_172129.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: Entered 'cubic_regression'-Function
[20250402_172129.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172129.]: Logging df_agg: CpG#9
[20250402_172129.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172129.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172129.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172129.]: Entered 'hyperbolic_regression'-Function
[20250402_172129.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172129.]: Entered 'cubic_regression'-Function
[20250402_172129.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172130.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172130.]: Logging df_agg: row_means
[20250402_172130.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172130.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172130.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172130.]: Entered 'hyperbolic_regression'-Function
[20250402_172130.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172130.]: Entered 'cubic_regression'-Function
[20250402_172130.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172132.]: Entered 'regression_type1'-Function
[20250402_172133.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172134.]: Logging df_agg: CpG#1
[20250402_172134.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172134.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_172134.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_172134.]: Entered 'hyperbolic_regression'-Function
[20250402_172134.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: Entered 'cubic_regression'-Function
[20250402_172134.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172134.]: Logging df_agg: CpG#2
[20250402_172134.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172134.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_172134.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_172134.]: Entered 'hyperbolic_regression'-Function
[20250402_172134.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: Entered 'cubic_regression'-Function
[20250402_172134.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172134.]: Logging df_agg: CpG#3
[20250402_172134.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172134.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_172134.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_172134.]: Entered 'hyperbolic_regression'-Function
[20250402_172134.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: Entered 'cubic_regression'-Function
[20250402_172135.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172135.]: Logging df_agg: CpG#4
[20250402_172135.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172135.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_172135.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_172135.]: Entered 'hyperbolic_regression'-Function
[20250402_172135.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: Entered 'cubic_regression'-Function
[20250402_172135.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172135.]: Logging df_agg: CpG#5
[20250402_172135.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172135.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_172135.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_172135.]: Entered 'hyperbolic_regression'-Function
[20250402_172135.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: Entered 'cubic_regression'-Function
[20250402_172135.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172134.]: Logging df_agg: CpG#6
[20250402_172134.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172134.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_172134.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_172134.]: Entered 'hyperbolic_regression'-Function
[20250402_172134.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: Entered 'cubic_regression'-Function
[20250402_172134.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172134.]: Logging df_agg: CpG#7
[20250402_172134.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172134.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_172134.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_172134.]: Entered 'hyperbolic_regression'-Function
[20250402_172134.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: Entered 'cubic_regression'-Function
[20250402_172134.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172134.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172134.]: Logging df_agg: CpG#8
[20250402_172134.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172134.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_172134.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_172134.]: Entered 'hyperbolic_regression'-Function
[20250402_172134.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: Entered 'cubic_regression'-Function
[20250402_172135.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172135.]: Logging df_agg: CpG#9
[20250402_172135.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172135.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_172135.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_172135.]: Entered 'hyperbolic_regression'-Function
[20250402_172135.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: Entered 'cubic_regression'-Function
[20250402_172135.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172135.]: Logging df_agg: row_means
[20250402_172135.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172135.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_172135.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_172135.]: Entered 'hyperbolic_regression'-Function
[20250402_172135.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172135.]: Entered 'cubic_regression'-Function
[20250402_172135.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172136.]: Entered 'solving_equations'-Function
[20250402_172136.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 14.1381159662486
[20250402_172136.]: Samplename: 12.5
Root: 14.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1241053609707
[20250402_172136.]: Samplename: 25
Root: 26.124
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.3567419170867
[20250402_172136.]: Samplename: 37.5
Root: 39.357
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.9273107806133
[20250402_172136.]: Samplename: 50
Root: 52.927
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4010628999278
[20250402_172136.]: Samplename: 62.5
Root: 65.401
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.4183184249663
[20250402_172136.]: Samplename: 75
Root: 74.418
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.5431520527512
[20250402_172136.]: Samplename: 87.5
Root: 80.543
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#2
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7851657015183
[20250402_172136.]: Samplename: 12.5
Root: 10.785
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.0727152156421
[20250402_172136.]: Samplename: 25
Root: 26.073
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.2074258210424
[20250402_172136.]: Samplename: 37.5
Root: 35.207
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.9305924748583
[20250402_172136.]: Samplename: 50
Root: 47.931
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.2847555363015
[20250402_172136.]: Samplename: 62.5
Root: 67.285
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.735332403378
[20250402_172136.]: Samplename: 75
Root: 75.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.1313047876192
[20250402_172136.]: Samplename: 87.5
Root: 84.131
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.8497990553835
[20250402_172136.]: Samplename: 12.5
Root: 10.85
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1511183533449
[20250402_172136.]: Samplename: 25
Root: 26.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2940213300522
[20250402_172136.]: Samplename: 37.5
Root: 37.294
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.419361136507
[20250402_172136.]: Samplename: 50
Root: 51.419
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0212050873619
[20250402_172136.]: Samplename: 62.5
Root: 65.021
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.9977789568509
[20250402_172136.]: Samplename: 75
Root: 76.998
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.686036177122
[20250402_172136.]: Samplename: 87.5
Root: 79.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.2434477796981
[20250402_172136.]: Samplename: 12.5
Root: 13.243
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.0815867666892
[20250402_172136.]: Samplename: 25
Root: 25.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.7956859187734
[20250402_172136.]: Samplename: 37.5
Root: 38.796
--> Root in between the borders! Added to results.
Hyperbolic solved: 49.1001600195185
[20250402_172136.]: Samplename: 50
Root: 49.1
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.5620415214226
[20250402_172136.]: Samplename: 62.5
Root: 67.562
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.7554076043322
[20250402_172136.]: Samplename: 75
Root: 73.755
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.0327440839301
[20250402_172136.]: Samplename: 87.5
Root: 82.033
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#5
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.36665146544904
[20250402_172136.]: Samplename: 12.5
Root: 8.367
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.0855280383989
[20250402_172136.]: Samplename: 25
Root: 23.086
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0098400819818
[20250402_172136.]: Samplename: 37.5
Root: 37.01
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.0085868408378
[20250402_172136.]: Samplename: 50
Root: 51.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 62.7441416833696
[20250402_172136.]: Samplename: 62.5
Root: 62.744
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.6857826005162
[20250402_172136.]: Samplename: 75
Root: 76.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.3046084696663
[20250402_172136.]: Samplename: 87.5
Root: 86.305
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.822687731114
[20250402_172136.]: Samplename: 12.5
Root: 11.823
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5494368772504
[20250402_172136.]: Samplename: 25
Root: 26.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3846787677878
[20250402_172136.]: Samplename: 37.5
Root: 35.385
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.1264563333089
[20250402_172136.]: Samplename: 50
Root: 50.126
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9875101866844
[20250402_172136.]: Samplename: 62.5
Root: 64.988
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.6494948240195
[20250402_172136.]: Samplename: 75
Root: 73.649
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.0033714659226
[20250402_172136.]: Samplename: 87.5
Root: 87.003
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7925453863418
[20250402_172136.]: Samplename: 12.5
Root: 11.793
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2042827174053
[20250402_172136.]: Samplename: 25
Root: 26.204
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.2081609373531
[20250402_172136.]: Samplename: 37.5
Root: 39.208
--> Root in between the borders! Added to results.
Hyperbolic solved: 54.3620766326312
[20250402_172136.]: Samplename: 50
Root: 54.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 66.0664882334621
[20250402_172136.]: Samplename: 62.5
Root: 66.066
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.1981507250883
[20250402_172136.]: Samplename: 75
Root: 75.198
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.6124357632637
[20250402_172136.]: Samplename: 87.5
Root: 78.612
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#8
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 7.27736114274885
[20250402_172136.]: Samplename: 12.5
Root: 7.277
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.9863834890886
[20250402_172136.]: Samplename: 25
Root: 24.986
--> Root in between the borders! Added to results.
Hyperbolic solved: 34.0400823094579
[20250402_172136.]: Samplename: 37.5
Root: 34.04
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3077192847199
[20250402_172136.]: Samplename: 50
Root: 52.308
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0861558866387
[20250402_172136.]: Samplename: 62.5
Root: 65.086
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.3136588178128
[20250402_172136.]: Samplename: 75
Root: 78.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.058248740059
[20250402_172136.]: Samplename: 87.5
Root: 81.058
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 12.2094906593745
[20250402_172136.]: Samplename: 12.5
Root: 12.209
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.0738986154201
[20250402_172136.]: Samplename: 25
Root: 28.074
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.6720254587223
[20250402_172136.]: Samplename: 37.5
Root: 37.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3746308870569
[20250402_172136.]: Samplename: 50
Root: 52.375
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8693631845077
[20250402_172136.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.2598902601534
[20250402_172136.]: Samplename: 75
Root: 74.26
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.9376844048195
[20250402_172136.]: Samplename: 87.5
Root: 83.938
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0
[20250402_172136.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.1506882890389
[20250402_172136.]: Samplename: 12.5
Root: 11.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.841636381907
[20250402_172136.]: Samplename: 25
Root: 25.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0462679509085
[20250402_172136.]: Samplename: 37.5
Root: 37.046
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.1681297765954
[20250402_172136.]: Samplename: 50
Root: 51.168
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4258217891781
[20250402_172136.]: Samplename: 62.5
Root: 65.426
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.285632789037
[20250402_172136.]: Samplename: 75
Root: 75.286
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.6475419323379
[20250402_172136.]: Samplename: 87.5
Root: 82.648
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172136.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172136.]: ### Starting with regression calculations ###
[20250402_172136.]: Entered 'regression_type1'-Function
[20250402_172137.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 14.1381159662486, 26.1241053609707, 39.3567419170867, 52.9273107806133, 65.4010628999278, 74.4183184249663, 80.5431520527512, 100)
[20250402_172137.]: Logging df_agg: CpG#1
[20250402_172137.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172137.]: c(0, 14.1381159662486, 26.1241053609707, 39.3567419170867, 52.9273107806133, 65.4010628999278, 74.4183184249663, 80.5431520527512, 100)
[20250402_172137.]: Entered 'hyperbolic_regression'-Function
[20250402_172137.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172137.]: Entered 'cubic_regression'-Function
[20250402_172137.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172137.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.7851657015183, 26.0727152156421, 35.2074258210424, 47.9305924748583, 67.2847555363015, 75.735332403378, 84.1313047876192, 100)
[20250402_172137.]: Logging df_agg: CpG#2
[20250402_172137.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172137.]: c(0, 10.7851657015183, 26.0727152156421, 35.2074258210424, 47.9305924748583, 67.2847555363015, 75.735332403378, 84.1313047876192, 100)
[20250402_172137.]: Entered 'hyperbolic_regression'-Function
[20250402_172137.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: Entered 'cubic_regression'-Function
[20250402_172138.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.8497990553835, 26.1511183533449, 37.2940213300522, 51.419361136507, 65.0212050873619, 76.9977789568509, 79.686036177122, 100)
[20250402_172138.]: Logging df_agg: CpG#3
[20250402_172138.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172138.]: c(0, 10.8497990553835, 26.1511183533449, 37.2940213300522, 51.419361136507, 65.0212050873619, 76.9977789568509, 79.686036177122, 100)
[20250402_172138.]: Entered 'hyperbolic_regression'-Function
[20250402_172138.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: Entered 'cubic_regression'-Function
[20250402_172138.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 13.2434477796981, 25.0815867666892, 38.7956859187734, 49.1001600195185, 67.5620415214226, 73.7554076043322, 82.0327440839301, 100)
[20250402_172138.]: Logging df_agg: CpG#4
[20250402_172138.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172138.]: c(0, 13.2434477796981, 25.0815867666892, 38.7956859187734, 49.1001600195185, 67.5620415214226, 73.7554076043322, 82.0327440839301, 100)
[20250402_172138.]: Entered 'hyperbolic_regression'-Function
[20250402_172138.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: Entered 'cubic_regression'-Function
[20250402_172138.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.36665146544904, 23.0855280383989, 37.0098400819818, 51.0085868408378, 62.7441416833696, 76.6857826005162, 86.3046084696663, 100)
[20250402_172139.]: Logging df_agg: CpG#5
[20250402_172139.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172139.]: c(0, 8.36665146544904, 23.0855280383989, 37.0098400819818, 51.0085868408378, 62.7441416833696, 76.6857826005162, 86.3046084696663, 100)
[20250402_172139.]: Entered 'hyperbolic_regression'-Function
[20250402_172139.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: Entered 'cubic_regression'-Function
[20250402_172139.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172137.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.822687731114, 26.5494368772504, 35.3846787677878, 50.1264563333089, 64.9875101866844, 73.6494948240195, 87.0033714659226, 100)
[20250402_172138.]: Logging df_agg: CpG#6
[20250402_172138.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172138.]: c(0, 11.822687731114, 26.5494368772504, 35.3846787677878, 50.1264563333089, 64.9875101866844, 73.6494948240195, 87.0033714659226, 100)
[20250402_172138.]: Entered 'hyperbolic_regression'-Function
[20250402_172138.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: Entered 'cubic_regression'-Function
[20250402_172138.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.7925453863418, 26.2042827174053, 39.2081609373531, 54.3620766326312, 66.0664882334621, 75.1981507250883, 78.6124357632637, 100)
[20250402_172138.]: Logging df_agg: CpG#7
[20250402_172138.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172138.]: c(0, 11.7925453863418, 26.2042827174053, 39.2081609373531, 54.3620766326312, 66.0664882334621, 75.1981507250883, 78.6124357632637, 100)
[20250402_172138.]: Entered 'hyperbolic_regression'-Function
[20250402_172138.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: Entered 'cubic_regression'-Function
[20250402_172138.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172138.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 7.27736114274885, 24.9863834890886, 34.0400823094579, 52.3077192847199, 65.0861558866387, 78.3136588178128, 81.058248740059, 100)
[20250402_172138.]: Logging df_agg: CpG#8
[20250402_172138.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172138.]: c(0, 7.27736114274885, 24.9863834890886, 34.0400823094579, 52.3077192847199, 65.0861558866387, 78.3136588178128, 81.058248740059, 100)
[20250402_172138.]: Entered 'hyperbolic_regression'-Function
[20250402_172138.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: Entered 'cubic_regression'-Function
[20250402_172139.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.2094906593745, 28.0738986154201, 37.6720254587223, 52.3746308870569, 64.8693631845077, 74.2598902601534, 83.9376844048195, 100)
[20250402_172139.]: Logging df_agg: CpG#9
[20250402_172139.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172139.]: c(0, 12.2094906593745, 28.0738986154201, 37.6720254587223, 52.3746308870569, 64.8693631845077, 74.2598902601534, 83.9376844048195, 100)
[20250402_172139.]: Entered 'hyperbolic_regression'-Function
[20250402_172139.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: Entered 'cubic_regression'-Function
[20250402_172139.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.1506882890389, 25.841636381907, 37.0462679509085, 51.1681297765954, 65.4258217891781, 75.285632789037, 82.6475419323379, 100)
[20250402_172139.]: Logging df_agg: row_means
[20250402_172139.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172139.]: c(0, 11.1506882890389, 25.841636381907, 37.0462679509085, 51.1681297765954, 65.4258217891781, 75.285632789037, 82.6475419323379, 100)
[20250402_172139.]: Entered 'hyperbolic_regression'-Function
[20250402_172139.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172139.]: Entered 'cubic_regression'-Function
[20250402_172139.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172140.]: Entered 'solving_equations'-Function
[20250402_172140.]: Solving cubic regression for CpG#1
Coefficients: 0Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -7.30533333333333Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 12.5
Root: 10.279
--> Root in between the borders! Added to results.
Coefficients: -14.352Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 25
Root: 21.591
--> Root in between the borders! Added to results.
Coefficients: -23.244Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 37.5
Root: 36.617
--> Root in between the borders! Added to results.
Coefficients: -33.8645Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 50
Root: 52.729
--> Root in between the borders! Added to results.
Coefficients: -45.318Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 62.5
Root: 66.532
--> Root in between the borders! Added to results.
Coefficients: -54.857Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 75
Root: 75.773
--> Root in between the borders! Added to results.
Coefficients: -62.062Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 87.5
Root: 81.772
--> Root in between the borders! Added to results.
Coefficients: -90.01Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for CpG#2
Coefficients: 0Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.05666666666666Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 12.5
Root: 10.991
--> Root in between the borders! Added to results.
Coefficients: -15.656Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 25
Root: 26.435
--> Root in between the borders! Added to results.
Coefficients: -22.054Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 37.5
Root: 35.545
--> Root in between the borders! Added to results.
Coefficients: -31.945Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 50
Root: 48.102
--> Root in between the borders! Added to results.
Coefficients: -49.68Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 62.5
Root: 67.086
--> Root in between the borders! Added to results.
Coefficients: -58.6825Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 75
Root: 75.419
--> Root in between the borders! Added to results.
Coefficients: -68.5533333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 87.5
Root: 83.785
--> Root in between the borders! Added to results.
Coefficients: -90.294Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for CpG#3
Coefficients: 0Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.67Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 12.5
Root: 9.387
--> Root in between the borders! Added to results.
Coefficients: -14.526Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 25
Root: 24.373
--> Root in between the borders! Added to results.
Coefficients: -21.71Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 37.5
Root: 36.135
--> Root in between the borders! Added to results.
Coefficients: -31.8725Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 50
Root: 51.29
--> Root in between the borders! Added to results.
Coefficients: -42.986Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 62.5
Root: 65.561
--> Root in between the borders! Added to results.
Coefficients: -54.0725Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 75
Root: 77.683
--> Root in between the borders! Added to results.
Coefficients: -56.7533333333333Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 87.5
Root: 80.348
--> Root in between the borders! Added to results.
Coefficients: -79.762Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for CpG#4
Coefficients: 0Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -7.65533333333333Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 12.5
Root: 11.333
--> Root in between the borders! Added to results.
Coefficients: -15.206Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 25
Root: 22.933
--> Root in between the borders! Added to results.
Coefficients: -24.93Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 37.5
Root: 37.542
--> Root in between the borders! Added to results.
Coefficients: -33.0395Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 50
Root: 48.772
--> Root in between the borders! Added to results.
Coefficients: -49.658Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 62.5
Root: 68.324
--> Root in between the borders! Added to results.
Coefficients: -55.942Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 75
Root: 74.614
--> Root in between the borders! Added to results.
Coefficients: -64.9953333333333Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 87.5
Root: 82.816
--> Root in between the borders! Added to results.
Coefficients: -87.724Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for CpG#5
Coefficients: 0Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.144Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 12.5
Root: 9.593
--> Root in between the borders! Added to results.
Coefficients: -12.102Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 25
Root: 24.704
--> Root in between the borders! Added to results.
Coefficients: -20.536Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 37.5
Root: 38.051
--> Root in between the borders! Added to results.
Coefficients: -30.0715Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 50
Root: 51.187
--> Root in between the borders! Added to results.
Coefficients: -39.034Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 62.5
Root: 62.269
--> Root in between the borders! Added to results.
Coefficients: -51.059Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 75
Root: 75.786
--> Root in between the borders! Added to results.
Coefficients: -60.3906666666667Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 87.5
Root: 85.475
--> Root in between the borders! Added to results.
Coefficients: -75.446Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172140.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_172140.]: Solving cubic regression for CpG#6
Coefficients: 0Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.54266666666667Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 12.5
Root: 11.495
--> Root in between the borders! Added to results.
Coefficients: -15.692Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 25
Root: 26.346
--> Root in between the borders! Added to results.
Coefficients: -21.804Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 37.5
Root: 35.332
--> Root in between the borders! Added to results.
Coefficients: -33.2485Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 50
Root: 50.228
--> Root in between the borders! Added to results.
Coefficients: -46.704Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 62.5
Root: 65.055
--> Root in between the borders! Added to results.
Coefficients: -55.636Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 75
Root: 73.641
--> Root in between the borders! Added to results.
Coefficients: -71.3493333333333Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 87.5
Root: 86.903
--> Root in between the borders! Added to results.
Coefficients: -89.46Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for CpG#7
Coefficients: 0Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.18066666666667Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 12.5
Root: 8.108
--> Root in between the borders! Added to results.
Coefficients: -10.05Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 25
Root: 21.288
--> Root in between the borders! Added to results.
Coefficients: -16.236Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 37.5
Root: 36.173
--> Root in between the borders! Added to results.
Coefficients: -24.8165Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 50
Root: 54.247
--> Root in between the borders! Added to results.
Coefficients: -32.75Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 62.5
Root: 67.087
--> Root in between the borders! Added to results.
Coefficients: -39.954Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 75
Root: 76.377
--> Root in between the borders! Added to results.
Coefficients: -42.9206666666667Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 87.5
Root: 79.728
--> Root in between the borders! Added to results.
Coefficients: -66.008Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for CpG#8
Coefficients: 0Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.35066666666667Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 12.5
Root: 8.039
--> Root in between the borders! Added to results.
Coefficients: -15.834Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 25
Root: 26.079
--> Root in between the borders! Added to results.
Coefficients: -22.254Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 37.5
Root: 34.864
--> Root in between the borders! Added to results.
Coefficients: -36.529Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 50
Root: 52.311
--> Root in between the borders! Added to results.
Coefficients: -47.73Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 62.5
Root: 64.584
--> Root in between the borders! Added to results.
Coefficients: -60.5715Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 75
Root: 77.576
--> Root in between the borders! Added to results.
Coefficients: -63.414Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 87.5
Root: 80.326
--> Root in between the borders! Added to results.
Coefficients: -84.964Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172140.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_172140.]: Solving cubic regression for CpG#9
Coefficients: 0Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.406Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 12.5
Root: 8.93
--> Root in between the borders! Added to results.
Coefficients: -13.716Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 25
Root: 24.492
--> Root in between the borders! Added to results.
Coefficients: -19.634Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 37.5
Root: 35.53
--> Root in between the borders! Added to results.
Coefficients: -30.406Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 50
Root: 52.349
--> Root in between the borders! Added to results.
Coefficients: -41.696Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 62.5
Root: 65.528
--> Root in between the borders! Added to results.
Coefficients: -51.9135Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 75
Root: 74.87
--> Root in between the borders! Added to results.
Coefficients: -64.5026666666667Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 87.5
Root: 84.256
--> Root in between the borders! Added to results.
Coefficients: -92Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: Solving cubic regression for row_means
Coefficients: 0Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.70125925925926Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 12.5
Root: 9.866
--> Root in between the borders! Added to results.
Coefficients: -14.126Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 25
Root: 24.413
--> Root in between the borders! Added to results.
Coefficients: -21.378Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 37.5
Root: 36.177
--> Root in between the borders! Added to results.
Coefficients: -31.7547777777778Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 50
Root: 51.091
--> Root in between the borders! Added to results.
Coefficients: -43.9506666666667Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 62.5
Root: 65.785
--> Root in between the borders! Added to results.
Coefficients: -53.632Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 75
Root: 75.683
--> Root in between the borders! Added to results.
Coefficients: -61.6601481481482Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 87.5
Root: 82.966
--> Root in between the borders! Added to results.
Coefficients: -83.9631111111111Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_172140.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172140.]: ### Starting with regression calculations ###
[20250402_172140.]: Entered 'regression_type1'-Function
[20250402_172141.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.2789379687773, 21.5912618581737, 36.6165063803141, 52.7290217620987, 66.5324318982031, 75.7732681056135, 81.7721530184166, 100)
[20250402_172142.]: Logging df_agg: CpG#1
[20250402_172142.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172142.]: c(0, 10.2789379687773, 21.5912618581737, 36.6165063803141, 52.7290217620987, 66.5324318982031, 75.7732681056135, 81.7721530184166, 100)
[20250402_172142.]: Entered 'hyperbolic_regression'-Function
[20250402_172142.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172142.]: Entered 'cubic_regression'-Function
[20250402_172142.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172142.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.9910200331058, 26.4347343794858, 35.5445484590422, 48.1023951945168, 67.0857465067419, 75.4194602180407, 83.7851017057913, 100)
[20250402_172142.]: Logging df_agg: CpG#2
[20250402_172142.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172142.]: c(0, 10.9910200331058, 26.4347343794858, 35.5445484590422, 48.1023951945168, 67.0857465067419, 75.4194602180407, 83.7851017057913, 100)
[20250402_172142.]: Entered 'hyperbolic_regression'-Function
[20250402_172142.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.38673392637229, 24.3726553415377, 36.1351252190462, 51.290483481273, 65.5610869969825, 77.682931580408, 80.3481110749784, 100)
[20250402_172143.]: Logging df_agg: CpG#3
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 9.38673392637229, 24.3726553415377, 36.1351252190462, 51.290483481273, 65.5610869969825, 77.682931580408, 80.3481110749784, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.333221967818, 22.9327025441323, 37.5415761160868, 48.7723103653381, 68.323814507742, 74.6144361781331, 82.8156863832731, 100)
[20250402_172143.]: Logging df_agg: CpG#4
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 11.333221967818, 22.9327025441323, 37.5415761160868, 48.7723103653381, 68.323814507742, 74.6144361781331, 82.8156863832731, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.59307352472009, 24.7039196286167, 38.0513608286781, 51.1867356506794, 62.26862037854, 75.7858670101849, 85.4752679494875, 100)
[20250402_172143.]: Logging df_agg: CpG#5
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 9.59307352472009, 24.7039196286167, 38.0513608286781, 51.1867356506794, 62.26862037854, 75.7858670101849, 85.4752679494875, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172144.]: Entered 'cubic_regression'-Function
[20250402_172144.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172142.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.4954220530927, 26.3463219064414, 35.3317252573924, 50.227923198103, 65.0547254327623, 73.6409323113027, 86.9034526462823, 100)
[20250402_172142.]: Logging df_agg: CpG#6
[20250402_172142.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172142.]: c(0, 11.4954220530927, 26.3463219064414, 35.3317252573924, 50.227923198103, 65.0547254327623, 73.6409323113027, 86.9034526462823, 100)
[20250402_172142.]: Entered 'hyperbolic_regression'-Function
[20250402_172142.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172142.]: Entered 'cubic_regression'-Function
[20250402_172142.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.10849051770153, 21.2877667704468, 36.173114142988, 54.2470474820822, 67.0869477341973, 76.3774195175699, 79.7282731837602, 100)
[20250402_172143.]: Logging df_agg: CpG#7
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 8.10849051770153, 21.2877667704468, 36.173114142988, 54.2470474820822, 67.0869477341973, 76.3774195175699, 79.7282731837602, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.03884794173082, 26.0790124661259, 34.8640244910097, 52.3106100864949, 64.5844806617511, 77.5764831155946, 80.3258936673854, 100)
[20250402_172143.]: Logging df_agg: CpG#8
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 8.03884794173082, 26.0790124661259, 34.8640244910097, 52.3106100864949, 64.5844806617511, 77.5764831155946, 80.3258936673854, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.92983720232018, 24.492281299778, 35.5300863746257, 52.3487602415591, 65.5277236843712, 74.8697077038883, 84.2557944227308, 100)
[20250402_172143.]: Logging df_agg: CpG#9
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 8.92983720232018, 24.492281299778, 35.5300863746257, 52.3487602415591, 65.5277236843712, 74.8697077038883, 84.2557944227308, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.86641397663336, 24.4129321171961, 36.1766819844577, 51.09059907333, 65.7845651788236, 75.6825697981982, 82.9660082109242, 100)
[20250402_172143.]: Logging df_agg: row_means
[20250402_172143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_172143.]: c(0, 9.86641397663336, 24.4129321171961, 36.1766819844577, 51.09059907333, 65.7845651788236, 75.6825697981982, 82.9660082109242, 100)
[20250402_172143.]: Entered 'hyperbolic_regression'-Function
[20250402_172143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172143.]: Entered 'cubic_regression'-Function
[20250402_172143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_172144.]: Entered 'solving_equations'-Function
[20250402_172144.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 78.9856894800976
[20250402_172144.]: Samplename: Sample#1
Root: 78.986
--> Root in between the borders! Added to results.
Hyperbolic solved: 31.2695317984092
[20250402_172144.]: Samplename: Sample#10
Root: 31.27
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.7015782380441
[20250402_172145.]: Samplename: Sample#2
Root: 42.702
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.8152127901709
[20250402_172145.]: Samplename: Sample#3
Root: 57.815
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.2334360674289
[20250402_172145.]: Samplename: Sample#4
Root: 11.233
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.5293831001518
[20250402_172145.]: Samplename: Sample#5
Root: 23.529
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.7706743072545
[20250402_172145.]: Samplename: Sample#6
Root: 24.771
--> Root in between the borders! Added to results.
Hyperbolic solved: 46.3953425213349
[20250402_172145.]: Samplename: Sample#7
Root: 46.395
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.45071436915
[20250402_172145.]: Samplename: Sample#8
Root: 84.451
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.41337105576252
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.413
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Solving cubic regression for CpG#2
Coefficients: -59.7333333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#1
Root: 76.346
--> Root in between the borders! Added to results.
Coefficients: -19.048Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#10
Root: 31.371
--> Root in between the borders! Added to results.
Coefficients: -27.8783333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#2
Root: 43.142
--> Root in between the borders! Added to results.
Coefficients: -41.795Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#3
Root: 59.121
--> Root in between the borders! Added to results.
Coefficients: -2.21Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#4
Root: 4.128
--> Root in between the borders! Added to results.
Coefficients: -11.665Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#5
Root: 20.292
--> Root in between the borders! Added to results.
Coefficients: -10.08Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#6
Root: 17.745
--> Root in between the borders! Added to results.
Coefficients: -26.488Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#7
Root: 41.383
--> Root in between the borders! Added to results.
Coefficients: -70.532Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#8
Root: 85.378
--> Root in between the borders! Added to results.
Coefficients: -1.13Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: Sample#9
Root: 2.127
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 74.5474014641742
[20250402_172145.]: Samplename: Sample#1
Root: 74.547
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.3579002775045
[20250402_172145.]: Samplename: Sample#10
Root: 28.358
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.6085496577593
[20250402_172145.]: Samplename: Sample#2
Root: 42.609
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.3286114696456
[20250402_172145.]: Samplename: Sample#3
Root: 56.329
--> Root in between the borders! Added to results.
Hyperbolic solved: 7.99034441243248
[20250402_172145.]: Samplename: Sample#4
Root: 7.99
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.7023143744962
[20250402_172145.]: Samplename: Sample#5
Root: 24.702
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.8868798900698
[20250402_172145.]: Samplename: Sample#6
Root: 26.887
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.8318233973603
[20250402_172145.]: Samplename: Sample#7
Root: 44.832
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6737871528405
[20250402_172145.]: Samplename: Sample#8
Root: 84.674
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.26200732612128
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.262
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 75.8433680333876
[20250402_172145.]: Samplename: Sample#1
Root: 75.843
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.0603248948201
[20250402_172145.]: Samplename: Sample#10
Root: 29.06
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.0355928114108
[20250402_172145.]: Samplename: Sample#2
Root: 44.036
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.7751115686327
[20250402_172145.]: Samplename: Sample#3
Root: 58.775
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0319154866029
[20250402_172145.]: Samplename: Sample#4
Root: 11.032
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.9948971650737
[20250402_172145.]: Samplename: Sample#5
Root: 22.995
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.9415139419957
[20250402_172145.]: Samplename: Sample#6
Root: 27.942
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.4874049425657
[20250402_172145.]: Samplename: Sample#7
Root: 42.487
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6802730343613
[20250402_172145.]: Samplename: Sample#8
Root: 84.68
--> Root in between the borders! Added to results.
Hyperbolic solved: 3.00887785677921
[20250402_172145.]: Samplename: Sample#9
Root: 3.009
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving cubic regression for CpG#5
Coefficients: -47.8373333333333Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#1
Root: 72.291
--> Root in between the borders! Added to results.
Coefficients: -13.588Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#10
Root: 27.212
--> Root in between the borders! Added to results.
Coefficients: -25.3211428571429Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#2
Root: 44.85
--> Root in between the borders! Added to results.
Coefficients: -32.064Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#3
Root: 53.741
--> Root in between the borders! Added to results.
Coefficients: -4.074Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#4
Root: 9.444
--> Root in between the borders! Added to results.
Coefficients: -11.434Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#5
Root: 23.55
--> Root in between the borders! Added to results.
Coefficients: -13.294Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#6
Root: 26.722
--> Root in between the borders! Added to results.
Coefficients: -24.288Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#7
Root: 43.42
--> Root in between the borders! Added to results.
Coefficients: -63.134Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#8
Root: 88.215
--> Root in between the borders! Added to results.
Coefficients: 0.0360000000000005Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.091
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 79.2200555510382
[20250402_172145.]: Samplename: Sample#1
Root: 79.22
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.2526528381147
[20250402_172145.]: Samplename: Sample#10
Root: 30.253
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.9196854329573
[20250402_172145.]: Samplename: Sample#2
Root: 41.92
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.8984354098215
[20250402_172145.]: Samplename: Sample#3
Root: 56.898
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.81576403111374
[20250402_172145.]: Samplename: Sample#4
Root: 8.816
--> Root in between the borders! Added to results.
Hyperbolic solved: 18.6921622783918
[20250402_172145.]: Samplename: Sample#5
Root: 18.692
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.9815019073132
[20250402_172145.]: Samplename: Sample#6
Root: 29.982
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.8875178508205
[20250402_172145.]: Samplename: Sample#7
Root: 42.888
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.6303733181195
[20250402_172145.]: Samplename: Sample#8
Root: 86.63
--> Root in between the borders! Added to results.
Hyperbolic solved: 1.38997712955107
[20250402_172145.]: Samplename: Sample#9
Root: 1.39
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 77.5278331978133
[20250402_172145.]: Samplename: Sample#1
Root: 77.528
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.0895401031897
[20250402_172145.]: Samplename: Sample#10
Root: 27.09
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.4382794903846
[20250402_172145.]: Samplename: Sample#2
Root: 48.438
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.8815971416453
[20250402_172145.]: Samplename: Sample#3
Root: 58.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.3295768294236
[20250402_172145.]: Samplename: Sample#4
Root: 13.33
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.9816196357542
[20250402_172145.]: Samplename: Sample#5
Root: 26.982
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.9612159665911
[20250402_172145.]: Samplename: Sample#6
Root: 30.961
--> Root in between the borders! Added to results.
Hyperbolic solved: 45.7456547820365
[20250402_172145.]: Samplename: Sample#7
Root: 45.746
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6033538318025
[20250402_172145.]: Samplename: Sample#8
Root: 84.603
--> Root in between the borders! Added to results.
Hyperbolic solved: -2.87380061592101
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.874
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Solving cubic regression for CpG#8
Coefficients: -55.3573333333333Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#1
Root: 72.421
--> Root in between the borders! Added to results.
Coefficients: -17.574Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#10
Root: 28.533
--> Root in between the borders! Added to results.
Coefficients: -22.9425714285714Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#2
Root: 35.766
--> Root in between the borders! Added to results.
Coefficients: -42.849Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#3
Root: 59.36
--> Root in between the borders! Added to results.
Coefficients: -4.604Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#4
Root: 8.481
--> Root in between the borders! Added to results.
Coefficients: -11.389Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#5
Root: 19.519
--> Root in between the borders! Added to results.
Coefficients: -25.784Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#6
Root: 39.413
--> Root in between the borders! Added to results.
Coefficients: -30.746Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#7
Root: 45.53
--> Root in between the borders! Added to results.
Coefficients: -66.912Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#8
Root: 83.654
--> Root in between the borders! Added to results.
Coefficients: 3.176Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -6.535
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 80.5486410672961
[20250402_172145.]: Samplename: Sample#1
Root: 80.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.810468482135
[20250402_172145.]: Samplename: Sample#10
Root: 27.81
--> Root in between the borders! Added to results.
Hyperbolic solved: 46.2641649294309
[20250402_172145.]: Samplename: Sample#2
Root: 46.264
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.1903653427228
[20250402_172145.]: Samplename: Sample#3
Root: 57.19
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.63886339746086
[20250402_172145.]: Samplename: Sample#4
Root: 8.639
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2162393845509
[20250402_172145.]: Samplename: Sample#5
Root: 24.216
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.6394430638471
[20250402_172145.]: Samplename: Sample#6
Root: 39.639
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.3080887012493
[20250402_172145.]: Samplename: Sample#7
Root: 44.308
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.3259098830063
[20250402_172145.]: Samplename: Sample#8
Root: 87.326
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.17959639730045
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.18
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 76.7568961192102
[20250402_172145.]: Samplename: Sample#1
Root: 76.757
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.8326630603664
[20250402_172145.]: Samplename: Sample#10
Root: 28.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.0145327025204
[20250402_172145.]: Samplename: Sample#2
Root: 43.015
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.6144798147902
[20250402_172145.]: Samplename: Sample#3
Root: 57.614
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.86517972238162
[20250402_172145.]: Samplename: Sample#4
Root: 8.865
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.1849817550475
[20250402_172145.]: Samplename: Sample#5
Root: 22.185
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.1973843238972
[20250402_172145.]: Samplename: Sample#6
Root: 29.197
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.9174258632975
[20250402_172145.]: Samplename: Sample#7
Root: 43.917
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6607695784409
[20250402_172145.]: Samplename: Sample#8
Root: 85.661
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.551158207550385
[20250402_172145.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.551
--> '-10 < root < 0' --> substitute 0
[20250402_172145.]: Entered 'solving_equations'-Function
[20250402_172145.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 14.1381159662486
[20250402_172145.]: Samplename: 12.5
Root: 14.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1241053609707
[20250402_172145.]: Samplename: 25
Root: 26.124
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.3567419170867
[20250402_172145.]: Samplename: 37.5
Root: 39.357
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.9273107806133
[20250402_172145.]: Samplename: 50
Root: 52.927
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4010628999278
[20250402_172145.]: Samplename: 62.5
Root: 65.401
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.4183184249663
[20250402_172145.]: Samplename: 75
Root: 74.418
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.5431520527512
[20250402_172145.]: Samplename: 87.5
Root: 80.543
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving cubic regression for CpG#2
Coefficients: 0Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.05666666666666Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 12.5
Root: 10.991
--> Root in between the borders! Added to results.
Coefficients: -15.656Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 25
Root: 26.435
--> Root in between the borders! Added to results.
Coefficients: -22.054Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 37.5
Root: 35.545
--> Root in between the borders! Added to results.
Coefficients: -31.945Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 50
Root: 48.102
--> Root in between the borders! Added to results.
Coefficients: -49.68Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 62.5
Root: 67.086
--> Root in between the borders! Added to results.
Coefficients: -58.6825Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 75
Root: 75.419
--> Root in between the borders! Added to results.
Coefficients: -68.5533333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 87.5
Root: 83.785
--> Root in between the borders! Added to results.
Coefficients: -90.294Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.8497990553835
[20250402_172145.]: Samplename: 12.5
Root: 10.85
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1511183533449
[20250402_172145.]: Samplename: 25
Root: 26.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2940213300522
[20250402_172145.]: Samplename: 37.5
Root: 37.294
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.419361136507
[20250402_172145.]: Samplename: 50
Root: 51.419
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0212050873619
[20250402_172145.]: Samplename: 62.5
Root: 65.021
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.9977789568509
[20250402_172145.]: Samplename: 75
Root: 76.998
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.686036177122
[20250402_172145.]: Samplename: 87.5
Root: 79.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.2434477796981
[20250402_172145.]: Samplename: 12.5
Root: 13.243
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.0815867666892
[20250402_172145.]: Samplename: 25
Root: 25.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.7956859187734
[20250402_172145.]: Samplename: 37.5
Root: 38.796
--> Root in between the borders! Added to results.
Hyperbolic solved: 49.1001600195185
[20250402_172145.]: Samplename: 50
Root: 49.1
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.5620415214226
[20250402_172145.]: Samplename: 62.5
Root: 67.562
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.7554076043322
[20250402_172145.]: Samplename: 75
Root: 73.755
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.0327440839301
[20250402_172145.]: Samplename: 87.5
Root: 82.033
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving cubic regression for CpG#5
Coefficients: 0Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.144Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 12.5
Root: 9.593
--> Root in between the borders! Added to results.
Coefficients: -12.102Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 25
Root: 24.704
--> Root in between the borders! Added to results.
Coefficients: -20.536Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 37.5
Root: 38.051
--> Root in between the borders! Added to results.
Coefficients: -30.0715Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 50
Root: 51.187
--> Root in between the borders! Added to results.
Coefficients: -39.034Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 62.5
Root: 62.269
--> Root in between the borders! Added to results.
Coefficients: -51.059Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 75
Root: 75.786
--> Root in between the borders! Added to results.
Coefficients: -60.3906666666667Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 87.5
Root: 85.475
--> Root in between the borders! Added to results.
Coefficients: -75.446Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_172145.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_172145.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.822687731114
[20250402_172145.]: Samplename: 12.5
Root: 11.823
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5494368772504
[20250402_172145.]: Samplename: 25
Root: 26.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3846787677878
[20250402_172145.]: Samplename: 37.5
Root: 35.385
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.1264563333089
[20250402_172145.]: Samplename: 50
Root: 50.126
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9875101866844
[20250402_172145.]: Samplename: 62.5
Root: 64.988
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.6494948240195
[20250402_172145.]: Samplename: 75
Root: 73.649
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.0033714659226
[20250402_172145.]: Samplename: 87.5
Root: 87.003
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7925453863418
[20250402_172145.]: Samplename: 12.5
Root: 11.793
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2042827174053
[20250402_172145.]: Samplename: 25
Root: 26.204
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.2081609373531
[20250402_172145.]: Samplename: 37.5
Root: 39.208
--> Root in between the borders! Added to results.
Hyperbolic solved: 54.3620766326312
[20250402_172145.]: Samplename: 50
Root: 54.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 66.0664882334621
[20250402_172145.]: Samplename: 62.5
Root: 66.066
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.1981507250883
[20250402_172145.]: Samplename: 75
Root: 75.198
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.6124357632637
[20250402_172145.]: Samplename: 87.5
Root: 78.612
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving cubic regression for CpG#8
Coefficients: 0Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.35066666666667Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 12.5
Root: 8.039
--> Root in between the borders! Added to results.
Coefficients: -15.834Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 25
Root: 26.079
--> Root in between the borders! Added to results.
Coefficients: -22.254Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 37.5
Root: 34.864
--> Root in between the borders! Added to results.
Coefficients: -36.529Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 50
Root: 52.311
--> Root in between the borders! Added to results.
Coefficients: -47.73Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 62.5
Root: 64.584
--> Root in between the borders! Added to results.
Coefficients: -60.5715Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 75
Root: 77.576
--> Root in between the borders! Added to results.
Coefficients: -63.414Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 87.5
Root: 80.326
--> Root in between the borders! Added to results.
Coefficients: -84.964Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_172145.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_172145.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 12.2094906593745
[20250402_172145.]: Samplename: 12.5
Root: 12.209
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.0738986154201
[20250402_172145.]: Samplename: 25
Root: 28.074
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.6720254587223
[20250402_172145.]: Samplename: 37.5
Root: 37.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3746308870569
[20250402_172145.]: Samplename: 50
Root: 52.375
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8693631845077
[20250402_172145.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.2598902601534
[20250402_172145.]: Samplename: 75
Root: 74.26
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.9376844048195
[20250402_172145.]: Samplename: 87.5
Root: 83.938
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_172145.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0
[20250402_172145.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.1506882890389
[20250402_172145.]: Samplename: 12.5
Root: 11.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.841636381907
[20250402_172145.]: Samplename: 25
Root: 25.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0462679509085
[20250402_172145.]: Samplename: 37.5
Root: 37.046
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.1681297765954
[20250402_172145.]: Samplename: 50
Root: 51.168
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4258217891781
[20250402_172145.]: Samplename: 62.5
Root: 65.426
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.285632789037
[20250402_172145.]: Samplename: 75
Root: 75.286
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.6475419323379
[20250402_172145.]: Samplename: 87.5
Root: 82.648
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_172145.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
[20250402_172224.]: Entered 'clean_dt'-Function
[20250402_172224.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172224.]: got experimental data
[20250402_172224.]: Entered 'clean_dt'-Function
[20250402_172224.]: Importing data of type 2: Many loci in one sample (e.g., next-gen seq or microarray data)
[20250402_172224.]: got experimental data
[20250402_172224.]: Entered 'clean_dt'-Function
[20250402_172224.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172224.]: got calibration data
[20250402_172224.]: Entered 'clean_dt'-Function
[20250402_172224.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_172224.]: got calibration data
[20250402_172224.]: Entered 'hyperbolic_regression'-Function
[20250402_172224.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
[ FAIL 5 | WARN 51 | SKIP 4 | PASS 51 ]
══ Skipped tests (4) ═══════════════════════════════════════════════════════════
• On CRAN (4): 'test-algorithm_minmax_FALSE.R:80:5',
'test-algorithm_minmax_TRUE.R:76:5', 'test-hyperbolic.R:27:5',
'test-lints.R:12:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-algorithm_minmax_FALSE_re.R:170:5'): algorithm test, type 1, minmax = FALSE selection_method = RelError ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-algorithm_minmax_FALSE_re.R:170:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-algorithm_minmax_TRUE_re.R:170:5'): algorithm test, type 1, minmax = TRUE selection_method = RelError ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-algorithm_minmax_TRUE_re.R:170:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-clean_dt.R:17:5'): test normal function of file import of type 1 ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-clean_dt.R:17:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-clean_dt.R:65:5'): test normal function of file import of type 2 ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-clean_dt.R:65:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-create_aggregated.R:19:5'): test functioning of aggregated function ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-create_aggregated.R:19:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
[ FAIL 5 | WARN 51 | SKIP 4 | PASS 51 ]
Error: Test failures
Execution halted
Error in deferred_run(env) : could not find function "deferred_run"
Calls: <Anonymous>
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.3.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [4m/11m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(rBiasCorrection)
>
> local_edition(3)
>
> test_check("rBiasCorrection")
[20250402_080737.]: Entered 'clean_dt'-Function
[20250402_080737.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_080737.]: got experimental data
[20250402_080737.]: Entered 'clean_dt'-Function
[20250402_080737.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_080737.]: got calibration data
[20250402_080737.]: ### Starting with regression calculations ###
[20250402_080737.]: Entered 'regression_type1'-Function
[20250402_080739.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080739.]: Logging df_agg: CpG#1
[20250402_080739.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080739.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_080739.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080739.]: Entered 'hyperbolic_regression'-Function
[20250402_080739.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080741.]: Entered 'cubic_regression'-Function
[20250402_080741.]: 'cubic_regression': minmax = FALSE
[20250402_080741.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080741.]: Logging df_agg: CpG#2
[20250402_080741.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080741.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_080741.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080741.]: Entered 'hyperbolic_regression'-Function
[20250402_080741.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080742.]: Entered 'cubic_regression'-Function
[20250402_080742.]: 'cubic_regression': minmax = FALSE
[20250402_080742.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080742.]: Logging df_agg: CpG#3
[20250402_080742.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080742.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_080742.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080742.]: Entered 'hyperbolic_regression'-Function
[20250402_080742.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080743.]: Entered 'cubic_regression'-Function
[20250402_080743.]: 'cubic_regression': minmax = FALSE
[20250402_080743.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080743.]: Logging df_agg: CpG#4
[20250402_080743.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080743.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_080743.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080743.]: Entered 'hyperbolic_regression'-Function
[20250402_080743.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080745.]: Entered 'cubic_regression'-Function
[20250402_080745.]: 'cubic_regression': minmax = FALSE
[20250402_080745.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080745.]: Logging df_agg: CpG#5
[20250402_080745.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080745.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_080745.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080745.]: Entered 'hyperbolic_regression'-Function
[20250402_080745.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080746.]: Entered 'cubic_regression'-Function
[20250402_080746.]: 'cubic_regression': minmax = FALSE
[20250402_080743.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080743.]: Logging df_agg: CpG#6
[20250402_080743.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080743.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_080743.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080743.]: Entered 'hyperbolic_regression'-Function
[20250402_080743.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080744.]: Entered 'cubic_regression'-Function
[20250402_080744.]: 'cubic_regression': minmax = FALSE
[20250402_080744.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080744.]: Logging df_agg: CpG#7
[20250402_080744.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080744.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_080744.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080744.]: Entered 'hyperbolic_regression'-Function
[20250402_080744.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080745.]: Entered 'cubic_regression'-Function
[20250402_080745.]: 'cubic_regression': minmax = FALSE
[20250402_080746.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080746.]: Logging df_agg: CpG#8
[20250402_080746.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080746.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_080746.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080746.]: Entered 'hyperbolic_regression'-Function
[20250402_080746.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080747.]: Entered 'cubic_regression'-Function
[20250402_080747.]: 'cubic_regression': minmax = FALSE
[20250402_080747.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080747.]: Logging df_agg: CpG#9
[20250402_080747.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080747.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_080747.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080747.]: Entered 'hyperbolic_regression'-Function
[20250402_080747.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080748.]: Entered 'cubic_regression'-Function
[20250402_080748.]: 'cubic_regression': minmax = FALSE
[20250402_080748.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080748.]: Logging df_agg: row_means
[20250402_080748.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080748.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_080748.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080748.]: Entered 'hyperbolic_regression'-Function
[20250402_080748.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080749.]: Entered 'cubic_regression'-Function
[20250402_080749.]: 'cubic_regression': minmax = FALSE
[20250402_080801.]: Entered 'regression_type1'-Function
[20250402_080803.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080804.]: Logging df_agg: CpG#1
[20250402_080804.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080804.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_080804.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080804.]: Entered 'hyperbolic_regression'-Function
[20250402_080804.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080804.]: Entered 'cubic_regression'-Function
[20250402_080805.]: 'cubic_regression': minmax = FALSE
[20250402_080805.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080805.]: Logging df_agg: CpG#2
[20250402_080805.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080805.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_080805.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080805.]: Entered 'hyperbolic_regression'-Function
[20250402_080805.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080805.]: Entered 'cubic_regression'-Function
[20250402_080805.]: 'cubic_regression': minmax = FALSE
[20250402_080805.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080805.]: Logging df_agg: CpG#3
[20250402_080805.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080805.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_080805.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080805.]: Entered 'hyperbolic_regression'-Function
[20250402_080805.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080806.]: Entered 'cubic_regression'-Function
[20250402_080806.]: 'cubic_regression': minmax = FALSE
[20250402_080806.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080806.]: Logging df_agg: CpG#4
[20250402_080806.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080806.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_080806.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080806.]: Entered 'hyperbolic_regression'-Function
[20250402_080806.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080807.]: Entered 'cubic_regression'-Function
[20250402_080807.]: 'cubic_regression': minmax = FALSE
[20250402_080807.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080807.]: Logging df_agg: CpG#5
[20250402_080807.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080807.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_080807.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080807.]: Entered 'hyperbolic_regression'-Function
[20250402_080807.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080807.]: Entered 'cubic_regression'-Function
[20250402_080807.]: 'cubic_regression': minmax = FALSE
[20250402_080803.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080805.]: Logging df_agg: CpG#6
[20250402_080805.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080805.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_080805.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080805.]: Entered 'hyperbolic_regression'-Function
[20250402_080805.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080807.]: Entered 'cubic_regression'-Function
[20250402_080807.]: 'cubic_regression': minmax = FALSE
[20250402_080807.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080807.]: Logging df_agg: CpG#7
[20250402_080807.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080807.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_080807.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080807.]: Entered 'hyperbolic_regression'-Function
[20250402_080807.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080809.]: Entered 'cubic_regression'-Function
[20250402_080809.]: 'cubic_regression': minmax = FALSE
[20250402_080809.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080810.]: Logging df_agg: CpG#8
[20250402_080810.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080810.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_080810.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080810.]: Entered 'hyperbolic_regression'-Function
[20250402_080810.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080811.]: Entered 'cubic_regression'-Function
[20250402_080811.]: 'cubic_regression': minmax = FALSE
[20250402_080811.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080811.]: Logging df_agg: CpG#9
[20250402_080811.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080811.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_080811.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080811.]: Entered 'hyperbolic_regression'-Function
[20250402_080811.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080812.]: Entered 'cubic_regression'-Function
[20250402_080812.]: 'cubic_regression': minmax = FALSE
[20250402_080812.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080813.]: Logging df_agg: row_means
[20250402_080813.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080813.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_080813.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080813.]: Entered 'hyperbolic_regression'-Function
[20250402_080813.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080814.]: Entered 'cubic_regression'-Function
[20250402_080814.]: 'cubic_regression': minmax = FALSE
[20250402_080818.]: Entered 'clean_dt'-Function
[20250402_080818.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_080818.]: got experimental data
[20250402_080818.]: Entered 'clean_dt'-Function
[20250402_080818.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_080818.]: got calibration data
[20250402_080819.]: ### Starting with regression calculations ###
[20250402_080819.]: Entered 'regression_type1'-Function
[20250402_080820.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080820.]: Logging df_agg: CpG#1
[20250402_080820.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080820.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_080820.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080820.]: Entered 'hyperbolic_regression'-Function
[20250402_080820.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080821.]: Entered 'cubic_regression'-Function
[20250402_080822.]: 'cubic_regression': minmax = FALSE
[20250402_080822.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080822.]: Logging df_agg: CpG#2
[20250402_080822.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080822.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_080822.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080822.]: Entered 'hyperbolic_regression'-Function
[20250402_080822.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080824.]: Entered 'cubic_regression'-Function
[20250402_080824.]: 'cubic_regression': minmax = FALSE
[20250402_080824.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080824.]: Logging df_agg: CpG#3
[20250402_080824.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080824.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_080824.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080824.]: Entered 'hyperbolic_regression'-Function
[20250402_080824.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080825.]: Entered 'cubic_regression'-Function
[20250402_080825.]: 'cubic_regression': minmax = FALSE
[20250402_080825.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080825.]: Logging df_agg: CpG#4
[20250402_080825.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080825.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_080825.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080825.]: Entered 'hyperbolic_regression'-Function
[20250402_080825.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080826.]: Entered 'cubic_regression'-Function
[20250402_080826.]: 'cubic_regression': minmax = FALSE
[20250402_080826.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080826.]: Logging df_agg: CpG#5
[20250402_080826.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080826.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_080826.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080826.]: Entered 'hyperbolic_regression'-Function
[20250402_080827.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080828.]: Entered 'cubic_regression'-Function
[20250402_080828.]: 'cubic_regression': minmax = FALSE
[20250402_080824.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080824.]: Logging df_agg: CpG#6
[20250402_080824.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080824.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_080824.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080824.]: Entered 'hyperbolic_regression'-Function
[20250402_080824.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080825.]: Entered 'cubic_regression'-Function
[20250402_080825.]: 'cubic_regression': minmax = FALSE
[20250402_080825.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080825.]: Logging df_agg: CpG#7
[20250402_080825.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080825.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_080825.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080825.]: Entered 'hyperbolic_regression'-Function
[20250402_080825.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080826.]: Entered 'cubic_regression'-Function
[20250402_080826.]: 'cubic_regression': minmax = FALSE
[20250402_080826.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080826.]: Logging df_agg: CpG#8
[20250402_080826.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080826.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_080826.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080826.]: Entered 'hyperbolic_regression'-Function
[20250402_080826.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080828.]: Entered 'cubic_regression'-Function
[20250402_080828.]: 'cubic_regression': minmax = FALSE
[20250402_080828.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080828.]: Logging df_agg: CpG#9
[20250402_080828.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080828.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_080828.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080828.]: Entered 'hyperbolic_regression'-Function
[20250402_080828.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080830.]: Entered 'cubic_regression'-Function
[20250402_080830.]: 'cubic_regression': minmax = FALSE
[20250402_080830.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080830.]: Logging df_agg: row_means
[20250402_080830.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080830.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_080830.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080830.]: Entered 'hyperbolic_regression'-Function
[20250402_080830.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080831.]: Entered 'cubic_regression'-Function
[20250402_080831.]: 'cubic_regression': minmax = FALSE
[20250402_080840.]: Entered 'regression_type1'-Function
[20250402_080843.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080844.]: Logging df_agg: CpG#1
[20250402_080844.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080844.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_080844.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080844.]: Entered 'hyperbolic_regression'-Function
[20250402_080844.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080845.]: Entered 'cubic_regression'-Function
[20250402_080845.]: 'cubic_regression': minmax = FALSE
[20250402_080845.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080845.]: Logging df_agg: CpG#2
[20250402_080845.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080845.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_080845.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080845.]: Entered 'hyperbolic_regression'-Function
[20250402_080845.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080846.]: Entered 'cubic_regression'-Function
[20250402_080846.]: 'cubic_regression': minmax = FALSE
[20250402_080846.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080846.]: Logging df_agg: CpG#3
[20250402_080847.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080847.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_080847.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080847.]: Entered 'hyperbolic_regression'-Function
[20250402_080847.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080848.]: Entered 'cubic_regression'-Function
[20250402_080848.]: 'cubic_regression': minmax = FALSE
[20250402_080848.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080848.]: Logging df_agg: CpG#4
[20250402_080848.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080848.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_080848.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080848.]: Entered 'hyperbolic_regression'-Function
[20250402_080848.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080849.]: Entered 'cubic_regression'-Function
[20250402_080849.]: 'cubic_regression': minmax = FALSE
[20250402_080849.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080849.]: Logging df_agg: CpG#5
[20250402_080849.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080849.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_080849.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080849.]: Entered 'hyperbolic_regression'-Function
[20250402_080849.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080851.]: Entered 'cubic_regression'-Function
[20250402_080851.]: 'cubic_regression': minmax = FALSE
[20250402_080844.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080845.]: Logging df_agg: CpG#6
[20250402_080845.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080845.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_080845.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080845.]: Entered 'hyperbolic_regression'-Function
[20250402_080845.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080846.]: Entered 'cubic_regression'-Function
[20250402_080846.]: 'cubic_regression': minmax = FALSE
[20250402_080846.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080846.]: Logging df_agg: CpG#7
[20250402_080846.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080846.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_080846.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080846.]: Entered 'hyperbolic_regression'-Function
[20250402_080846.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080847.]: Entered 'cubic_regression'-Function
[20250402_080847.]: 'cubic_regression': minmax = FALSE
[20250402_080847.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080847.]: Logging df_agg: CpG#8
[20250402_080847.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080847.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_080847.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080847.]: Entered 'hyperbolic_regression'-Function
[20250402_080847.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080849.]: Entered 'cubic_regression'-Function
[20250402_080849.]: 'cubic_regression': minmax = FALSE
[20250402_080849.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080849.]: Logging df_agg: CpG#9
[20250402_080849.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080849.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_080849.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080849.]: Entered 'hyperbolic_regression'-Function
[20250402_080849.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080850.]: Entered 'cubic_regression'-Function
[20250402_080850.]: 'cubic_regression': minmax = FALSE
[20250402_080850.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080850.]: Logging df_agg: row_means
[20250402_080850.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080850.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_080850.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080850.]: Entered 'hyperbolic_regression'-Function
[20250402_080850.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080851.]: Entered 'cubic_regression'-Function
[20250402_080851.]: 'cubic_regression': minmax = FALSE
[20250402_080854.]: Entered 'solving_equations'-Function
[20250402_080855.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: -2.23222990163966
[20250402_080856.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.232
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.1698489850618
[20250402_080856.]: Samplename: 12.5
Root: 12.17
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.4781920312644
[20250402_080856.]: Samplename: 25
Root: 24.478
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.173044740918
[20250402_080856.]: Samplename: 37.5
Root: 38.173
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3349371964438
[20250402_080856.]: Samplename: 50
Root: 52.335
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4582773627666
[20250402_080856.]: Samplename: 62.5
Root: 65.458
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.0090795260796
[20250402_080856.]: Samplename: 75
Root: 75.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.5271920968417
[20250402_080857.]: Samplename: 87.5
Root: 81.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.400893095062
[20250402_080857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.401
--> '100 < root < 110' --> substitute 100
[20250402_080857.]: Solving hyperbolic regression for CpG#2
Hyperbolic solved: 1.13660501904968
[20250402_080857.]: Samplename: 0
Root: 1.137
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.4129696733689
[20250402_080857.]: Samplename: 12.5
Root: 11.413
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.174000526428
[20250402_080857.]: Samplename: 25
Root: 26.174
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.1050449117028
[20250402_080857.]: Samplename: 37.5
Root: 35.105
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.685500330611
[20250402_080857.]: Samplename: 50
Root: 47.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.1440494417104
[20250402_080857.]: Samplename: 62.5
Root: 67.144
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7644668894086
[20250402_080857.]: Samplename: 75
Root: 75.764
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.4054158616395
[20250402_080857.]: Samplename: 87.5
Root: 84.405
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.94827248399
[20250402_080857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.948
--> '100 < root < 110' --> substitute 100
[20250402_080857.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0.51235653688495
[20250402_080857.]: Samplename: 0
Root: 0.512
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7523884294604
[20250402_080857.]: Samplename: 12.5
Root: 10.752
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.5218907947761
[20250402_080857.]: Samplename: 25
Root: 25.522
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5270462675211
[20250402_080857.]: Samplename: 37.5
Root: 36.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7909245028224
[20250402_080857.]: Samplename: 50
Root: 50.791
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8686317550184
[20250402_080857.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 77.5524188495235
[20250402_080857.]: Samplename: 75
Root: 77.552
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.4374617358174
[20250402_080857.]: Samplename: 87.5
Root: 80.437
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.704024900825
[20250402_080857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.704
--> '100 < root < 110' --> substitute 100
[20250402_080857.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: -0.519503092357606
[20250402_080857.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.52
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.4934147844872
[20250402_080857.]: Samplename: 12.5
Root: 12.493
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2685420024115
[20250402_080857.]: Samplename: 25
Root: 24.269
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.0817128465023
[20250402_080857.]: Samplename: 37.5
Root: 38.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.5843181174811
[20250402_080857.]: Samplename: 50
Root: 48.584
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.6722399183037
[20250402_080857.]: Samplename: 62.5
Root: 67.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.1549277799119
[20250402_080857.]: Samplename: 75
Root: 74.155
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.8821797890026
[20250402_080857.]: Samplename: 87.5
Root: 82.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.0791269023
[20250402_080857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.079
--> '100 < root < 110' --> substitute 100
[20250402_080857.]: Solving hyperbolic regression for CpG#5
Hyperbolic solved: 2.41558626275183
[20250402_080857.]: Samplename: 0
Root: 2.416
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.1649674907454
[20250402_080857.]: Samplename: 12.5
Root: 10.165
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.9830820412762
[20250402_080857.]: Samplename: 25
Root: 23.983
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2773619900429
[20250402_080857.]: Samplename: 37.5
Root: 37.277
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.8659386543864
[20250402_080857.]: Samplename: 50
Root: 50.866
--> Root in between the borders! Added to results.
Hyperbolic solved: 62.4342273571069
[20250402_080857.]: Samplename: 62.5
Root: 62.434
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.3915260534323
[20250402_080857.]: Samplename: 75
Root: 76.392
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.159788778566
[20250402_080857.]: Samplename: 87.5
Root: 86.16
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.267759893323
[20250402_080857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.268
--> '100 < root < 110' --> substitute 100
[20250402_080857.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0.138163748613034
[20250402_080857.]: Samplename: 0
Root: 0.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.8635558881981
[20250402_080857.]: Samplename: 12.5
Root: 11.864
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5107449550797
[20250402_080857.]: Samplename: 25
Root: 26.511
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3205073050661
[20250402_080857.]: Samplename: 37.5
Root: 35.321
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.0570767570666
[20250402_080857.]: Samplename: 50
Root: 50.057
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9602944381018
[20250402_080857.]: Samplename: 62.5
Root: 64.96
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.66890571617
[20250402_080857.]: Samplename: 75
Root: 73.669
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.1266086585036
[20250402_080857.]: Samplename: 87.5
Root: 87.127
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.261637014212
[20250402_080857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.262
--> '100 < root < 110' --> substitute 100
[20250402_080857.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: -1.37238087287012
[20250402_080857.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.372
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.1993162352498
[20250402_080858.]: Samplename: 12.5
Root: 10.199
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.595178967123
[20250402_080858.]: Samplename: 25
Root: 24.595
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.8310421041787
[20250402_080858.]: Samplename: 37.5
Root: 37.831
--> Root in between the borders! Added to results.
Hyperbolic solved: 53.5588739724067
[20250402_080858.]: Samplename: 50
Root: 53.559
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.9364947980258
[20250402_080858.]: Samplename: 62.5
Root: 65.936
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7361094434913
[20250402_080858.]: Samplename: 75
Root: 75.736
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.432823759854
[20250402_080858.]: Samplename: 87.5
Root: 79.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 103.004237013737
[20250402_080858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 103.004
--> '100 < root < 110' --> substitute 100
[20250402_080858.]: Solving hyperbolic regression for CpG#8
Hyperbolic solved: 2.80068218205093
[20250402_080858.]: Samplename: 0
Root: 2.801
--> Root in between the borders! Added to results.
Hyperbolic solved: 9.27535134596596
[20250402_080858.]: Samplename: 12.5
Root: 9.275
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4762621928197
[20250402_080858.]: Samplename: 25
Root: 25.476
--> Root in between the borders! Added to results.
Hyperbolic solved: 34.0122075735416
[20250402_080858.]: Samplename: 37.5
Root: 34.012
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.7842655662325
[20250402_080858.]: Samplename: 50
Root: 51.784
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.6732311906145
[20250402_080858.]: Samplename: 62.5
Root: 64.673
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.4326978859189
[20250402_080858.]: Samplename: 75
Root: 78.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.3427232852719
[20250402_080858.]: Samplename: 87.5
Root: 81.343
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.964406640583
[20250402_080858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.964
--> '100 < root < 110' --> substitute 100
[20250402_080858.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: -2.13403721845678
[20250402_080858.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.134
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.5082192457956
[20250402_080858.]: Samplename: 12.5
Root: 10.508
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.9164567253388
[20250402_080858.]: Samplename: 25
Root: 26.916
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.8334779159501
[20250402_080858.]: Samplename: 37.5
Root: 36.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.0097895977263
[20250402_080858.]: Samplename: 50
Root: 52.01
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8930527921581
[20250402_080858.]: Samplename: 62.5
Root: 64.893
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.5671055499357
[20250402_080858.]: Samplename: 75
Root: 74.567
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.5294954832669
[20250402_080858.]: Samplename: 87.5
Root: 84.529
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.047146466811
[20250402_080858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.047
--> '100 < root < 110' --> substitute 100
[20250402_080858.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0.290941088603071
[20250402_080858.]: Samplename: 0
Root: 0.291
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0412408065783
[20250402_080858.]: Samplename: 12.5
Root: 11.041
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4081501047696
[20250402_080858.]: Samplename: 25
Root: 25.408
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5243719024532
[20250402_080858.]: Samplename: 37.5
Root: 36.524
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7348824329668
[20250402_080858.]: Samplename: 50
Root: 50.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.3135209766198
[20250402_080858.]: Samplename: 62.5
Root: 65.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.5342709041132
[20250402_080858.]: Samplename: 75
Root: 75.534
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.2411228425212
[20250402_080858.]: Samplename: 87.5
Root: 83.241
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.666942781592
[20250402_080858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.667
--> '100 < root < 110' --> substitute 100
[20250402_080858.]: ### Starting with regression calculations ###
[20250402_080858.]: Entered 'regression_type1'-Function
[20250402_080901.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.1698489850618, 24.4781920312644, 38.173044740918, 52.3349371964438, 65.4582773627666, 75.0090795260796, 81.5271920968417, 100)
[20250402_080901.]: Logging df_agg: CpG#1
[20250402_080901.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080901.]: c(0, 12.1698489850618, 24.4781920312644, 38.173044740918, 52.3349371964438, 65.4582773627666, 75.0090795260796, 81.5271920968417, 100)
[20250402_080901.]: Entered 'hyperbolic_regression'-Function
[20250402_080902.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080903.]: Entered 'cubic_regression'-Function
[20250402_080903.]: 'cubic_regression': minmax = FALSE
[20250402_080903.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.13660501904968, 11.4129696733689, 26.174000526428, 35.1050449117028, 47.685500330611, 67.1440494417104, 75.7644668894086, 84.4054158616395, 100)
[20250402_080903.]: Logging df_agg: CpG#2
[20250402_080903.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080903.]: c(1.13660501904968, 11.4129696733689, 26.174000526428, 35.1050449117028, 47.685500330611, 67.1440494417104, 75.7644668894086, 84.4054158616395, 100)
[20250402_080903.]: Entered 'hyperbolic_regression'-Function
[20250402_080903.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080904.]: Entered 'cubic_regression'-Function
[20250402_080904.]: 'cubic_regression': minmax = FALSE
[20250402_080905.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.51235653688495, 10.7523884294604, 25.5218907947761, 36.5270462675211, 50.7909245028224, 64.8686317550184, 77.5524188495235, 80.4374617358174, 100)
[20250402_080905.]: Logging df_agg: CpG#3
[20250402_080905.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080905.]: c(0.51235653688495, 10.7523884294604, 25.5218907947761, 36.5270462675211, 50.7909245028224, 64.8686317550184, 77.5524188495235, 80.4374617358174, 100)
[20250402_080905.]: Entered 'hyperbolic_regression'-Function
[20250402_080905.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080906.]: Entered 'cubic_regression'-Function
[20250402_080906.]: 'cubic_regression': minmax = FALSE
[20250402_080906.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.4934147844872, 24.2685420024115, 38.0817128465023, 48.5843181174811, 67.6722399183037, 74.1549277799119, 82.8821797890026, 100)
[20250402_080906.]: Logging df_agg: CpG#4
[20250402_080906.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080906.]: c(0, 12.4934147844872, 24.2685420024115, 38.0817128465023, 48.5843181174811, 67.6722399183037, 74.1549277799119, 82.8821797890026, 100)
[20250402_080906.]: Entered 'hyperbolic_regression'-Function
[20250402_080906.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080907.]: Entered 'cubic_regression'-Function
[20250402_080908.]: 'cubic_regression': minmax = FALSE
[20250402_080908.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.41558626275183, 10.1649674907454, 23.9830820412762, 37.2773619900429, 50.8659386543864, 62.4342273571069, 76.3915260534323, 86.159788778566, 100)
[20250402_080908.]: Logging df_agg: CpG#5
[20250402_080908.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080908.]: c(2.41558626275183, 10.1649674907454, 23.9830820412762, 37.2773619900429, 50.8659386543864, 62.4342273571069, 76.3915260534323, 86.159788778566, 100)
[20250402_080908.]: Entered 'hyperbolic_regression'-Function
[20250402_080908.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080909.]: Entered 'cubic_regression'-Function
[20250402_080909.]: 'cubic_regression': minmax = FALSE
[20250402_080903.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.138163748613034, 11.8635558881981, 26.5107449550797, 35.3205073050661, 50.0570767570666, 64.9602944381018, 73.66890571617, 87.1266086585036, 100)
[20250402_080903.]: Logging df_agg: CpG#6
[20250402_080903.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080903.]: c(0.138163748613034, 11.8635558881981, 26.5107449550797, 35.3205073050661, 50.0570767570666, 64.9602944381018, 73.66890571617, 87.1266086585036, 100)
[20250402_080903.]: Entered 'hyperbolic_regression'-Function
[20250402_080903.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080905.]: Entered 'cubic_regression'-Function
[20250402_080905.]: 'cubic_regression': minmax = FALSE
[20250402_080905.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.1993162352498, 24.595178967123, 37.8310421041787, 53.5588739724067, 65.9364947980258, 75.7361094434913, 79.432823759854, 100)
[20250402_080905.]: Logging df_agg: CpG#7
[20250402_080905.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080905.]: c(0, 10.1993162352498, 24.595178967123, 37.8310421041787, 53.5588739724067, 65.9364947980258, 75.7361094434913, 79.432823759854, 100)
[20250402_080905.]: Entered 'hyperbolic_regression'-Function
[20250402_080905.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080906.]: Entered 'cubic_regression'-Function
[20250402_080906.]: 'cubic_regression': minmax = FALSE
[20250402_080906.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.80068218205093, 9.27535134596596, 25.4762621928197, 34.0122075735416, 51.7842655662325, 64.6732311906145, 78.4326978859189, 81.3427232852719, 100)
[20250402_080906.]: Logging df_agg: CpG#8
[20250402_080906.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080906.]: c(2.80068218205093, 9.27535134596596, 25.4762621928197, 34.0122075735416, 51.7842655662325, 64.6732311906145, 78.4326978859189, 81.3427232852719, 100)
[20250402_080906.]: Entered 'hyperbolic_regression'-Function
[20250402_080906.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080908.]: Entered 'cubic_regression'-Function
[20250402_080908.]: 'cubic_regression': minmax = FALSE
[20250402_080908.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.5082192457956, 26.9164567253388, 36.8334779159501, 52.0097895977263, 64.8930527921581, 74.5671055499357, 84.5294954832669, 100)
[20250402_080908.]: Logging df_agg: CpG#9
[20250402_080908.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080908.]: c(0, 10.5082192457956, 26.9164567253388, 36.8334779159501, 52.0097895977263, 64.8930527921581, 74.5671055499357, 84.5294954832669, 100)
[20250402_080908.]: Entered 'hyperbolic_regression'-Function
[20250402_080908.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080909.]: Entered 'cubic_regression'-Function
[20250402_080909.]: 'cubic_regression': minmax = FALSE
[20250402_080909.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.290941088603071, 11.0412408065783, 25.4081501047696, 36.5243719024532, 50.7348824329668, 65.3135209766198, 75.5342709041132, 83.2411228425212, 100)
[20250402_080909.]: Logging df_agg: row_means
[20250402_080909.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080909.]: c(0.290941088603071, 11.0412408065783, 25.4081501047696, 36.5243719024532, 50.7348824329668, 65.3135209766198, 75.5342709041132, 83.2411228425212, 100)
[20250402_080909.]: Entered 'hyperbolic_regression'-Function
[20250402_080909.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080910.]: Entered 'cubic_regression'-Function
[20250402_080910.]: 'cubic_regression': minmax = FALSE
[20250402_080913.]: Entered 'solving_equations'-Function
[20250402_080913.]: Solving cubic regression for CpG#1
Coefficients: -1.03617340067344Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 0
Root: 1.334
--> Root in between the borders! Added to results.
Coefficients: -8.34150673400678Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 12.5
Root: 11.446
--> Root in between the borders! Added to results.
Coefficients: -15.3881734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 25
Root: 22.228
--> Root in between the borders! Added to results.
Coefficients: -24.2801734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 37.5
Root: 36.374
--> Root in between the borders! Added to results.
Coefficients: -34.9006734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 50
Root: 52.044
--> Root in between the borders! Added to results.
Coefficients: -46.3541734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 62.5
Root: 66.144
--> Root in between the borders! Added to results.
Coefficients: -55.8931734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 75
Root: 75.864
--> Root in between the borders! Added to results.
Coefficients: -63.0981734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 87.5
Root: 82.254
--> Root in between the borders! Added to results.
Coefficients: -91.0461734006735Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.877
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#2
Coefficients: -0.283329966329966Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 0
Root: 0.549
--> Root in between the borders! Added to results.
Coefficients: -6.33999663299663Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 12.5
Root: 11.533
--> Root in between the borders! Added to results.
Coefficients: -15.93932996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 25
Root: 26.628
--> Root in between the borders! Added to results.
Coefficients: -22.33732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 37.5
Root: 35.509
--> Root in between the borders! Added to results.
Coefficients: -32.22832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 50
Root: 47.851
--> Root in between the borders! Added to results.
Coefficients: -49.96332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 62.5
Root: 66.893
--> Root in between the borders! Added to results.
Coefficients: -58.96582996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 75
Root: 75.431
--> Root in between the borders! Added to results.
Coefficients: -68.8366632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 87.5
Root: 84.118
--> Root in between the borders! Added to results.
Coefficients: -90.57732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.287
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#3
Coefficients: -0.90294781144782Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 0
Root: 1.441
--> Root in between the borders! Added to results.
Coefficients: -6.57294781144782Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 12.5
Root: 10.568
--> Root in between the borders! Added to results.
Coefficients: -15.4289478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 25
Root: 24.796
--> Root in between the borders! Added to results.
Coefficients: -22.6129478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 37.5
Root: 35.952
--> Root in between the borders! Added to results.
Coefficients: -32.7754478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 50
Root: 50.684
--> Root in between the borders! Added to results.
Coefficients: -43.8889478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 62.5
Root: 65.142
--> Root in between the borders! Added to results.
Coefficients: -54.9754478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 75
Root: 77.905
--> Root in between the borders! Added to results.
Coefficients: -57.6562811447812Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 87.5
Root: 80.767
--> Root in between the borders! Added to results.
Coefficients: -80.6649478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.38
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#4
Coefficients: -0.597449494949524Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 0
Root: 0.858
--> Root in between the borders! Added to results.
Coefficients: -8.25278282828286Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 12.5
Root: 12.086
--> Root in between the borders! Added to results.
Coefficients: -15.8034494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 25
Root: 23.316
--> Root in between the borders! Added to results.
Coefficients: -25.5274494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 37.5
Root: 37.383
--> Root in between the borders! Added to results.
Coefficients: -33.6369494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 50
Root: 48.353
--> Root in between the borders! Added to results.
Coefficients: -50.2554494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 62.5
Root: 68.082
--> Root in between the borders! Added to results.
Coefficients: -56.5394494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 75
Root: 74.615
--> Root in between the borders! Added to results.
Coefficients: -65.5927828282829Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 87.5
Root: 83.254
--> Root in between the borders! Added to results.
Coefficients: -88.3214494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.715
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#5
Coefficients: -0.623961279461278Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 0
Root: 1.458
--> Root in between the borders! Added to results.
Coefficients: -4.76796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 12.5
Root: 10.347
--> Root in between the borders! Added to results.
Coefficients: -12.7259612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 25
Root: 24.815
--> Root in between the borders! Added to results.
Coefficients: -21.1599612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 37.5
Root: 37.902
--> Root in between the borders! Added to results.
Coefficients: -30.6954612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 50
Root: 50.977
--> Root in between the borders! Added to results.
Coefficients: -39.6579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 62.5
Root: 62.126
--> Root in between the borders! Added to results.
Coefficients: -51.6829612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 75
Root: 75.852
--> Root in between the borders! Added to results.
Coefficients: -61.0146279461279Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 87.5
Root: 85.767
--> Root in between the borders! Added to results.
Coefficients: -76.0699612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.743
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#6
Coefficients: -0.196072390572403Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 0
Root: 0.349
--> Root in between the borders! Added to results.
Coefficients: -6.73873905723907Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 12.5
Root: 11.718
--> Root in between the borders! Added to results.
Coefficients: -15.8880723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 25
Root: 26.396
--> Root in between the borders! Added to results.
Coefficients: -22.0000723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 37.5
Root: 35.301
--> Root in between the borders! Added to results.
Coefficients: -33.4445723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 50
Root: 50.134
--> Root in between the borders! Added to results.
Coefficients: -46.9000723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 62.5
Root: 64.993
--> Root in between the borders! Added to results.
Coefficients: -55.8320723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 75
Root: 73.639
--> Root in between the borders! Added to results.
Coefficients: -71.5454057239057Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 87.5
Root: 87.043
--> Root in between the borders! Added to results.
Coefficients: -89.6560723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.329
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#7
Coefficients: -1.21495454545456Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 0
Root: 2.13
--> Root in between the borders! Added to results.
Coefficients: -5.39562121212123Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 12.5
Root: 9.973
--> Root in between the borders! Added to results.
Coefficients: -11.2649545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 25
Root: 22.206
--> Root in between the borders! Added to results.
Coefficients: -17.4509545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 37.5
Root: 35.814
--> Root in between the borders! Added to results.
Coefficients: -26.0314545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 50
Root: 53.28
--> Root in between the borders! Added to results.
Coefficients: -33.9649545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 62.5
Root: 66.598
--> Root in between the borders! Added to results.
Coefficients: -41.1689545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 75
Root: 76.575
--> Root in between the borders! Added to results.
Coefficients: -44.1356212121212Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 87.5
Root: 80.219
--> Root in between the borders! Added to results.
Coefficients: -67.2229545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.506
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#8
Coefficients: -1.09618518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 0
Root: 2.016
--> Root in between the borders! Added to results.
Coefficients: -5.44685185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 12.5
Root: 9.458
--> Root in between the borders! Added to results.
Coefficients: -16.9301851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 25
Root: 26.35
--> Root in between the borders! Added to results.
Coefficients: -23.3501851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 37.5
Root: 34.728
--> Root in between the borders! Added to results.
Coefficients: -37.6251851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 50
Root: 51.781
--> Root in between the borders! Added to results.
Coefficients: -48.8261851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 62.5
Root: 64.192
--> Root in between the borders! Added to results.
Coefficients: -61.6676851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 75
Root: 77.804
--> Root in between the borders! Added to results.
Coefficients: -64.5101851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 87.5
Root: 80.758
--> Root in between the borders! Added to results.
Coefficients: -86.0601851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.834
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for CpG#9
Coefficients: -0.989865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 0
Root: 1.475
--> Root in between the borders! Added to results.
Coefficients: -6.39586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 12.5
Root: 10.12
--> Root in between the borders! Added to results.
Coefficients: -14.7058653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 25
Root: 24.844
--> Root in between the borders! Added to results.
Coefficients: -20.6238653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 37.5
Root: 35.327
--> Root in between the borders! Added to results.
Coefficients: -31.3958653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 50
Root: 51.855
--> Root in between the borders! Added to results.
Coefficients: -42.6858653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 62.5
Root: 65.265
--> Root in between the borders! Added to results.
Coefficients: -52.9033653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 75
Root: 74.915
--> Root in between the borders! Added to results.
Coefficients: -65.492531986532Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 87.5
Root: 84.67
--> Root in between the borders! Added to results.
Coefficients: -92.9898653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.082
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: Solving cubic regression for row_means
Coefficients: -0.771215488215478Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 0
Root: 1.287
--> Root in between the borders! Added to results.
Coefficients: -6.47247474747474Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 12.5
Root: 10.847
--> Root in between the borders! Added to results.
Coefficients: -14.8972154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 25
Root: 24.737
--> Root in between the borders! Added to results.
Coefficients: -22.1492154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 37.5
Root: 36.02
--> Root in between the borders! Added to results.
Coefficients: -32.5259932659933Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 50
Root: 50.639
--> Root in between the borders! Added to results.
Coefficients: -44.7218821548821Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 62.5
Root: 65.497
--> Root in between the borders! Added to results.
Coefficients: -54.4032154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 75
Root: 75.751
--> Root in between the borders! Added to results.
Coefficients: -62.4313636363636Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 87.5
Root: 83.403
--> Root in between the borders! Added to results.
Coefficients: -84.7343265993266Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_080913.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.573
--> '100 < root < 110' --> substitute 100
[20250402_080913.]: ### Starting with regression calculations ###
[20250402_080913.]: Entered 'regression_type1'-Function
[20250402_080916.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.33401421032361, 11.4464168649749, 22.2276337872205, 36.3736525123061, 52.0438002576114, 66.1443249010516, 75.864353455204, 82.2543632311352, 100)
[20250402_080916.]: Logging df_agg: CpG#1
[20250402_080916.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080916.]: c(1.33401421032361, 11.4464168649749, 22.2276337872205, 36.3736525123061, 52.0438002576114, 66.1443249010516, 75.864353455204, 82.2543632311352, 100)
[20250402_080916.]: Entered 'hyperbolic_regression'-Function
[20250402_080916.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080918.]: Entered 'cubic_regression'-Function
[20250402_080918.]: 'cubic_regression': minmax = FALSE
[20250402_080918.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.548629212600373, 11.5334942360619, 26.6282428579604, 35.509046298922, 47.8509004857888, 66.8931714037845, 75.4313106569591, 84.1184829423144, 100)
[20250402_080918.]: Logging df_agg: CpG#2
[20250402_080918.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080918.]: c(0.548629212600373, 11.5334942360619, 26.6282428579604, 35.509046298922, 47.8509004857888, 66.8931714037845, 75.4313106569591, 84.1184829423144, 100)
[20250402_080918.]: Entered 'hyperbolic_regression'-Function
[20250402_080918.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080919.]: Entered 'cubic_regression'-Function
[20250402_080919.]: 'cubic_regression': minmax = FALSE
[20250402_080919.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.44072654766676, 10.5677206698424, 24.7956529081379, 35.9519154174756, 50.6840128730794, 65.1415439321287, 77.905329956603, 80.767122912268, 100)
[20250402_080919.]: Logging df_agg: CpG#3
[20250402_080919.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080919.]: c(1.44072654766676, 10.5677206698424, 24.7956529081379, 35.9519154174756, 50.6840128730794, 65.1415439321287, 77.905329956603, 80.767122912268, 100)
[20250402_080919.]: Entered 'hyperbolic_regression'-Function
[20250402_080919.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080920.]: Entered 'cubic_regression'-Function
[20250402_080920.]: 'cubic_regression': minmax = FALSE
[20250402_080920.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.858335161098707, 12.0855313705714, 23.3164186343997, 37.3830070750476, 48.3526815121735, 68.0824341519511, 74.6152796890845, 83.2536964524017, 100)
[20250402_080920.]: Logging df_agg: CpG#4
[20250402_080920.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080920.]: c(0.858335161098707, 12.0855313705714, 23.3164186343997, 37.3830070750476, 48.3526815121735, 68.0824341519511, 74.6152796890845, 83.2536964524017, 100)
[20250402_080920.]: Entered 'hyperbolic_regression'-Function
[20250402_080920.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080921.]: Entered 'cubic_regression'-Function
[20250402_080921.]: 'cubic_regression': minmax = FALSE
[20250402_080921.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.45815885872158, 10.3470047908467, 24.8150085082726, 37.902202434763, 50.9768599213374, 62.1264944886855, 75.8515940245021, 85.766767827257, 100)
[20250402_080921.]: Logging df_agg: CpG#5
[20250402_080921.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080921.]: c(1.45815885872158, 10.3470047908467, 24.8150085082726, 37.902202434763, 50.9768599213374, 62.1264944886855, 75.8515940245021, 85.766767827257, 100)
[20250402_080921.]: Entered 'hyperbolic_regression'-Function
[20250402_080921.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080923.]: Entered 'cubic_regression'-Function
[20250402_080923.]: 'cubic_regression': minmax = FALSE
[20250402_080919.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.349289777689709, 11.718186424346, 26.3959840124278, 35.3009019621403, 50.1335677299922, 64.9927731962402, 73.6385743787925, 87.0433563205787, 100)
[20250402_080920.]: Logging df_agg: CpG#6
[20250402_080920.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080920.]: c(0.349289777689709, 11.718186424346, 26.3959840124278, 35.3009019621403, 50.1335677299922, 64.9927731962402, 73.6385743787925, 87.0433563205787, 100)
[20250402_080920.]: Entered 'hyperbolic_regression'-Function
[20250402_080920.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080922.]: Entered 'cubic_regression'-Function
[20250402_080922.]: 'cubic_regression': minmax = FALSE
[20250402_080922.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.12953119975094, 9.97257098314617, 22.2059559709309, 35.8143078912917, 53.2798169545709, 66.5977007121001, 76.5753720723248, 80.2192820049015, 100)
[20250402_080922.]: Logging df_agg: CpG#7
[20250402_080922.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080922.]: c(2.12953119975094, 9.97257098314617, 22.2059559709309, 35.8143078912917, 53.2798169545709, 66.5977007121001, 76.5753720723248, 80.2192820049015, 100)
[20250402_080922.]: Entered 'hyperbolic_regression'-Function
[20250402_080922.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080923.]: Entered 'cubic_regression'-Function
[20250402_080923.]: 'cubic_regression': minmax = FALSE
[20250402_080923.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.01554288922103, 9.4575966611002, 26.3496745529898, 34.7279879576046, 51.7805031081493, 64.1918409049086, 77.803935663705, 80.7580214011447, 100)
[20250402_080923.]: Logging df_agg: CpG#8
[20250402_080923.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080923.]: c(2.01554288922103, 9.4575966611002, 26.3496745529898, 34.7279879576046, 51.7805031081493, 64.1918409049086, 77.803935663705, 80.7580214011447, 100)
[20250402_080923.]: Entered 'hyperbolic_regression'-Function
[20250402_080923.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080924.]: Entered 'cubic_regression'-Function
[20250402_080924.]: 'cubic_regression': minmax = FALSE
[20250402_080924.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.4748520772151, 10.1196517054927, 24.843641290935, 35.3267260117639, 51.8546848506009, 65.2652545321194, 74.9150847744697, 84.6698630277555, 100)
[20250402_080924.]: Logging df_agg: CpG#9
[20250402_080924.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080924.]: c(1.4748520772151, 10.1196517054927, 24.843641290935, 35.3267260117639, 51.8546848506009, 65.2652545321194, 74.9150847744697, 84.6698630277555, 100)
[20250402_080924.]: Entered 'hyperbolic_regression'-Function
[20250402_080924.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080925.]: Entered 'cubic_regression'-Function
[20250402_080925.]: 'cubic_regression': minmax = FALSE
[20250402_080926.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.28674218034491, 10.8474062821721, 24.737384351039, 36.0200815402329, 50.6393222494118, 65.4974814516656, 75.7507242961973, 83.4027053898488, 100)
[20250402_080926.]: Logging df_agg: row_means
[20250402_080926.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080926.]: c(1.28674218034491, 10.8474062821721, 24.737384351039, 36.0200815402329, 50.6393222494118, 65.4974814516656, 75.7507242961973, 83.4027053898488, 100)
[20250402_080926.]: Entered 'hyperbolic_regression'-Function
[20250402_080926.]: 'hyperbolic_regression': minmax = FALSE
[20250402_080927.]: Entered 'cubic_regression'-Function
[20250402_080927.]: 'cubic_regression': minmax = FALSE
[20250402_080929.]: Entered 'solving_equations'-Function
[20250402_080929.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 79.8673456895745
[20250402_080929.]: Samplename: Sample#1
Root: 79.867
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.7900184340805
[20250402_080929.]: Samplename: Sample#10
Root: 29.79
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.6525415639691
[20250402_080929.]: Samplename: Sample#2
Root: 41.653
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.4652090254513
[20250402_080929.]: Samplename: Sample#3
Root: 57.465
--> Root in between the borders! Added to results.
Hyperbolic solved: 9.2007130627765
[20250402_080930.]: Samplename: Sample#4
Root: 9.201
--> Root in between the borders! Added to results.
Hyperbolic solved: 21.8059600538131
[20250402_080930.]: Samplename: Sample#5
Root: 21.806
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.083796735881
[20250402_080930.]: Samplename: Sample#6
Root: 23.084
--> Root in between the borders! Added to results.
Hyperbolic solved: 45.5034245569385
[20250402_080930.]: Samplename: Sample#7
Root: 45.503
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6987904075704
[20250402_080930.]: Samplename: Sample#8
Root: 85.699
--> Root in between the borders! Added to results.
Hyperbolic solved: -3.66512807265101
[20250402_080930.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -3.665
--> '-10 < root < 0' --> substitute 0
[20250402_080930.]: Solving cubic regression for CpG#2
Coefficients: -60.0166632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#1
Root: 76.388
--> Root in between the borders! Added to results.
Coefficients: -19.33132996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#10
Root: 31.437
--> Root in between the borders! Added to results.
Coefficients: -28.1616632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#2
Root: 42.956
--> Root in between the borders! Added to results.
Coefficients: -42.07832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#3
Root: 58.838
--> Root in between the borders! Added to results.
Coefficients: -2.49332996632996Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#4
Root: 4.715
--> Root in between the borders! Added to results.
Coefficients: -11.94832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#5
Root: 20.644
--> Root in between the borders! Added to results.
Coefficients: -10.36332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#6
Root: 18.159
--> Root in between the borders! Added to results.
Coefficients: -26.77132996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#7
Root: 41.228
--> Root in between the borders! Added to results.
Coefficients: -70.81532996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#8
Root: 85.785
--> Root in between the borders! Added to results.
Coefficients: -1.41332996632996Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080930.]: Samplename: Sample#9
Root: 2.703
--> Root in between the borders! Added to results.
[20250402_080930.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 74.9349254100163
[20250402_080930.]: Samplename: Sample#1
Root: 74.935
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.6844381581493
[20250402_080930.]: Samplename: Sample#10
Root: 27.684
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.852019114379
[20250402_080930.]: Samplename: Sample#2
Root: 41.852
--> Root in between the borders! Added to results.
Hyperbolic solved: 55.8325180209418
[20250402_080930.]: Samplename: Sample#3
Root: 55.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.03519251633153
[20250402_080930.]: Samplename: Sample#4
Root: 8.035
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.1066315721853
[20250402_080930.]: Samplename: Sample#5
Root: 24.107
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2419820027673
[20250402_080930.]: Samplename: Sample#6
Root: 26.242
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.0944922703422
[20250402_080930.]: Samplename: Sample#7
Root: 44.094
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.8279382585787
[20250402_080930.]: Samplename: Sample#8
Root: 85.828
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.666482392725758
[20250402_080930.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.666
--> '-10 < root < 0' --> substitute 0
[20250402_080930.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 76.3495278640236
[20250402_080930.]: Samplename: Sample#1
Root: 76.35
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.2568553570941
[20250402_080930.]: Samplename: Sample#10
Root: 28.257
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.4089839390807
[20250402_080930.]: Samplename: Sample#2
Root: 43.409
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.5435236860146
[20250402_080930.]: Samplename: Sample#3
Root: 58.544
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.3087045690571
[20250402_080930.]: Samplename: Sample#4
Root: 10.309
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.183045165659
[20250402_080930.]: Samplename: Sample#5
Root: 22.183
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.1337769553499
[20250402_080930.]: Samplename: Sample#6
Root: 27.134
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.8321096080155
[20250402_080930.]: Samplename: Sample#7
Root: 41.832
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6890189074743
[20250402_080930.]: Samplename: Sample#8
Root: 85.689
--> Root in between the borders! Added to results.
Hyperbolic solved: 2.42232098177269
[20250402_080930.]: Samplename: Sample#9
Root: 2.422
--> Root in between the borders! Added to results.
[20250402_080930.]: Solving cubic regression for CpG#5
Coefficients: -48.4612946127946Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080930.]: Samplename: Sample#1
Root: 72.291
--> Root in between the borders! Added to results.
Coefficients: -14.2119612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#10
Root: 27.256
--> Root in between the borders! Added to results.
Coefficients: -25.9451041366041Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#2
Root: 44.648
--> Root in between the borders! Added to results.
Coefficients: -32.6879612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#3
Root: 53.538
--> Root in between the borders! Added to results.
Coefficients: -4.69796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#4
Root: 10.206
--> Root in between the borders! Added to results.
Coefficients: -12.0579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#5
Root: 23.695
--> Root in between the borders! Added to results.
Coefficients: -13.9179612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#6
Root: 26.778
--> Root in between the borders! Added to results.
Coefficients: -24.9119612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#7
Root: 43.226
--> Root in between the borders! Added to results.
Coefficients: -63.7579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#8
Root: 88.581
--> Root in between the borders! Added to results.
Coefficients: -0.587961279461277Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080931.]: Samplename: Sample#9
Root: 1.375
--> Root in between the borders! Added to results.
[20250402_080931.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 79.2780593622711
[20250402_080931.]: Samplename: Sample#1
Root: 79.278
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.2012458984074
[20250402_080931.]: Samplename: Sample#10
Root: 30.201
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.8474393624107
[20250402_080931.]: Samplename: Sample#2
Root: 41.847
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.8423517321508
[20250402_080931.]: Samplename: Sample#3
Root: 56.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.87856046118588
[20250402_080931.]: Samplename: Sample#4
Root: 8.879
--> Root in between the borders! Added to results.
Hyperbolic solved: 18.69015950004
[20250402_080931.]: Samplename: Sample#5
Root: 18.69
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.9309263534749
[20250402_080931.]: Samplename: Sample#6
Root: 29.931
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.8148560027697
[20250402_080931.]: Samplename: Sample#7
Root: 42.815
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.7501831416152
[20250402_080931.]: Samplename: Sample#8
Root: 86.75
--> Root in between the borders! Added to results.
Hyperbolic solved: 1.51516194985267
[20250402_080931.]: Samplename: Sample#9
Root: 1.515
--> Root in between the borders! Added to results.
[20250402_080931.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 78.2565592569279
[20250402_080931.]: Samplename: Sample#1
Root: 78.257
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.488739349283
[20250402_080931.]: Samplename: Sample#10
Root: 25.489
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.3712258915285
[20250402_080931.]: Samplename: Sample#2
Root: 47.371
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.3142673189298
[20250402_080931.]: Samplename: Sample#3
Root: 58.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7212231360573
[20250402_080932.]: Samplename: Sample#4
Root: 11.721
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.3797485992238
[20250402_080932.]: Samplename: Sample#5
Root: 25.38
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.4095133062523
[20250402_080932.]: Samplename: Sample#6
Root: 29.41
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.5755071469546
[20250402_080932.]: Samplename: Sample#7
Root: 44.576
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.9628731021447
[20250402_080932.]: Samplename: Sample#8
Root: 85.963
--> Root in between the borders! Added to results.
Hyperbolic solved: -4.1645647175353
[20250402_080932.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -4.165
--> '-10 < root < 0' --> substitute 0
[20250402_080932.]: Solving cubic regression for CpG#8
Coefficients: -56.4535185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#1
Root: 72.337
--> Root in between the borders! Added to results.
Coefficients: -18.6701851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#10
Root: 28.678
--> Root in between the borders! Added to results.
Coefficients: -24.0387566137566Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#2
Root: 35.595
--> Root in between the borders! Added to results.
Coefficients: -43.9451851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#3
Root: 58.861
--> Root in between the borders! Added to results.
Coefficients: -5.70018518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#4
Root: 9.868
--> Root in between the borders! Added to results.
Coefficients: -12.4851851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#5
Root: 20.166
--> Root in between the borders! Added to results.
Coefficients: -26.8801851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#6
Root: 39.117
--> Root in between the borders! Added to results.
Coefficients: -31.8421851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#7
Root: 45.08
--> Root in between the borders! Added to results.
Coefficients: -68.0081851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#8
Root: 84.373
--> Root in between the borders! Added to results.
Coefficients: 2.07981481481482Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080932.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -4.026
--> '-10 < root < 0' --> substitute 0
[20250402_080932.]: Solving cubic regression for CpG#9
Coefficients: -60.8091986531987Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#1
Root: 81.262
--> Root in between the borders! Added to results.
Coefficients: -14.5538653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#10
Root: 24.569
--> Root in between the borders! Added to results.
Coefficients: -26.6344367484368Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#2
Root: 45.035
--> Root in between the borders! Added to results.
Coefficients: -35.4783653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#3
Root: 57.113
--> Root in between the borders! Added to results.
Coefficients: -4.73586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#4
Root: 7.362
--> Root in between the borders! Added to results.
Coefficients: -12.5308653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#5
Root: 20.907
--> Root in between the borders! Added to results.
Coefficients: -21.9358653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#6
Root: 37.545
--> Root in between the borders! Added to results.
Coefficients: -25.1998653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#7
Root: 42.828
--> Root in between the borders! Added to results.
Coefficients: -70.5118653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#8
Root: 88.082
--> Root in between the borders! Added to results.
Coefficients: -0.505865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080932.]: Samplename: Sample#9
Root: 0.749
--> Root in between the borders! Added to results.
[20250402_080932.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 77.0692797356261
[20250402_080932.]: Samplename: Sample#1
Root: 77.069
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.3620040447844
[20250402_080932.]: Samplename: Sample#10
Root: 28.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.5026170660315
[20250402_080932.]: Samplename: Sample#2
Root: 42.503
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.2972045344154
[20250402_080932.]: Samplename: Sample#3
Root: 57.297
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.82704040274281
[20250402_080932.]: Samplename: Sample#4
Root: 8.827
--> Root in between the borders! Added to results.
Hyperbolic solved: 21.8102591233667
[20250402_080932.]: Samplename: Sample#5
Root: 21.81
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.722865717687
[20250402_080932.]: Samplename: Sample#6
Root: 28.723
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.4105098027891
[20250402_080932.]: Samplename: Sample#7
Root: 43.411
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.4143551699061
[20250402_080932.]: Samplename: Sample#8
Root: 86.414
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.237019926848022
[20250402_080932.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.237
--> '-10 < root < 0' --> substitute 0
[20250402_080932.]: Entered 'solving_equations'-Function
[20250402_080932.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: -2.23222990163966
[20250402_080932.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.232
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.1698489850618
[20250402_080932.]: Samplename: 12.5
Root: 12.17
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.4781920312644
[20250402_080932.]: Samplename: 25
Root: 24.478
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.173044740918
[20250402_080932.]: Samplename: 37.5
Root: 38.173
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3349371964438
[20250402_080932.]: Samplename: 50
Root: 52.335
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4582773627666
[20250402_080932.]: Samplename: 62.5
Root: 65.458
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.0090795260796
[20250402_080932.]: Samplename: 75
Root: 75.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.5271920968417
[20250402_080932.]: Samplename: 87.5
Root: 81.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.400893095062
[20250402_080932.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.401
--> '100 < root < 110' --> substitute 100
[20250402_080932.]: Solving cubic regression for CpG#2
Coefficients: -0.283329966329966Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 0
Root: 0.549
--> Root in between the borders! Added to results.
Coefficients: -6.33999663299663Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 12.5
Root: 11.533
--> Root in between the borders! Added to results.
Coefficients: -15.93932996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 25
Root: 26.628
--> Root in between the borders! Added to results.
Coefficients: -22.33732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 37.5
Root: 35.509
--> Root in between the borders! Added to results.
Coefficients: -32.22832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 50
Root: 47.851
--> Root in between the borders! Added to results.
Coefficients: -49.96332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 62.5
Root: 66.893
--> Root in between the borders! Added to results.
Coefficients: -58.96582996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 75
Root: 75.431
--> Root in between the borders! Added to results.
Coefficients: -68.8366632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 87.5
Root: 84.118
--> Root in between the borders! Added to results.
Coefficients: -90.57732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_080932.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.287
--> '100 < root < 110' --> substitute 100
[20250402_080932.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0.51235653688495
[20250402_080932.]: Samplename: 0
Root: 0.512
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7523884294604
[20250402_080932.]: Samplename: 12.5
Root: 10.752
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.5218907947761
[20250402_080933.]: Samplename: 25
Root: 25.522
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5270462675211
[20250402_080933.]: Samplename: 37.5
Root: 36.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7909245028224
[20250402_080933.]: Samplename: 50
Root: 50.791
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8686317550184
[20250402_080933.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 77.5524188495235
[20250402_080933.]: Samplename: 75
Root: 77.552
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.4374617358174
[20250402_080933.]: Samplename: 87.5
Root: 80.437
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.704024900825
[20250402_080933.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.704
--> '100 < root < 110' --> substitute 100
[20250402_080933.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: -0.519503092357606
[20250402_080933.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.52
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.4934147844872
[20250402_080933.]: Samplename: 12.5
Root: 12.493
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2685420024115
[20250402_080933.]: Samplename: 25
Root: 24.269
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.0817128465023
[20250402_080933.]: Samplename: 37.5
Root: 38.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.5843181174811
[20250402_080933.]: Samplename: 50
Root: 48.584
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.6722399183037
[20250402_080933.]: Samplename: 62.5
Root: 67.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.1549277799119
[20250402_080933.]: Samplename: 75
Root: 74.155
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.8821797890026
[20250402_080933.]: Samplename: 87.5
Root: 82.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.0791269023
[20250402_080933.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.079
--> '100 < root < 110' --> substitute 100
[20250402_080933.]: Solving cubic regression for CpG#5
Coefficients: -0.623961279461278Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 0
Root: 1.458
--> Root in between the borders! Added to results.
Coefficients: -4.76796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 12.5
Root: 10.347
--> Root in between the borders! Added to results.
Coefficients: -12.7259612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 25
Root: 24.815
--> Root in between the borders! Added to results.
Coefficients: -21.1599612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 37.5
Root: 37.902
--> Root in between the borders! Added to results.
Coefficients: -30.6954612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 50
Root: 50.977
--> Root in between the borders! Added to results.
Coefficients: -39.6579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 62.5
Root: 62.126
--> Root in between the borders! Added to results.
Coefficients: -51.6829612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 75
Root: 75.852
--> Root in between the borders! Added to results.
Coefficients: -61.0146279461279Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 87.5
Root: 85.767
--> Root in between the borders! Added to results.
Coefficients: -76.0699612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_080933.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.743
--> '100 < root < 110' --> substitute 100
[20250402_080933.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0.138163748613034
[20250402_080933.]: Samplename: 0
Root: 0.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.8635558881981
[20250402_080933.]: Samplename: 12.5
Root: 11.864
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5107449550797
[20250402_080933.]: Samplename: 25
Root: 26.511
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3205073050661
[20250402_080933.]: Samplename: 37.5
Root: 35.321
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.0570767570666
[20250402_080933.]: Samplename: 50
Root: 50.057
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9602944381018
[20250402_080933.]: Samplename: 62.5
Root: 64.96
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.66890571617
[20250402_080933.]: Samplename: 75
Root: 73.669
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.1266086585036
[20250402_080933.]: Samplename: 87.5
Root: 87.127
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.261637014212
[20250402_080933.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.262
--> '100 < root < 110' --> substitute 100
[20250402_080933.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: -1.37238087287012
[20250402_080933.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.372
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.1993162352498
[20250402_080933.]: Samplename: 12.5
Root: 10.199
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.595178967123
[20250402_080933.]: Samplename: 25
Root: 24.595
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.8310421041787
[20250402_080933.]: Samplename: 37.5
Root: 37.831
--> Root in between the borders! Added to results.
Hyperbolic solved: 53.5588739724067
[20250402_080933.]: Samplename: 50
Root: 53.559
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.9364947980258
[20250402_080933.]: Samplename: 62.5
Root: 65.936
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7361094434913
[20250402_080933.]: Samplename: 75
Root: 75.736
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.432823759854
[20250402_080933.]: Samplename: 87.5
Root: 79.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 103.004237013737
[20250402_080933.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 103.004
--> '100 < root < 110' --> substitute 100
[20250402_080933.]: Solving cubic regression for CpG#8
Coefficients: -1.09618518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 0
Root: 2.016
--> Root in between the borders! Added to results.
Coefficients: -5.44685185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 12.5
Root: 9.458
--> Root in between the borders! Added to results.
Coefficients: -16.9301851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 25
Root: 26.35
--> Root in between the borders! Added to results.
Coefficients: -23.3501851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 37.5
Root: 34.728
--> Root in between the borders! Added to results.
Coefficients: -37.6251851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 50
Root: 51.781
--> Root in between the borders! Added to results.
Coefficients: -48.8261851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 62.5
Root: 64.192
--> Root in between the borders! Added to results.
Coefficients: -61.6676851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 75
Root: 77.804
--> Root in between the borders! Added to results.
Coefficients: -64.5101851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 87.5
Root: 80.758
--> Root in between the borders! Added to results.
Coefficients: -86.0601851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_080933.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.834
--> '100 < root < 110' --> substitute 100
[20250402_080933.]: Solving cubic regression for CpG#9
Coefficients: -0.989865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 0
Root: 1.475
--> Root in between the borders! Added to results.
Coefficients: -6.39586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 12.5
Root: 10.12
--> Root in between the borders! Added to results.
Coefficients: -14.7058653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 25
Root: 24.844
--> Root in between the borders! Added to results.
Coefficients: -20.6238653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 37.5
Root: 35.327
--> Root in between the borders! Added to results.
Coefficients: -31.3958653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 50
Root: 51.855
--> Root in between the borders! Added to results.
Coefficients: -42.6858653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 62.5
Root: 65.265
--> Root in between the borders! Added to results.
Coefficients: -52.9033653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 75
Root: 74.915
--> Root in between the borders! Added to results.
Coefficients: -65.492531986532Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080933.]: Samplename: 87.5
Root: 84.67
--> Root in between the borders! Added to results.
Coefficients: -92.9898653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_080934.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.082
--> '100 < root < 110' --> substitute 100
[20250402_080934.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0.290941088603071
[20250402_080934.]: Samplename: 0
Root: 0.291
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0412408065783
[20250402_080934.]: Samplename: 12.5
Root: 11.041
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4081501047696
[20250402_080934.]: Samplename: 25
Root: 25.408
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5243719024532
[20250402_080934.]: Samplename: 37.5
Root: 36.524
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7348824329668
[20250402_080934.]: Samplename: 50
Root: 50.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.3135209766198
[20250402_080934.]: Samplename: 62.5
Root: 65.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.5342709041132
[20250402_080934.]: Samplename: 75
Root: 75.534
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.2411228425212
[20250402_080934.]: Samplename: 87.5
Root: 83.241
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.666942781592
[20250402_080934.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.667
--> '100 < root < 110' --> substitute 100
[20250402_080937.]: Entered 'clean_dt'-Function
[20250402_080937.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_080937.]: got experimental data
[20250402_080937.]: Entered 'clean_dt'-Function
[20250402_080937.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_080937.]: got calibration data
[20250402_080937.]: ### Starting with regression calculations ###
[20250402_080937.]: Entered 'regression_type1'-Function
[20250402_080939.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080939.]: Logging df_agg: CpG#1
[20250402_080939.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080939.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_080939.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_080939.]: Entered 'hyperbolic_regression'-Function
[20250402_080939.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080941.]: Entered 'cubic_regression'-Function
[20250402_080941.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080942.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080942.]: Logging df_agg: CpG#2
[20250402_080942.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080942.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_080942.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_080942.]: Entered 'hyperbolic_regression'-Function
[20250402_080942.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080943.]: Entered 'cubic_regression'-Function
[20250402_080943.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080944.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080944.]: Logging df_agg: CpG#3
[20250402_080944.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080944.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_080944.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_080944.]: Entered 'hyperbolic_regression'-Function
[20250402_080944.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080945.]: Entered 'cubic_regression'-Function
[20250402_080945.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080946.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080946.]: Logging df_agg: CpG#4
[20250402_080946.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080946.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_080946.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_080946.]: Entered 'hyperbolic_regression'-Function
[20250402_080946.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080948.]: Entered 'cubic_regression'-Function
[20250402_080948.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080949.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080949.]: Logging df_agg: CpG#5
[20250402_080949.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080949.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_080949.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_080949.]: Entered 'hyperbolic_regression'-Function
[20250402_080949.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080950.]: Entered 'cubic_regression'-Function
[20250402_080950.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080943.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080944.]: Logging df_agg: CpG#6
[20250402_080944.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080944.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_080944.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_080944.]: Entered 'hyperbolic_regression'-Function
[20250402_080944.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080944.]: Entered 'cubic_regression'-Function
[20250402_080944.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080945.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080945.]: Logging df_agg: CpG#7
[20250402_080945.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080945.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_080945.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_080945.]: Entered 'hyperbolic_regression'-Function
[20250402_080945.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080947.]: Entered 'cubic_regression'-Function
[20250402_080947.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080947.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080947.]: Logging df_agg: CpG#8
[20250402_080948.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080948.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_080948.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_080948.]: Entered 'hyperbolic_regression'-Function
[20250402_080948.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080949.]: Entered 'cubic_regression'-Function
[20250402_080949.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080951.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080951.]: Logging df_agg: CpG#9
[20250402_080951.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080951.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_080951.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_080951.]: Entered 'hyperbolic_regression'-Function
[20250402_080951.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080953.]: Entered 'cubic_regression'-Function
[20250402_080953.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080953.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080953.]: Logging df_agg: row_means
[20250402_080953.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_080953.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_080953.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_080953.]: Entered 'hyperbolic_regression'-Function
[20250402_080953.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_080956.]: Entered 'cubic_regression'-Function
[20250402_080956.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081005.]: Entered 'regression_type1'-Function
[20250402_081007.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_081008.]: Logging df_agg: CpG#1
[20250402_081008.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081008.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_081008.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_081008.]: Entered 'hyperbolic_regression'-Function
[20250402_081008.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081010.]: Entered 'cubic_regression'-Function
[20250402_081010.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081011.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_081011.]: Logging df_agg: CpG#2
[20250402_081011.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081011.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_081011.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_081011.]: Entered 'hyperbolic_regression'-Function
[20250402_081011.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081012.]: Entered 'cubic_regression'-Function
[20250402_081012.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081013.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_081013.]: Logging df_agg: CpG#3
[20250402_081013.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081013.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_081013.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_081013.]: Entered 'hyperbolic_regression'-Function
[20250402_081013.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081015.]: Entered 'cubic_regression'-Function
[20250402_081015.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081016.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_081016.]: Logging df_agg: CpG#4
[20250402_081016.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081016.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_081016.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_081016.]: Entered 'hyperbolic_regression'-Function
[20250402_081016.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081018.]: Entered 'cubic_regression'-Function
[20250402_081018.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081019.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_081019.]: Logging df_agg: CpG#5
[20250402_081019.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081019.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_081019.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_081019.]: Entered 'hyperbolic_regression'-Function
[20250402_081019.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081020.]: Entered 'cubic_regression'-Function
[20250402_081020.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081008.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_081009.]: Logging df_agg: CpG#6
[20250402_081009.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081009.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_081009.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_081009.]: Entered 'hyperbolic_regression'-Function
[20250402_081009.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081010.]: Entered 'cubic_regression'-Function
[20250402_081010.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081011.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_081011.]: Logging df_agg: CpG#7
[20250402_081011.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081011.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_081011.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_081011.]: Entered 'hyperbolic_regression'-Function
[20250402_081011.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081012.]: Entered 'cubic_regression'-Function
[20250402_081012.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081013.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_081013.]: Logging df_agg: CpG#8
[20250402_081013.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081013.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_081013.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_081013.]: Entered 'hyperbolic_regression'-Function
[20250402_081013.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081014.]: Entered 'cubic_regression'-Function
[20250402_081014.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081015.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_081015.]: Logging df_agg: CpG#9
[20250402_081015.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081015.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_081015.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_081015.]: Entered 'hyperbolic_regression'-Function
[20250402_081015.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081016.]: Entered 'cubic_regression'-Function
[20250402_081016.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081017.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_081017.]: Logging df_agg: row_means
[20250402_081017.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081017.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_081017.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_081017.]: Entered 'hyperbolic_regression'-Function
[20250402_081017.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081018.]: Entered 'cubic_regression'-Function
[20250402_081018.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081028.]: Entered 'clean_dt'-Function
[20250402_081028.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_081028.]: got experimental data
[20250402_081028.]: Entered 'clean_dt'-Function
[20250402_081028.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_081028.]: got calibration data
[20250402_081028.]: ### Starting with regression calculations ###
[20250402_081028.]: Entered 'regression_type1'-Function
[20250402_081030.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_081031.]: Logging df_agg: CpG#1
[20250402_081031.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081031.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_081031.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_081031.]: Entered 'hyperbolic_regression'-Function
[20250402_081031.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081032.]: Entered 'cubic_regression'-Function
[20250402_081032.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081033.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_081033.]: Logging df_agg: CpG#2
[20250402_081033.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081033.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_081033.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_081033.]: Entered 'hyperbolic_regression'-Function
[20250402_081033.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081034.]: Entered 'cubic_regression'-Function
[20250402_081034.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081036.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_081036.]: Logging df_agg: CpG#3
[20250402_081036.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081036.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_081036.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_081036.]: Entered 'hyperbolic_regression'-Function
[20250402_081036.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081037.]: Entered 'cubic_regression'-Function
[20250402_081037.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081038.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_081038.]: Logging df_agg: CpG#4
[20250402_081038.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081038.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_081038.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_081038.]: Entered 'hyperbolic_regression'-Function
[20250402_081038.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081040.]: Entered 'cubic_regression'-Function
[20250402_081040.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081040.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_081040.]: Logging df_agg: CpG#5
[20250402_081040.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081040.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_081040.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_081041.]: Entered 'hyperbolic_regression'-Function
[20250402_081041.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081042.]: Entered 'cubic_regression'-Function
[20250402_081042.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081033.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_081033.]: Logging df_agg: CpG#6
[20250402_081033.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081033.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_081033.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_081033.]: Entered 'hyperbolic_regression'-Function
[20250402_081033.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081035.]: Entered 'cubic_regression'-Function
[20250402_081035.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081035.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_081035.]: Logging df_agg: CpG#7
[20250402_081035.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081035.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_081035.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_081035.]: Entered 'hyperbolic_regression'-Function
[20250402_081035.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081037.]: Entered 'cubic_regression'-Function
[20250402_081037.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081038.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_081038.]: Logging df_agg: CpG#8
[20250402_081038.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081038.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_081038.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_081038.]: Entered 'hyperbolic_regression'-Function
[20250402_081038.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081040.]: Entered 'cubic_regression'-Function
[20250402_081040.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081041.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_081041.]: Logging df_agg: CpG#9
[20250402_081041.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081041.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_081041.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_081041.]: Entered 'hyperbolic_regression'-Function
[20250402_081041.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081042.]: Entered 'cubic_regression'-Function
[20250402_081042.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081043.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_081043.]: Logging df_agg: row_means
[20250402_081043.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081043.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_081043.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_081043.]: Entered 'hyperbolic_regression'-Function
[20250402_081043.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081044.]: Entered 'cubic_regression'-Function
[20250402_081044.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081054.]: Entered 'regression_type1'-Function
[20250402_081056.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_081056.]: Logging df_agg: CpG#1
[20250402_081056.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081056.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_081056.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_081056.]: Entered 'hyperbolic_regression'-Function
[20250402_081056.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081058.]: Entered 'cubic_regression'-Function
[20250402_081058.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081058.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_081058.]: Logging df_agg: CpG#2
[20250402_081058.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081058.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_081058.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_081058.]: Entered 'hyperbolic_regression'-Function
[20250402_081058.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081100.]: Entered 'cubic_regression'-Function
[20250402_081100.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081101.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_081101.]: Logging df_agg: CpG#3
[20250402_081101.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081101.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_081101.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_081101.]: Entered 'hyperbolic_regression'-Function
[20250402_081101.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081102.]: Entered 'cubic_regression'-Function
[20250402_081102.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081103.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_081103.]: Logging df_agg: CpG#4
[20250402_081103.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081103.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_081103.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_081103.]: Entered 'hyperbolic_regression'-Function
[20250402_081103.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081104.]: Entered 'cubic_regression'-Function
[20250402_081104.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081105.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_081105.]: Logging df_agg: CpG#5
[20250402_081105.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081105.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_081105.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_081105.]: Entered 'hyperbolic_regression'-Function
[20250402_081105.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081106.]: Entered 'cubic_regression'-Function
[20250402_081106.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081057.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_081057.]: Logging df_agg: CpG#6
[20250402_081057.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081057.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_081057.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_081057.]: Entered 'hyperbolic_regression'-Function
[20250402_081057.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081058.]: Entered 'cubic_regression'-Function
[20250402_081058.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081059.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_081059.]: Logging df_agg: CpG#7
[20250402_081059.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081059.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_081059.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_081059.]: Entered 'hyperbolic_regression'-Function
[20250402_081059.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081059.]: Entered 'cubic_regression'-Function
[20250402_081059.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081100.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_081100.]: Logging df_agg: CpG#8
[20250402_081100.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081100.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_081100.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_081100.]: Entered 'hyperbolic_regression'-Function
[20250402_081100.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081101.]: Entered 'cubic_regression'-Function
[20250402_081101.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081102.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_081102.]: Logging df_agg: CpG#9
[20250402_081102.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081102.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_081102.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_081102.]: Entered 'hyperbolic_regression'-Function
[20250402_081102.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081103.]: Entered 'cubic_regression'-Function
[20250402_081103.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081103.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_081103.]: Logging df_agg: row_means
[20250402_081103.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081103.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_081103.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_081103.]: Entered 'hyperbolic_regression'-Function
[20250402_081103.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081104.]: Entered 'cubic_regression'-Function
[20250402_081104.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081109.]: Entered 'solving_equations'-Function
[20250402_081109.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 0
[20250402_081109.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 14.1381159662486
[20250402_081109.]: Samplename: 12.5
Root: 14.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1241053609707
[20250402_081109.]: Samplename: 25
Root: 26.124
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.3567419170867
[20250402_081109.]: Samplename: 37.5
Root: 39.357
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.9273107806133
[20250402_081109.]: Samplename: 50
Root: 52.927
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4010628999278
[20250402_081109.]: Samplename: 62.5
Root: 65.401
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.4183184249663
[20250402_081109.]: Samplename: 75
Root: 74.418
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.5431520527512
[20250402_081109.]: Samplename: 87.5
Root: 80.543
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081109.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081109.]: Solving hyperbolic regression for CpG#2
Hyperbolic solved: 0
[20250402_081109.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7851657015183
[20250402_081109.]: Samplename: 12.5
Root: 10.785
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.0727152156421
[20250402_081109.]: Samplename: 25
Root: 26.073
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.2074258210424
[20250402_081109.]: Samplename: 37.5
Root: 35.207
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.9305924748583
[20250402_081109.]: Samplename: 50
Root: 47.931
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.2847555363015
[20250402_081109.]: Samplename: 62.5
Root: 67.285
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.735332403378
[20250402_081109.]: Samplename: 75
Root: 75.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.1313047876192
[20250402_081109.]: Samplename: 87.5
Root: 84.131
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081109.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081109.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0
[20250402_081109.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.8497990553835
[20250402_081109.]: Samplename: 12.5
Root: 10.85
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1511183533449
[20250402_081109.]: Samplename: 25
Root: 26.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2940213300522
[20250402_081109.]: Samplename: 37.5
Root: 37.294
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.419361136507
[20250402_081109.]: Samplename: 50
Root: 51.419
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0212050873619
[20250402_081109.]: Samplename: 62.5
Root: 65.021
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.9977789568509
[20250402_081109.]: Samplename: 75
Root: 76.998
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.686036177122
[20250402_081109.]: Samplename: 87.5
Root: 79.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081109.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081109.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 0
[20250402_081109.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.2434477796981
[20250402_081109.]: Samplename: 12.5
Root: 13.243
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.0815867666892
[20250402_081109.]: Samplename: 25
Root: 25.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.7956859187734
[20250402_081109.]: Samplename: 37.5
Root: 38.796
--> Root in between the borders! Added to results.
Hyperbolic solved: 49.1001600195185
[20250402_081109.]: Samplename: 50
Root: 49.1
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.5620415214226
[20250402_081110.]: Samplename: 62.5
Root: 67.562
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.7554076043322
[20250402_081110.]: Samplename: 75
Root: 73.755
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.0327440839301
[20250402_081110.]: Samplename: 87.5
Root: 82.033
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081110.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081110.]: Solving hyperbolic regression for CpG#5
Hyperbolic solved: 0
[20250402_081110.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.36665146544904
[20250402_081110.]: Samplename: 12.5
Root: 8.367
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.0855280383989
[20250402_081110.]: Samplename: 25
Root: 23.086
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0098400819818
[20250402_081110.]: Samplename: 37.5
Root: 37.01
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.0085868408378
[20250402_081110.]: Samplename: 50
Root: 51.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 62.7441416833696
[20250402_081110.]: Samplename: 62.5
Root: 62.744
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.6857826005162
[20250402_081110.]: Samplename: 75
Root: 76.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.3046084696663
[20250402_081110.]: Samplename: 87.5
Root: 86.305
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081110.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081110.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0
[20250402_081110.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.822687731114
[20250402_081110.]: Samplename: 12.5
Root: 11.823
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5494368772504
[20250402_081110.]: Samplename: 25
Root: 26.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3846787677878
[20250402_081110.]: Samplename: 37.5
Root: 35.385
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.1264563333089
[20250402_081110.]: Samplename: 50
Root: 50.126
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9875101866844
[20250402_081110.]: Samplename: 62.5
Root: 64.988
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.6494948240195
[20250402_081110.]: Samplename: 75
Root: 73.649
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.0033714659226
[20250402_081110.]: Samplename: 87.5
Root: 87.003
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081110.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081110.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 0
[20250402_081110.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7925453863418
[20250402_081110.]: Samplename: 12.5
Root: 11.793
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2042827174053
[20250402_081110.]: Samplename: 25
Root: 26.204
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.2081609373531
[20250402_081110.]: Samplename: 37.5
Root: 39.208
--> Root in between the borders! Added to results.
Hyperbolic solved: 54.3620766326312
[20250402_081110.]: Samplename: 50
Root: 54.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 66.0664882334621
[20250402_081110.]: Samplename: 62.5
Root: 66.066
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.1981507250883
[20250402_081110.]: Samplename: 75
Root: 75.198
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.6124357632637
[20250402_081110.]: Samplename: 87.5
Root: 78.612
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081110.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081110.]: Solving hyperbolic regression for CpG#8
Hyperbolic solved: 0
[20250402_081110.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 7.27736114274885
[20250402_081110.]: Samplename: 12.5
Root: 7.277
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.9863834890886
[20250402_081110.]: Samplename: 25
Root: 24.986
--> Root in between the borders! Added to results.
Hyperbolic solved: 34.0400823094579
[20250402_081110.]: Samplename: 37.5
Root: 34.04
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3077192847199
[20250402_081110.]: Samplename: 50
Root: 52.308
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0861558866387
[20250402_081110.]: Samplename: 62.5
Root: 65.086
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.3136588178128
[20250402_081110.]: Samplename: 75
Root: 78.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.058248740059
[20250402_081110.]: Samplename: 87.5
Root: 81.058
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081110.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081111.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 0
[20250402_081111.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 12.2094906593745
[20250402_081111.]: Samplename: 12.5
Root: 12.209
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.0738986154201
[20250402_081111.]: Samplename: 25
Root: 28.074
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.6720254587223
[20250402_081111.]: Samplename: 37.5
Root: 37.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3746308870569
[20250402_081111.]: Samplename: 50
Root: 52.375
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8693631845077
[20250402_081111.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.2598902601534
[20250402_081111.]: Samplename: 75
Root: 74.26
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.9376844048195
[20250402_081111.]: Samplename: 87.5
Root: 83.938
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081111.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081111.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0
[20250402_081111.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.1506882890389
[20250402_081111.]: Samplename: 12.5
Root: 11.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.841636381907
[20250402_081111.]: Samplename: 25
Root: 25.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0462679509085
[20250402_081111.]: Samplename: 37.5
Root: 37.046
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.1681297765954
[20250402_081111.]: Samplename: 50
Root: 51.168
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4258217891781
[20250402_081111.]: Samplename: 62.5
Root: 65.426
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.285632789037
[20250402_081111.]: Samplename: 75
Root: 75.286
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.6475419323379
[20250402_081111.]: Samplename: 87.5
Root: 82.648
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081111.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081111.]: ### Starting with regression calculations ###
[20250402_081111.]: Entered 'regression_type1'-Function
[20250402_081113.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 14.1381159662486, 26.1241053609707, 39.3567419170867, 52.9273107806133, 65.4010628999278, 74.4183184249663, 80.5431520527512, 100)
[20250402_081114.]: Logging df_agg: CpG#1
[20250402_081114.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081114.]: c(0, 14.1381159662486, 26.1241053609707, 39.3567419170867, 52.9273107806133, 65.4010628999278, 74.4183184249663, 80.5431520527512, 100)
[20250402_081114.]: Entered 'hyperbolic_regression'-Function
[20250402_081114.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081116.]: Entered 'cubic_regression'-Function
[20250402_081116.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081117.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.7851657015183, 26.0727152156421, 35.2074258210424, 47.9305924748583, 67.2847555363015, 75.735332403378, 84.1313047876192, 100)
[20250402_081117.]: Logging df_agg: CpG#2
[20250402_081117.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081117.]: c(0, 10.7851657015183, 26.0727152156421, 35.2074258210424, 47.9305924748583, 67.2847555363015, 75.735332403378, 84.1313047876192, 100)
[20250402_081117.]: Entered 'hyperbolic_regression'-Function
[20250402_081117.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081118.]: Entered 'cubic_regression'-Function
[20250402_081118.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081119.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.8497990553835, 26.1511183533449, 37.2940213300522, 51.419361136507, 65.0212050873619, 76.9977789568509, 79.686036177122, 100)
[20250402_081119.]: Logging df_agg: CpG#3
[20250402_081119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081119.]: c(0, 10.8497990553835, 26.1511183533449, 37.2940213300522, 51.419361136507, 65.0212050873619, 76.9977789568509, 79.686036177122, 100)
[20250402_081119.]: Entered 'hyperbolic_regression'-Function
[20250402_081119.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081120.]: Entered 'cubic_regression'-Function
[20250402_081120.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081121.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 13.2434477796981, 25.0815867666892, 38.7956859187734, 49.1001600195185, 67.5620415214226, 73.7554076043322, 82.0327440839301, 100)
[20250402_081121.]: Logging df_agg: CpG#4
[20250402_081121.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081121.]: c(0, 13.2434477796981, 25.0815867666892, 38.7956859187734, 49.1001600195185, 67.5620415214226, 73.7554076043322, 82.0327440839301, 100)
[20250402_081121.]: Entered 'hyperbolic_regression'-Function
[20250402_081121.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081123.]: Entered 'cubic_regression'-Function
[20250402_081123.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081124.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.36665146544904, 23.0855280383989, 37.0098400819818, 51.0085868408378, 62.7441416833696, 76.6857826005162, 86.3046084696663, 100)
[20250402_081124.]: Logging df_agg: CpG#5
[20250402_081124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081124.]: c(0, 8.36665146544904, 23.0855280383989, 37.0098400819818, 51.0085868408378, 62.7441416833696, 76.6857826005162, 86.3046084696663, 100)
[20250402_081124.]: Entered 'hyperbolic_regression'-Function
[20250402_081124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081125.]: Entered 'cubic_regression'-Function
[20250402_081125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081115.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.822687731114, 26.5494368772504, 35.3846787677878, 50.1264563333089, 64.9875101866844, 73.6494948240195, 87.0033714659226, 100)
[20250402_081115.]: Logging df_agg: CpG#6
[20250402_081115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081115.]: c(0, 11.822687731114, 26.5494368772504, 35.3846787677878, 50.1264563333089, 64.9875101866844, 73.6494948240195, 87.0033714659226, 100)
[20250402_081115.]: Entered 'hyperbolic_regression'-Function
[20250402_081115.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081116.]: Entered 'cubic_regression'-Function
[20250402_081116.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081117.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.7925453863418, 26.2042827174053, 39.2081609373531, 54.3620766326312, 66.0664882334621, 75.1981507250883, 78.6124357632637, 100)
[20250402_081117.]: Logging df_agg: CpG#7
[20250402_081117.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081117.]: c(0, 11.7925453863418, 26.2042827174053, 39.2081609373531, 54.3620766326312, 66.0664882334621, 75.1981507250883, 78.6124357632637, 100)
[20250402_081117.]: Entered 'hyperbolic_regression'-Function
[20250402_081117.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081118.]: Entered 'cubic_regression'-Function
[20250402_081118.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081119.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 7.27736114274885, 24.9863834890886, 34.0400823094579, 52.3077192847199, 65.0861558866387, 78.3136588178128, 81.058248740059, 100)
[20250402_081119.]: Logging df_agg: CpG#8
[20250402_081119.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081119.]: c(0, 7.27736114274885, 24.9863834890886, 34.0400823094579, 52.3077192847199, 65.0861558866387, 78.3136588178128, 81.058248740059, 100)
[20250402_081119.]: Entered 'hyperbolic_regression'-Function
[20250402_081120.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081121.]: Entered 'cubic_regression'-Function
[20250402_081121.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081122.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.2094906593745, 28.0738986154201, 37.6720254587223, 52.3746308870569, 64.8693631845077, 74.2598902601534, 83.9376844048195, 100)
[20250402_081122.]: Logging df_agg: CpG#9
[20250402_081122.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081122.]: c(0, 12.2094906593745, 28.0738986154201, 37.6720254587223, 52.3746308870569, 64.8693631845077, 74.2598902601534, 83.9376844048195, 100)
[20250402_081122.]: Entered 'hyperbolic_regression'-Function
[20250402_081122.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081124.]: Entered 'cubic_regression'-Function
[20250402_081124.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081124.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.1506882890389, 25.841636381907, 37.0462679509085, 51.1681297765954, 65.4258217891781, 75.285632789037, 82.6475419323379, 100)
[20250402_081124.]: Logging df_agg: row_means
[20250402_081124.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081124.]: c(0, 11.1506882890389, 25.841636381907, 37.0462679509085, 51.1681297765954, 65.4258217891781, 75.285632789037, 82.6475419323379, 100)
[20250402_081124.]: Entered 'hyperbolic_regression'-Function
[20250402_081124.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081125.]: Entered 'cubic_regression'-Function
[20250402_081125.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081129.]: Entered 'solving_equations'-Function
[20250402_081129.]: Solving cubic regression for CpG#1
Coefficients: 0Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -7.30533333333333Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 12.5
Root: 10.279
--> Root in between the borders! Added to results.
Coefficients: -14.352Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 25
Root: 21.591
--> Root in between the borders! Added to results.
Coefficients: -23.244Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 37.5
Root: 36.617
--> Root in between the borders! Added to results.
Coefficients: -33.8645Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 50
Root: 52.729
--> Root in between the borders! Added to results.
Coefficients: -45.318Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 62.5
Root: 66.532
--> Root in between the borders! Added to results.
Coefficients: -54.857Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 75
Root: 75.773
--> Root in between the borders! Added to results.
Coefficients: -62.062Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 87.5
Root: 81.772
--> Root in between the borders! Added to results.
Coefficients: -90.01Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_081129.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081129.]: Solving cubic regression for CpG#2
Coefficients: 0Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.05666666666666Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 12.5
Root: 10.991
--> Root in between the borders! Added to results.
Coefficients: -15.656Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 25
Root: 26.435
--> Root in between the borders! Added to results.
Coefficients: -22.054Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 37.5
Root: 35.545
--> Root in between the borders! Added to results.
Coefficients: -31.945Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 50
Root: 48.102
--> Root in between the borders! Added to results.
Coefficients: -49.68Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 62.5
Root: 67.086
--> Root in between the borders! Added to results.
Coefficients: -58.6825Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 75
Root: 75.419
--> Root in between the borders! Added to results.
Coefficients: -68.5533333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 87.5
Root: 83.785
--> Root in between the borders! Added to results.
Coefficients: -90.294Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081129.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081129.]: Solving cubic regression for CpG#3
Coefficients: 0Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.67Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 12.5
Root: 9.387
--> Root in between the borders! Added to results.
Coefficients: -14.526Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 25
Root: 24.373
--> Root in between the borders! Added to results.
Coefficients: -21.71Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 37.5
Root: 36.135
--> Root in between the borders! Added to results.
Coefficients: -31.8725Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 50
Root: 51.29
--> Root in between the borders! Added to results.
Coefficients: -42.986Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 62.5
Root: 65.561
--> Root in between the borders! Added to results.
Coefficients: -54.0725Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 75
Root: 77.683
--> Root in between the borders! Added to results.
Coefficients: -56.7533333333333Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 87.5
Root: 80.348
--> Root in between the borders! Added to results.
Coefficients: -79.762Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_081129.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081129.]: Solving cubic regression for CpG#4
Coefficients: 0Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -7.65533333333333Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 12.5
Root: 11.333
--> Root in between the borders! Added to results.
Coefficients: -15.206Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 25
Root: 22.933
--> Root in between the borders! Added to results.
Coefficients: -24.93Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 37.5
Root: 37.542
--> Root in between the borders! Added to results.
Coefficients: -33.0395Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 50
Root: 48.772
--> Root in between the borders! Added to results.
Coefficients: -49.658Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 62.5
Root: 68.324
--> Root in between the borders! Added to results.
Coefficients: -55.942Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 75
Root: 74.614
--> Root in between the borders! Added to results.
Coefficients: -64.9953333333333Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 87.5
Root: 82.816
--> Root in between the borders! Added to results.
Coefficients: -87.724Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_081129.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081129.]: Solving cubic regression for CpG#5
Coefficients: 0Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081129.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.144Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081129.]: Samplename: 12.5
Root: 9.593
--> Root in between the borders! Added to results.
Coefficients: -12.102Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081129.]: Samplename: 25
Root: 24.704
--> Root in between the borders! Added to results.
Coefficients: -20.536Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081129.]: Samplename: 37.5
Root: 38.051
--> Root in between the borders! Added to results.
Coefficients: -30.0715Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081129.]: Samplename: 50
Root: 51.187
--> Root in between the borders! Added to results.
Coefficients: -39.034Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081130.]: Samplename: 62.5
Root: 62.269
--> Root in between the borders! Added to results.
Coefficients: -51.059Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081130.]: Samplename: 75
Root: 75.786
--> Root in between the borders! Added to results.
Coefficients: -60.3906666666667Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081130.]: Samplename: 87.5
Root: 85.475
--> Root in between the borders! Added to results.
Coefficients: -75.446Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081130.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_081130.]: Solving cubic regression for CpG#6
Coefficients: 0Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.54266666666667Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 12.5
Root: 11.495
--> Root in between the borders! Added to results.
Coefficients: -15.692Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 25
Root: 26.346
--> Root in between the borders! Added to results.
Coefficients: -21.804Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 37.5
Root: 35.332
--> Root in between the borders! Added to results.
Coefficients: -33.2485Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 50
Root: 50.228
--> Root in between the borders! Added to results.
Coefficients: -46.704Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 62.5
Root: 65.055
--> Root in between the borders! Added to results.
Coefficients: -55.636Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 75
Root: 73.641
--> Root in between the borders! Added to results.
Coefficients: -71.3493333333333Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 87.5
Root: 86.903
--> Root in between the borders! Added to results.
Coefficients: -89.46Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_081130.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081130.]: Solving cubic regression for CpG#7
Coefficients: 0Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081130.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.18066666666667Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081130.]: Samplename: 12.5
Root: 8.108
--> Root in between the borders! Added to results.
Coefficients: -10.05Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081130.]: Samplename: 25
Root: 21.288
--> Root in between the borders! Added to results.
Coefficients: -16.236Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081130.]: Samplename: 37.5
Root: 36.173
--> Root in between the borders! Added to results.
Coefficients: -24.8165Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081130.]: Samplename: 50
Root: 54.247
--> Root in between the borders! Added to results.
Coefficients: -32.75Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081130.]: Samplename: 62.5
Root: 67.087
--> Root in between the borders! Added to results.
Coefficients: -39.954Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081131.]: Samplename: 75
Root: 76.377
--> Root in between the borders! Added to results.
Coefficients: -42.9206666666667Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081131.]: Samplename: 87.5
Root: 79.728
--> Root in between the borders! Added to results.
Coefficients: -66.008Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_081131.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081131.]: Solving cubic regression for CpG#8
Coefficients: 0Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.35066666666667Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 12.5
Root: 8.039
--> Root in between the borders! Added to results.
Coefficients: -15.834Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 25
Root: 26.079
--> Root in between the borders! Added to results.
Coefficients: -22.254Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 37.5
Root: 34.864
--> Root in between the borders! Added to results.
Coefficients: -36.529Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 50
Root: 52.311
--> Root in between the borders! Added to results.
Coefficients: -47.73Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 62.5
Root: 64.584
--> Root in between the borders! Added to results.
Coefficients: -60.5715Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 75
Root: 77.576
--> Root in between the borders! Added to results.
Coefficients: -63.414Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 87.5
Root: 80.326
--> Root in between the borders! Added to results.
Coefficients: -84.964Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081131.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_081131.]: Solving cubic regression for CpG#9
Coefficients: 0Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081131.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.406Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081131.]: Samplename: 12.5
Root: 8.93
--> Root in between the borders! Added to results.
Coefficients: -13.716Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 25
Root: 24.492
--> Root in between the borders! Added to results.
Coefficients: -19.634Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 37.5
Root: 35.53
--> Root in between the borders! Added to results.
Coefficients: -30.406Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 50
Root: 52.349
--> Root in between the borders! Added to results.
Coefficients: -41.696Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 62.5
Root: 65.528
--> Root in between the borders! Added to results.
Coefficients: -51.9135Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 75
Root: 74.87
--> Root in between the borders! Added to results.
Coefficients: -64.5026666666667Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 87.5
Root: 84.256
--> Root in between the borders! Added to results.
Coefficients: -92Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_081132.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081132.]: Solving cubic regression for row_means
Coefficients: 0Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.70125925925926Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 12.5
Root: 9.866
--> Root in between the borders! Added to results.
Coefficients: -14.126Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 25
Root: 24.413
--> Root in between the borders! Added to results.
Coefficients: -21.378Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 37.5
Root: 36.177
--> Root in between the borders! Added to results.
Coefficients: -31.7547777777778Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 50
Root: 51.091
--> Root in between the borders! Added to results.
Coefficients: -43.9506666666667Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 62.5
Root: 65.785
--> Root in between the borders! Added to results.
Coefficients: -53.632Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 75
Root: 75.683
--> Root in between the borders! Added to results.
Coefficients: -61.6601481481482Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 87.5
Root: 82.966
--> Root in between the borders! Added to results.
Coefficients: -83.9631111111111Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_081132.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081132.]: ### Starting with regression calculations ###
[20250402_081132.]: Entered 'regression_type1'-Function
[20250402_081134.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.2789379687773, 21.5912618581737, 36.6165063803141, 52.7290217620987, 66.5324318982031, 75.7732681056135, 81.7721530184166, 100)
[20250402_081135.]: Logging df_agg: CpG#1
[20250402_081135.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081135.]: c(0, 10.2789379687773, 21.5912618581737, 36.6165063803141, 52.7290217620987, 66.5324318982031, 75.7732681056135, 81.7721530184166, 100)
[20250402_081135.]: Entered 'hyperbolic_regression'-Function
[20250402_081135.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081136.]: Entered 'cubic_regression'-Function
[20250402_081136.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081137.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.9910200331058, 26.4347343794858, 35.5445484590422, 48.1023951945168, 67.0857465067419, 75.4194602180407, 83.7851017057913, 100)
[20250402_081137.]: Logging df_agg: CpG#2
[20250402_081137.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081137.]: c(0, 10.9910200331058, 26.4347343794858, 35.5445484590422, 48.1023951945168, 67.0857465067419, 75.4194602180407, 83.7851017057913, 100)
[20250402_081137.]: Entered 'hyperbolic_regression'-Function
[20250402_081137.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081138.]: Entered 'cubic_regression'-Function
[20250402_081138.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081139.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.38673392637229, 24.3726553415377, 36.1351252190462, 51.290483481273, 65.5610869969825, 77.682931580408, 80.3481110749784, 100)
[20250402_081139.]: Logging df_agg: CpG#3
[20250402_081139.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081139.]: c(0, 9.38673392637229, 24.3726553415377, 36.1351252190462, 51.290483481273, 65.5610869969825, 77.682931580408, 80.3481110749784, 100)
[20250402_081139.]: Entered 'hyperbolic_regression'-Function
[20250402_081139.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081140.]: Entered 'cubic_regression'-Function
[20250402_081140.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081141.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.333221967818, 22.9327025441323, 37.5415761160868, 48.7723103653381, 68.323814507742, 74.6144361781331, 82.8156863832731, 100)
[20250402_081141.]: Logging df_agg: CpG#4
[20250402_081141.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081141.]: c(0, 11.333221967818, 22.9327025441323, 37.5415761160868, 48.7723103653381, 68.323814507742, 74.6144361781331, 82.8156863832731, 100)
[20250402_081141.]: Entered 'hyperbolic_regression'-Function
[20250402_081141.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081142.]: Entered 'cubic_regression'-Function
[20250402_081142.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081143.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.59307352472009, 24.7039196286167, 38.0513608286781, 51.1867356506794, 62.26862037854, 75.7858670101849, 85.4752679494875, 100)
[20250402_081143.]: Logging df_agg: CpG#5
[20250402_081143.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081143.]: c(0, 9.59307352472009, 24.7039196286167, 38.0513608286781, 51.1867356506794, 62.26862037854, 75.7858670101849, 85.4752679494875, 100)
[20250402_081143.]: Entered 'hyperbolic_regression'-Function
[20250402_081143.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081145.]: Entered 'cubic_regression'-Function
[20250402_081145.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081135.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.4954220530927, 26.3463219064414, 35.3317252573924, 50.227923198103, 65.0547254327623, 73.6409323113027, 86.9034526462823, 100)
[20250402_081136.]: Logging df_agg: CpG#6
[20250402_081136.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081136.]: c(0, 11.4954220530927, 26.3463219064414, 35.3317252573924, 50.227923198103, 65.0547254327623, 73.6409323113027, 86.9034526462823, 100)
[20250402_081136.]: Entered 'hyperbolic_regression'-Function
[20250402_081136.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081137.]: Entered 'cubic_regression'-Function
[20250402_081137.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081138.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.10849051770153, 21.2877667704468, 36.173114142988, 54.2470474820822, 67.0869477341973, 76.3774195175699, 79.7282731837602, 100)
[20250402_081138.]: Logging df_agg: CpG#7
[20250402_081138.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081138.]: c(0, 8.10849051770153, 21.2877667704468, 36.173114142988, 54.2470474820822, 67.0869477341973, 76.3774195175699, 79.7282731837602, 100)
[20250402_081138.]: Entered 'hyperbolic_regression'-Function
[20250402_081138.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081140.]: Entered 'cubic_regression'-Function
[20250402_081140.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081141.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.03884794173082, 26.0790124661259, 34.8640244910097, 52.3106100864949, 64.5844806617511, 77.5764831155946, 80.3258936673854, 100)
[20250402_081141.]: Logging df_agg: CpG#8
[20250402_081141.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081141.]: c(0, 8.03884794173082, 26.0790124661259, 34.8640244910097, 52.3106100864949, 64.5844806617511, 77.5764831155946, 80.3258936673854, 100)
[20250402_081141.]: Entered 'hyperbolic_regression'-Function
[20250402_081141.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081141.]: Entered 'cubic_regression'-Function
[20250402_081141.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081142.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.92983720232018, 24.492281299778, 35.5300863746257, 52.3487602415591, 65.5277236843712, 74.8697077038883, 84.2557944227308, 100)
[20250402_081142.]: Logging df_agg: CpG#9
[20250402_081142.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081142.]: c(0, 8.92983720232018, 24.492281299778, 35.5300863746257, 52.3487602415591, 65.5277236843712, 74.8697077038883, 84.2557944227308, 100)
[20250402_081142.]: Entered 'hyperbolic_regression'-Function
[20250402_081142.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081143.]: Entered 'cubic_regression'-Function
[20250402_081143.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081144.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.86641397663336, 24.4129321171961, 36.1766819844577, 51.09059907333, 65.7845651788236, 75.6825697981982, 82.9660082109242, 100)
[20250402_081144.]: Logging df_agg: row_means
[20250402_081144.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_081144.]: c(0, 9.86641397663336, 24.4129321171961, 36.1766819844577, 51.09059907333, 65.7845651788236, 75.6825697981982, 82.9660082109242, 100)
[20250402_081144.]: Entered 'hyperbolic_regression'-Function
[20250402_081144.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081145.]: Entered 'cubic_regression'-Function
[20250402_081145.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_081148.]: Entered 'solving_equations'-Function
[20250402_081148.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 78.9856894800976
[20250402_081148.]: Samplename: Sample#1
Root: 78.986
--> Root in between the borders! Added to results.
Hyperbolic solved: 31.2695317984092
[20250402_081148.]: Samplename: Sample#10
Root: 31.27
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.7015782380441
[20250402_081148.]: Samplename: Sample#2
Root: 42.702
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.8152127901709
[20250402_081148.]: Samplename: Sample#3
Root: 57.815
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.2334360674289
[20250402_081148.]: Samplename: Sample#4
Root: 11.233
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.5293831001518
[20250402_081148.]: Samplename: Sample#5
Root: 23.529
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.7706743072545
[20250402_081148.]: Samplename: Sample#6
Root: 24.771
--> Root in between the borders! Added to results.
Hyperbolic solved: 46.3953425213349
[20250402_081148.]: Samplename: Sample#7
Root: 46.395
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.45071436915
[20250402_081148.]: Samplename: Sample#8
Root: 84.451
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.41337105576252
[20250402_081148.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.413
--> '-10 < root < 0' --> substitute 0
[20250402_081148.]: Solving cubic regression for CpG#2
Coefficients: -59.7333333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#1
Root: 76.346
--> Root in between the borders! Added to results.
Coefficients: -19.048Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#10
Root: 31.371
--> Root in between the borders! Added to results.
Coefficients: -27.8783333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#2
Root: 43.142
--> Root in between the borders! Added to results.
Coefficients: -41.795Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#3
Root: 59.121
--> Root in between the borders! Added to results.
Coefficients: -2.21Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#4
Root: 4.128
--> Root in between the borders! Added to results.
Coefficients: -11.665Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#5
Root: 20.292
--> Root in between the borders! Added to results.
Coefficients: -10.08Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#6
Root: 17.745
--> Root in between the borders! Added to results.
Coefficients: -26.488Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#7
Root: 41.383
--> Root in between the borders! Added to results.
Coefficients: -70.532Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#8
Root: 85.378
--> Root in between the borders! Added to results.
Coefficients: -1.13Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081148.]: Samplename: Sample#9
Root: 2.127
--> Root in between the borders! Added to results.
[20250402_081148.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 74.5474014641742
[20250402_081148.]: Samplename: Sample#1
Root: 74.547
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.3579002775045
[20250402_081148.]: Samplename: Sample#10
Root: 28.358
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.6085496577593
[20250402_081148.]: Samplename: Sample#2
Root: 42.609
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.3286114696456
[20250402_081148.]: Samplename: Sample#3
Root: 56.329
--> Root in between the borders! Added to results.
Hyperbolic solved: 7.99034441243248
[20250402_081148.]: Samplename: Sample#4
Root: 7.99
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.7023143744962
[20250402_081148.]: Samplename: Sample#5
Root: 24.702
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.8868798900698
[20250402_081148.]: Samplename: Sample#6
Root: 26.887
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.8318233973603
[20250402_081148.]: Samplename: Sample#7
Root: 44.832
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6737871528405
[20250402_081148.]: Samplename: Sample#8
Root: 84.674
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.26200732612128
[20250402_081148.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.262
--> '-10 < root < 0' --> substitute 0
[20250402_081148.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 75.8433680333876
[20250402_081148.]: Samplename: Sample#1
Root: 75.843
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.0603248948201
[20250402_081148.]: Samplename: Sample#10
Root: 29.06
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.0355928114108
[20250402_081148.]: Samplename: Sample#2
Root: 44.036
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.7751115686327
[20250402_081148.]: Samplename: Sample#3
Root: 58.775
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0319154866029
[20250402_081148.]: Samplename: Sample#4
Root: 11.032
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.9948971650737
[20250402_081148.]: Samplename: Sample#5
Root: 22.995
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.9415139419957
[20250402_081148.]: Samplename: Sample#6
Root: 27.942
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.4874049425657
[20250402_081148.]: Samplename: Sample#7
Root: 42.487
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6802730343613
[20250402_081148.]: Samplename: Sample#8
Root: 84.68
--> Root in between the borders! Added to results.
Hyperbolic solved: 3.00887785677921
[20250402_081148.]: Samplename: Sample#9
Root: 3.009
--> Root in between the borders! Added to results.
[20250402_081148.]: Solving cubic regression for CpG#5
Coefficients: -47.8373333333333Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#1
Root: 72.291
--> Root in between the borders! Added to results.
Coefficients: -13.588Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#10
Root: 27.212
--> Root in between the borders! Added to results.
Coefficients: -25.3211428571429Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#2
Root: 44.85
--> Root in between the borders! Added to results.
Coefficients: -32.064Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#3
Root: 53.741
--> Root in between the borders! Added to results.
Coefficients: -4.074Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#4
Root: 9.444
--> Root in between the borders! Added to results.
Coefficients: -11.434Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#5
Root: 23.55
--> Root in between the borders! Added to results.
Coefficients: -13.294Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#6
Root: 26.722
--> Root in between the borders! Added to results.
Coefficients: -24.288Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#7
Root: 43.42
--> Root in between the borders! Added to results.
Coefficients: -63.134Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#8
Root: 88.215
--> Root in between the borders! Added to results.
Coefficients: 0.0360000000000005Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081148.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.091
--> '-10 < root < 0' --> substitute 0
[20250402_081148.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 79.2200555510382
[20250402_081148.]: Samplename: Sample#1
Root: 79.22
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.2526528381147
[20250402_081148.]: Samplename: Sample#10
Root: 30.253
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.9196854329573
[20250402_081148.]: Samplename: Sample#2
Root: 41.92
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.8984354098215
[20250402_081148.]: Samplename: Sample#3
Root: 56.898
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.81576403111374
[20250402_081148.]: Samplename: Sample#4
Root: 8.816
--> Root in between the borders! Added to results.
Hyperbolic solved: 18.6921622783918
[20250402_081148.]: Samplename: Sample#5
Root: 18.692
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.9815019073132
[20250402_081148.]: Samplename: Sample#6
Root: 29.982
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.8875178508205
[20250402_081148.]: Samplename: Sample#7
Root: 42.888
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.6303733181195
[20250402_081148.]: Samplename: Sample#8
Root: 86.63
--> Root in between the borders! Added to results.
Hyperbolic solved: 1.38997712955107
[20250402_081148.]: Samplename: Sample#9
Root: 1.39
--> Root in between the borders! Added to results.
[20250402_081148.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 77.5278331978133
[20250402_081148.]: Samplename: Sample#1
Root: 77.528
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.0895401031897
[20250402_081148.]: Samplename: Sample#10
Root: 27.09
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.4382794903846
[20250402_081148.]: Samplename: Sample#2
Root: 48.438
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.8815971416453
[20250402_081148.]: Samplename: Sample#3
Root: 58.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.3295768294236
[20250402_081148.]: Samplename: Sample#4
Root: 13.33
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.9816196357542
[20250402_081148.]: Samplename: Sample#5
Root: 26.982
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.9612159665911
[20250402_081148.]: Samplename: Sample#6
Root: 30.961
--> Root in between the borders! Added to results.
Hyperbolic solved: 45.7456547820365
[20250402_081148.]: Samplename: Sample#7
Root: 45.746
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6033538318025
[20250402_081148.]: Samplename: Sample#8
Root: 84.603
--> Root in between the borders! Added to results.
Hyperbolic solved: -2.87380061592101
[20250402_081148.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.874
--> '-10 < root < 0' --> substitute 0
[20250402_081148.]: Solving cubic regression for CpG#8
Coefficients: -55.3573333333333Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#1
Root: 72.421
--> Root in between the borders! Added to results.
Coefficients: -17.574Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#10
Root: 28.533
--> Root in between the borders! Added to results.
Coefficients: -22.9425714285714Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#2
Root: 35.766
--> Root in between the borders! Added to results.
Coefficients: -42.849Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#3
Root: 59.36
--> Root in between the borders! Added to results.
Coefficients: -4.604Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#4
Root: 8.481
--> Root in between the borders! Added to results.
Coefficients: -11.389Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#5
Root: 19.519
--> Root in between the borders! Added to results.
Coefficients: -25.784Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#6
Root: 39.413
--> Root in between the borders! Added to results.
Coefficients: -30.746Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#7
Root: 45.53
--> Root in between the borders! Added to results.
Coefficients: -66.912Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#8
Root: 83.654
--> Root in between the borders! Added to results.
Coefficients: 3.176Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081149.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -6.535
--> '-10 < root < 0' --> substitute 0
[20250402_081149.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 80.5486410672961
[20250402_081149.]: Samplename: Sample#1
Root: 80.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.810468482135
[20250402_081149.]: Samplename: Sample#10
Root: 27.81
--> Root in between the borders! Added to results.
Hyperbolic solved: 46.2641649294309
[20250402_081149.]: Samplename: Sample#2
Root: 46.264
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.1903653427228
[20250402_081149.]: Samplename: Sample#3
Root: 57.19
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.63886339746086
[20250402_081149.]: Samplename: Sample#4
Root: 8.639
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2162393845509
[20250402_081149.]: Samplename: Sample#5
Root: 24.216
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.6394430638471
[20250402_081149.]: Samplename: Sample#6
Root: 39.639
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.3080887012493
[20250402_081149.]: Samplename: Sample#7
Root: 44.308
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.3259098830063
[20250402_081149.]: Samplename: Sample#8
Root: 87.326
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.17959639730045
[20250402_081149.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.18
--> '-10 < root < 0' --> substitute 0
[20250402_081149.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 76.7568961192102
[20250402_081149.]: Samplename: Sample#1
Root: 76.757
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.8326630603664
[20250402_081149.]: Samplename: Sample#10
Root: 28.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.0145327025204
[20250402_081149.]: Samplename: Sample#2
Root: 43.015
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.6144798147902
[20250402_081149.]: Samplename: Sample#3
Root: 57.614
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.86517972238162
[20250402_081149.]: Samplename: Sample#4
Root: 8.865
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.1849817550475
[20250402_081149.]: Samplename: Sample#5
Root: 22.185
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.1973843238972
[20250402_081149.]: Samplename: Sample#6
Root: 29.197
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.9174258632975
[20250402_081149.]: Samplename: Sample#7
Root: 43.917
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6607695784409
[20250402_081149.]: Samplename: Sample#8
Root: 85.661
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.551158207550385
[20250402_081149.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.551
--> '-10 < root < 0' --> substitute 0
[20250402_081149.]: Entered 'solving_equations'-Function
[20250402_081149.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 0
[20250402_081149.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 14.1381159662486
[20250402_081149.]: Samplename: 12.5
Root: 14.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1241053609707
[20250402_081149.]: Samplename: 25
Root: 26.124
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.3567419170867
[20250402_081149.]: Samplename: 37.5
Root: 39.357
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.9273107806133
[20250402_081149.]: Samplename: 50
Root: 52.927
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4010628999278
[20250402_081149.]: Samplename: 62.5
Root: 65.401
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.4183184249663
[20250402_081149.]: Samplename: 75
Root: 74.418
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.5431520527512
[20250402_081149.]: Samplename: 87.5
Root: 80.543
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081149.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081149.]: Solving cubic regression for CpG#2
Coefficients: 0Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081149.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.05666666666666Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 12.5
Root: 10.991
--> Root in between the borders! Added to results.
Coefficients: -15.656Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 25
Root: 26.435
--> Root in between the borders! Added to results.
Coefficients: -22.054Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 37.5
Root: 35.545
--> Root in between the borders! Added to results.
Coefficients: -31.945Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 50
Root: 48.102
--> Root in between the borders! Added to results.
Coefficients: -49.68Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 62.5
Root: 67.086
--> Root in between the borders! Added to results.
Coefficients: -58.6825Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 75
Root: 75.419
--> Root in between the borders! Added to results.
Coefficients: -68.5533333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 87.5
Root: 83.785
--> Root in between the borders! Added to results.
Coefficients: -90.294Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_081150.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081150.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0
[20250402_081150.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.8497990553835
[20250402_081150.]: Samplename: 12.5
Root: 10.85
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1511183533449
[20250402_081150.]: Samplename: 25
Root: 26.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2940213300522
[20250402_081150.]: Samplename: 37.5
Root: 37.294
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.419361136507
[20250402_081150.]: Samplename: 50
Root: 51.419
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0212050873619
[20250402_081150.]: Samplename: 62.5
Root: 65.021
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.9977789568509
[20250402_081150.]: Samplename: 75
Root: 76.998
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.686036177122
[20250402_081150.]: Samplename: 87.5
Root: 79.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081150.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081150.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 0
[20250402_081150.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.2434477796981
[20250402_081150.]: Samplename: 12.5
Root: 13.243
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.0815867666892
[20250402_081150.]: Samplename: 25
Root: 25.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.7956859187734
[20250402_081150.]: Samplename: 37.5
Root: 38.796
--> Root in between the borders! Added to results.
Hyperbolic solved: 49.1001600195185
[20250402_081150.]: Samplename: 50
Root: 49.1
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.5620415214226
[20250402_081150.]: Samplename: 62.5
Root: 67.562
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.7554076043322
[20250402_081150.]: Samplename: 75
Root: 73.755
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.0327440839301
[20250402_081150.]: Samplename: 87.5
Root: 82.033
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081150.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081150.]: Solving cubic regression for CpG#5
Coefficients: 0Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.144Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 12.5
Root: 9.593
--> Root in between the borders! Added to results.
Coefficients: -12.102Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 25
Root: 24.704
--> Root in between the borders! Added to results.
Coefficients: -20.536Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 37.5
Root: 38.051
--> Root in between the borders! Added to results.
Coefficients: -30.0715Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 50
Root: 51.187
--> Root in between the borders! Added to results.
Coefficients: -39.034Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 62.5
Root: 62.269
--> Root in between the borders! Added to results.
Coefficients: -51.059Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 75
Root: 75.786
--> Root in between the borders! Added to results.
Coefficients: -60.3906666666667Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 87.5
Root: 85.475
--> Root in between the borders! Added to results.
Coefficients: -75.446Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_081150.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_081150.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0
[20250402_081150.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.822687731114
[20250402_081150.]: Samplename: 12.5
Root: 11.823
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5494368772504
[20250402_081150.]: Samplename: 25
Root: 26.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3846787677878
[20250402_081151.]: Samplename: 37.5
Root: 35.385
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.1264563333089
[20250402_081151.]: Samplename: 50
Root: 50.126
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9875101866844
[20250402_081151.]: Samplename: 62.5
Root: 64.988
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.6494948240195
[20250402_081151.]: Samplename: 75
Root: 73.649
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.0033714659226
[20250402_081151.]: Samplename: 87.5
Root: 87.003
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081151.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081151.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 0
[20250402_081151.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7925453863418
[20250402_081151.]: Samplename: 12.5
Root: 11.793
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2042827174053
[20250402_081151.]: Samplename: 25
Root: 26.204
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.2081609373531
[20250402_081151.]: Samplename: 37.5
Root: 39.208
--> Root in between the borders! Added to results.
Hyperbolic solved: 54.3620766326312
[20250402_081151.]: Samplename: 50
Root: 54.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 66.0664882334621
[20250402_081151.]: Samplename: 62.5
Root: 66.066
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.1981507250883
[20250402_081151.]: Samplename: 75
Root: 75.198
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.6124357632637
[20250402_081151.]: Samplename: 87.5
Root: 78.612
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081151.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081151.]: Solving cubic regression for CpG#8
Coefficients: 0Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.35066666666667Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 12.5
Root: 8.039
--> Root in between the borders! Added to results.
Coefficients: -15.834Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 25
Root: 26.079
--> Root in between the borders! Added to results.
Coefficients: -22.254Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 37.5
Root: 34.864
--> Root in between the borders! Added to results.
Coefficients: -36.529Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 50
Root: 52.311
--> Root in between the borders! Added to results.
Coefficients: -47.73Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 62.5
Root: 64.584
--> Root in between the borders! Added to results.
Coefficients: -60.5715Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 75
Root: 77.576
--> Root in between the borders! Added to results.
Coefficients: -63.414Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 87.5
Root: 80.326
--> Root in between the borders! Added to results.
Coefficients: -84.964Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_081151.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_081151.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 0
[20250402_081151.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 12.2094906593745
[20250402_081151.]: Samplename: 12.5
Root: 12.209
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.0738986154201
[20250402_081151.]: Samplename: 25
Root: 28.074
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.6720254587223
[20250402_081151.]: Samplename: 37.5
Root: 37.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3746308870569
[20250402_081151.]: Samplename: 50
Root: 52.375
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8693631845077
[20250402_081151.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.2598902601534
[20250402_081151.]: Samplename: 75
Root: 74.26
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.9376844048195
[20250402_081151.]: Samplename: 87.5
Root: 83.938
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081151.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_081151.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0
[20250402_081151.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.1506882890389
[20250402_081151.]: Samplename: 12.5
Root: 11.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.841636381907
[20250402_081151.]: Samplename: 25
Root: 25.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0462679509085
[20250402_081151.]: Samplename: 37.5
Root: 37.046
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.1681297765954
[20250402_081151.]: Samplename: 50
Root: 51.168
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4258217891781
[20250402_081151.]: Samplename: 62.5
Root: 65.426
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.285632789037
[20250402_081151.]: Samplename: 75
Root: 75.286
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.6475419323379
[20250402_081151.]: Samplename: 87.5
Root: 82.648
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_081151.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
[20250402_081538.]: Entered 'clean_dt'-Function
[20250402_081538.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_081538.]: got experimental data
[20250402_081538.]: Entered 'clean_dt'-Function
[20250402_081538.]: Importing data of type 2: Many loci in one sample (e.g., next-gen seq or microarray data)
[20250402_081538.]: got experimental data
[20250402_081540.]: Entered 'clean_dt'-Function
[20250402_081540.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_081540.]: got calibration data
[20250402_081540.]: Entered 'clean_dt'-Function
[20250402_081540.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_081540.]: got calibration data
[20250402_081540.]: Entered 'hyperbolic_regression'-Function
[20250402_081540.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
[ FAIL 5 | WARN 51 | SKIP 4 | PASS 51 ]
══ Skipped tests (4) ═══════════════════════════════════════════════════════════
• On CRAN (4): 'test-algorithm_minmax_FALSE.R:80:5',
'test-algorithm_minmax_TRUE.R:76:5', 'test-hyperbolic.R:27:5',
'test-lints.R:12:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-algorithm_minmax_FALSE_re.R:170:5'): algorithm test, type 1, minmax = FALSE selection_method = RelError ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-algorithm_minmax_FALSE_re.R:170:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-algorithm_minmax_TRUE_re.R:170:5'): algorithm test, type 1, minmax = TRUE selection_method = RelError ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-algorithm_minmax_TRUE_re.R:170:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-clean_dt.R:17:5'): test normal function of file import of type 1 ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-clean_dt.R:17:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-clean_dt.R:65:5'): test normal function of file import of type 2 ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-clean_dt.R:65:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-create_aggregated.R:19:5'): test functioning of aggregated function ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-create_aggregated.R:19:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
[ FAIL 5 | WARN 51 | SKIP 4 | PASS 51 ]
Error: Test failures
Execution halted
Error in deferred_run(env) : could not find function "deferred_run"
Calls: <Anonymous>
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.3.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [4m/11m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(rBiasCorrection)
>
> local_edition(3)
>
> test_check("rBiasCorrection")
[20250402_082735.]: Entered 'clean_dt'-Function
[20250402_082735.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_082735.]: got experimental data
[20250402_082735.]: Entered 'clean_dt'-Function
[20250402_082735.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_082735.]: got calibration data
[20250402_082735.]: ### Starting with regression calculations ###
[20250402_082735.]: Entered 'regression_type1'-Function
[20250402_082736.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082736.]: Logging df_agg: CpG#1
[20250402_082736.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082736.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_082736.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082736.]: Entered 'hyperbolic_regression'-Function
[20250402_082736.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082738.]: Entered 'cubic_regression'-Function
[20250402_082738.]: 'cubic_regression': minmax = FALSE
[20250402_082738.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082738.]: Logging df_agg: CpG#2
[20250402_082738.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082738.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_082738.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082738.]: Entered 'hyperbolic_regression'-Function
[20250402_082738.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082739.]: Entered 'cubic_regression'-Function
[20250402_082739.]: 'cubic_regression': minmax = FALSE
[20250402_082739.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082739.]: Logging df_agg: CpG#3
[20250402_082739.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082739.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_082739.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082739.]: Entered 'hyperbolic_regression'-Function
[20250402_082739.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082740.]: Entered 'cubic_regression'-Function
[20250402_082740.]: 'cubic_regression': minmax = FALSE
[20250402_082740.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082740.]: Logging df_agg: CpG#4
[20250402_082740.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082740.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_082740.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082740.]: Entered 'hyperbolic_regression'-Function
[20250402_082740.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082741.]: Entered 'cubic_regression'-Function
[20250402_082741.]: 'cubic_regression': minmax = FALSE
[20250402_082741.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082741.]: Logging df_agg: CpG#5
[20250402_082741.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082741.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_082741.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082741.]: Entered 'hyperbolic_regression'-Function
[20250402_082741.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082742.]: Entered 'cubic_regression'-Function
[20250402_082742.]: 'cubic_regression': minmax = FALSE
[20250402_082738.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082738.]: Logging df_agg: CpG#6
[20250402_082738.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082738.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_082738.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082738.]: Entered 'hyperbolic_regression'-Function
[20250402_082738.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082739.]: Entered 'cubic_regression'-Function
[20250402_082739.]: 'cubic_regression': minmax = FALSE
[20250402_082739.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082739.]: Logging df_agg: CpG#7
[20250402_082739.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082739.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_082739.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082739.]: Entered 'hyperbolic_regression'-Function
[20250402_082739.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082740.]: Entered 'cubic_regression'-Function
[20250402_082740.]: 'cubic_regression': minmax = FALSE
[20250402_082740.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082740.]: Logging df_agg: CpG#8
[20250402_082740.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082740.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_082740.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082740.]: Entered 'hyperbolic_regression'-Function
[20250402_082740.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082741.]: Entered 'cubic_regression'-Function
[20250402_082741.]: 'cubic_regression': minmax = FALSE
[20250402_082741.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082741.]: Logging df_agg: CpG#9
[20250402_082741.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082741.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_082741.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082741.]: Entered 'hyperbolic_regression'-Function
[20250402_082741.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082741.]: Entered 'cubic_regression'-Function
[20250402_082741.]: 'cubic_regression': minmax = FALSE
[20250402_082741.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082741.]: Logging df_agg: row_means
[20250402_082741.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082741.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_082741.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082741.]: Entered 'hyperbolic_regression'-Function
[20250402_082741.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082742.]: Entered 'cubic_regression'-Function
[20250402_082742.]: 'cubic_regression': minmax = FALSE
[20250402_082754.]: Entered 'regression_type1'-Function
[20250402_082756.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082756.]: Logging df_agg: CpG#1
[20250402_082756.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082756.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_082756.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082756.]: Entered 'hyperbolic_regression'-Function
[20250402_082756.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082758.]: Entered 'cubic_regression'-Function
[20250402_082758.]: 'cubic_regression': minmax = FALSE
[20250402_082758.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082758.]: Logging df_agg: CpG#2
[20250402_082758.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082758.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_082758.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082758.]: Entered 'hyperbolic_regression'-Function
[20250402_082758.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082759.]: Entered 'cubic_regression'-Function
[20250402_082759.]: 'cubic_regression': minmax = FALSE
[20250402_082759.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082759.]: Logging df_agg: CpG#3
[20250402_082759.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082759.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_082759.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082759.]: Entered 'hyperbolic_regression'-Function
[20250402_082759.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082801.]: Entered 'cubic_regression'-Function
[20250402_082801.]: 'cubic_regression': minmax = FALSE
[20250402_082801.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082801.]: Logging df_agg: CpG#4
[20250402_082801.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082801.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_082801.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082801.]: Entered 'hyperbolic_regression'-Function
[20250402_082801.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082803.]: Entered 'cubic_regression'-Function
[20250402_082803.]: 'cubic_regression': minmax = FALSE
[20250402_082803.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082803.]: Logging df_agg: CpG#5
[20250402_082803.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082803.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_082803.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082803.]: Entered 'hyperbolic_regression'-Function
[20250402_082803.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082804.]: Entered 'cubic_regression'-Function
[20250402_082804.]: 'cubic_regression': minmax = FALSE
[20250402_082757.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082757.]: Logging df_agg: CpG#6
[20250402_082757.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082757.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_082757.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082757.]: Entered 'hyperbolic_regression'-Function
[20250402_082757.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082758.]: Entered 'cubic_regression'-Function
[20250402_082758.]: 'cubic_regression': minmax = FALSE
[20250402_082758.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082758.]: Logging df_agg: CpG#7
[20250402_082758.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082758.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_082758.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082758.]: Entered 'hyperbolic_regression'-Function
[20250402_082758.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082759.]: Entered 'cubic_regression'-Function
[20250402_082759.]: 'cubic_regression': minmax = FALSE
[20250402_082800.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082800.]: Logging df_agg: CpG#8
[20250402_082800.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082800.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_082800.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082800.]: Entered 'hyperbolic_regression'-Function
[20250402_082800.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082801.]: Entered 'cubic_regression'-Function
[20250402_082801.]: 'cubic_regression': minmax = FALSE
[20250402_082801.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082801.]: Logging df_agg: CpG#9
[20250402_082801.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082801.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_082801.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082801.]: Entered 'hyperbolic_regression'-Function
[20250402_082801.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082802.]: Entered 'cubic_regression'-Function
[20250402_082802.]: 'cubic_regression': minmax = FALSE
[20250402_082802.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082802.]: Logging df_agg: row_means
[20250402_082802.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082802.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_082802.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082802.]: Entered 'hyperbolic_regression'-Function
[20250402_082802.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082803.]: Entered 'cubic_regression'-Function
[20250402_082803.]: 'cubic_regression': minmax = FALSE
[20250402_082810.]: Entered 'clean_dt'-Function
[20250402_082810.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_082810.]: got experimental data
[20250402_082810.]: Entered 'clean_dt'-Function
[20250402_082810.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_082810.]: got calibration data
[20250402_082810.]: ### Starting with regression calculations ###
[20250402_082810.]: Entered 'regression_type1'-Function
[20250402_082812.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082812.]: Logging df_agg: CpG#1
[20250402_082812.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082812.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_082812.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082812.]: Entered 'hyperbolic_regression'-Function
[20250402_082812.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082813.]: Entered 'cubic_regression'-Function
[20250402_082813.]: 'cubic_regression': minmax = FALSE
[20250402_082813.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082814.]: Logging df_agg: CpG#2
[20250402_082814.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082814.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_082814.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082814.]: Entered 'hyperbolic_regression'-Function
[20250402_082814.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082815.]: Entered 'cubic_regression'-Function
[20250402_082815.]: 'cubic_regression': minmax = FALSE
[20250402_082815.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082815.]: Logging df_agg: CpG#3
[20250402_082815.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082815.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_082815.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082815.]: Entered 'hyperbolic_regression'-Function
[20250402_082815.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082817.]: Entered 'cubic_regression'-Function
[20250402_082817.]: 'cubic_regression': minmax = FALSE
[20250402_082817.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082817.]: Logging df_agg: CpG#4
[20250402_082817.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082817.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_082817.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082817.]: Entered 'hyperbolic_regression'-Function
[20250402_082817.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082819.]: Entered 'cubic_regression'-Function
[20250402_082819.]: 'cubic_regression': minmax = FALSE
[20250402_082819.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082819.]: Logging df_agg: CpG#5
[20250402_082819.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082819.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_082819.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082819.]: Entered 'hyperbolic_regression'-Function
[20250402_082819.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082820.]: Entered 'cubic_regression'-Function
[20250402_082820.]: 'cubic_regression': minmax = FALSE
[20250402_082813.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082814.]: Logging df_agg: CpG#6
[20250402_082814.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082814.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_082814.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082814.]: Entered 'hyperbolic_regression'-Function
[20250402_082814.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082815.]: Entered 'cubic_regression'-Function
[20250402_082815.]: 'cubic_regression': minmax = FALSE
[20250402_082815.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082815.]: Logging df_agg: CpG#7
[20250402_082815.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082815.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_082815.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082815.]: Entered 'hyperbolic_regression'-Function
[20250402_082815.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082817.]: Entered 'cubic_regression'-Function
[20250402_082817.]: 'cubic_regression': minmax = FALSE
[20250402_082817.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082817.]: Logging df_agg: CpG#8
[20250402_082817.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082817.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_082817.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082817.]: Entered 'hyperbolic_regression'-Function
[20250402_082817.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082818.]: Entered 'cubic_regression'-Function
[20250402_082818.]: 'cubic_regression': minmax = FALSE
[20250402_082818.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082818.]: Logging df_agg: CpG#9
[20250402_082818.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082818.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_082818.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082818.]: Entered 'hyperbolic_regression'-Function
[20250402_082818.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082819.]: Entered 'cubic_regression'-Function
[20250402_082820.]: 'cubic_regression': minmax = FALSE
[20250402_082820.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082820.]: Logging df_agg: row_means
[20250402_082820.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082820.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_082820.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082820.]: Entered 'hyperbolic_regression'-Function
[20250402_082820.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082820.]: Entered 'cubic_regression'-Function
[20250402_082820.]: 'cubic_regression': minmax = FALSE
[20250402_082828.]: Entered 'regression_type1'-Function
[20250402_082830.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082831.]: Logging df_agg: CpG#1
[20250402_082831.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082831.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_082831.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082831.]: Entered 'hyperbolic_regression'-Function
[20250402_082831.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082833.]: Entered 'cubic_regression'-Function
[20250402_082833.]: 'cubic_regression': minmax = FALSE
[20250402_082833.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082833.]: Logging df_agg: CpG#2
[20250402_082833.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082833.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_082833.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082833.]: Entered 'hyperbolic_regression'-Function
[20250402_082833.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082834.]: Entered 'cubic_regression'-Function
[20250402_082834.]: 'cubic_regression': minmax = FALSE
[20250402_082834.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082834.]: Logging df_agg: CpG#3
[20250402_082834.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082834.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_082834.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082834.]: Entered 'hyperbolic_regression'-Function
[20250402_082834.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082835.]: Entered 'cubic_regression'-Function
[20250402_082836.]: 'cubic_regression': minmax = FALSE
[20250402_082836.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082836.]: Logging df_agg: CpG#4
[20250402_082836.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082836.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_082836.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082836.]: Entered 'hyperbolic_regression'-Function
[20250402_082836.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082837.]: Entered 'cubic_regression'-Function
[20250402_082837.]: 'cubic_regression': minmax = FALSE
[20250402_082837.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082837.]: Logging df_agg: CpG#5
[20250402_082837.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082837.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_082837.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082837.]: Entered 'hyperbolic_regression'-Function
[20250402_082837.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082839.]: Entered 'cubic_regression'-Function
[20250402_082839.]: 'cubic_regression': minmax = FALSE
[20250402_082831.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082832.]: Logging df_agg: CpG#6
[20250402_082832.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082832.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_082832.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082832.]: Entered 'hyperbolic_regression'-Function
[20250402_082832.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082833.]: Entered 'cubic_regression'-Function
[20250402_082833.]: 'cubic_regression': minmax = FALSE
[20250402_082833.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082833.]: Logging df_agg: CpG#7
[20250402_082833.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082833.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_082833.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082833.]: Entered 'hyperbolic_regression'-Function
[20250402_082833.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082835.]: Entered 'cubic_regression'-Function
[20250402_082835.]: 'cubic_regression': minmax = FALSE
[20250402_082835.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082835.]: Logging df_agg: CpG#8
[20250402_082835.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082835.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_082835.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082835.]: Entered 'hyperbolic_regression'-Function
[20250402_082835.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082836.]: Entered 'cubic_regression'-Function
[20250402_082836.]: 'cubic_regression': minmax = FALSE
[20250402_082836.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082836.]: Logging df_agg: CpG#9
[20250402_082836.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082836.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_082836.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082836.]: Entered 'hyperbolic_regression'-Function
[20250402_082836.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082837.]: Entered 'cubic_regression'-Function
[20250402_082837.]: 'cubic_regression': minmax = FALSE
[20250402_082837.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082837.]: Logging df_agg: row_means
[20250402_082837.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082837.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_082837.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082837.]: Entered 'hyperbolic_regression'-Function
[20250402_082837.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082838.]: Entered 'cubic_regression'-Function
[20250402_082838.]: 'cubic_regression': minmax = FALSE
[20250402_082843.]: Entered 'solving_equations'-Function
[20250402_082843.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: -2.23222990163966
[20250402_082843.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.232
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.1698489850618
[20250402_082843.]: Samplename: 12.5
Root: 12.17
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.4781920312644
[20250402_082843.]: Samplename: 25
Root: 24.478
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.173044740918
[20250402_082843.]: Samplename: 37.5
Root: 38.173
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3349371964438
[20250402_082843.]: Samplename: 50
Root: 52.335
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4582773627666
[20250402_082843.]: Samplename: 62.5
Root: 65.458
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.0090795260796
[20250402_082843.]: Samplename: 75
Root: 75.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.5271920968417
[20250402_082843.]: Samplename: 87.5
Root: 81.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.400893095062
[20250402_082843.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.401
--> '100 < root < 110' --> substitute 100
[20250402_082843.]: Solving hyperbolic regression for CpG#2
Hyperbolic solved: 1.13660501904968
[20250402_082843.]: Samplename: 0
Root: 1.137
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.4129696733689
[20250402_082843.]: Samplename: 12.5
Root: 11.413
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.174000526428
[20250402_082843.]: Samplename: 25
Root: 26.174
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.1050449117028
[20250402_082843.]: Samplename: 37.5
Root: 35.105
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.685500330611
[20250402_082843.]: Samplename: 50
Root: 47.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.1440494417104
[20250402_082843.]: Samplename: 62.5
Root: 67.144
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7644668894086
[20250402_082843.]: Samplename: 75
Root: 75.764
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.4054158616395
[20250402_082843.]: Samplename: 87.5
Root: 84.405
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.94827248399
[20250402_082843.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.948
--> '100 < root < 110' --> substitute 100
[20250402_082843.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0.51235653688495
[20250402_082843.]: Samplename: 0
Root: 0.512
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7523884294604
[20250402_082843.]: Samplename: 12.5
Root: 10.752
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.5218907947761
[20250402_082843.]: Samplename: 25
Root: 25.522
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5270462675211
[20250402_082843.]: Samplename: 37.5
Root: 36.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7909245028224
[20250402_082843.]: Samplename: 50
Root: 50.791
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8686317550184
[20250402_082843.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 77.5524188495235
[20250402_082843.]: Samplename: 75
Root: 77.552
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.4374617358174
[20250402_082843.]: Samplename: 87.5
Root: 80.437
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.704024900825
[20250402_082843.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.704
--> '100 < root < 110' --> substitute 100
[20250402_082843.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: -0.519503092357606
[20250402_082843.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.52
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.4934147844872
[20250402_082843.]: Samplename: 12.5
Root: 12.493
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2685420024115
[20250402_082843.]: Samplename: 25
Root: 24.269
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.0817128465023
[20250402_082843.]: Samplename: 37.5
Root: 38.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.5843181174811
[20250402_082843.]: Samplename: 50
Root: 48.584
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.6722399183037
[20250402_082843.]: Samplename: 62.5
Root: 67.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.1549277799119
[20250402_082843.]: Samplename: 75
Root: 74.155
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.8821797890026
[20250402_082843.]: Samplename: 87.5
Root: 82.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.0791269023
[20250402_082843.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.079
--> '100 < root < 110' --> substitute 100
[20250402_082843.]: Solving hyperbolic regression for CpG#5
Hyperbolic solved: 2.41558626275183
[20250402_082843.]: Samplename: 0
Root: 2.416
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.1649674907454
[20250402_082843.]: Samplename: 12.5
Root: 10.165
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.9830820412762
[20250402_082843.]: Samplename: 25
Root: 23.983
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2773619900429
[20250402_082843.]: Samplename: 37.5
Root: 37.277
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.8659386543864
[20250402_082843.]: Samplename: 50
Root: 50.866
--> Root in between the borders! Added to results.
Hyperbolic solved: 62.4342273571069
[20250402_082843.]: Samplename: 62.5
Root: 62.434
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.3915260534323
[20250402_082843.]: Samplename: 75
Root: 76.392
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.159788778566
[20250402_082843.]: Samplename: 87.5
Root: 86.16
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.267759893323
[20250402_082843.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.268
--> '100 < root < 110' --> substitute 100
[20250402_082844.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0.138163748613034
[20250402_082844.]: Samplename: 0
Root: 0.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.8635558881981
[20250402_082844.]: Samplename: 12.5
Root: 11.864
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5107449550797
[20250402_082844.]: Samplename: 25
Root: 26.511
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3205073050661
[20250402_082844.]: Samplename: 37.5
Root: 35.321
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.0570767570666
[20250402_082844.]: Samplename: 50
Root: 50.057
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9602944381018
[20250402_082844.]: Samplename: 62.5
Root: 64.96
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.66890571617
[20250402_082844.]: Samplename: 75
Root: 73.669
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.1266086585036
[20250402_082844.]: Samplename: 87.5
Root: 87.127
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.261637014212
[20250402_082844.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.262
--> '100 < root < 110' --> substitute 100
[20250402_082844.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: -1.37238087287012
[20250402_082844.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.372
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.1993162352498
[20250402_082844.]: Samplename: 12.5
Root: 10.199
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.595178967123
[20250402_082844.]: Samplename: 25
Root: 24.595
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.8310421041787
[20250402_082844.]: Samplename: 37.5
Root: 37.831
--> Root in between the borders! Added to results.
Hyperbolic solved: 53.5588739724067
[20250402_082844.]: Samplename: 50
Root: 53.559
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.9364947980258
[20250402_082844.]: Samplename: 62.5
Root: 65.936
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7361094434913
[20250402_082844.]: Samplename: 75
Root: 75.736
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.432823759854
[20250402_082844.]: Samplename: 87.5
Root: 79.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 103.004237013737
[20250402_082844.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 103.004
--> '100 < root < 110' --> substitute 100
[20250402_082844.]: Solving hyperbolic regression for CpG#8
Hyperbolic solved: 2.80068218205093
[20250402_082844.]: Samplename: 0
Root: 2.801
--> Root in between the borders! Added to results.
Hyperbolic solved: 9.27535134596596
[20250402_082844.]: Samplename: 12.5
Root: 9.275
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4762621928197
[20250402_082844.]: Samplename: 25
Root: 25.476
--> Root in between the borders! Added to results.
Hyperbolic solved: 34.0122075735416
[20250402_082844.]: Samplename: 37.5
Root: 34.012
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.7842655662325
[20250402_082844.]: Samplename: 50
Root: 51.784
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.6732311906145
[20250402_082844.]: Samplename: 62.5
Root: 64.673
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.4326978859189
[20250402_082844.]: Samplename: 75
Root: 78.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.3427232852719
[20250402_082844.]: Samplename: 87.5
Root: 81.343
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.964406640583
[20250402_082844.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.964
--> '100 < root < 110' --> substitute 100
[20250402_082844.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: -2.13403721845678
[20250402_082844.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.134
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.5082192457956
[20250402_082844.]: Samplename: 12.5
Root: 10.508
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.9164567253388
[20250402_082844.]: Samplename: 25
Root: 26.916
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.8334779159501
[20250402_082844.]: Samplename: 37.5
Root: 36.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.0097895977263
[20250402_082844.]: Samplename: 50
Root: 52.01
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8930527921581
[20250402_082844.]: Samplename: 62.5
Root: 64.893
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.5671055499357
[20250402_082844.]: Samplename: 75
Root: 74.567
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.5294954832669
[20250402_082844.]: Samplename: 87.5
Root: 84.529
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.047146466811
[20250402_082844.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.047
--> '100 < root < 110' --> substitute 100
[20250402_082844.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0.290941088603071
[20250402_082845.]: Samplename: 0
Root: 0.291
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0412408065783
[20250402_082845.]: Samplename: 12.5
Root: 11.041
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4081501047696
[20250402_082845.]: Samplename: 25
Root: 25.408
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5243719024532
[20250402_082845.]: Samplename: 37.5
Root: 36.524
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7348824329668
[20250402_082845.]: Samplename: 50
Root: 50.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.3135209766198
[20250402_082845.]: Samplename: 62.5
Root: 65.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.5342709041132
[20250402_082845.]: Samplename: 75
Root: 75.534
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.2411228425212
[20250402_082845.]: Samplename: 87.5
Root: 83.241
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.666942781592
[20250402_082845.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.667
--> '100 < root < 110' --> substitute 100
[20250402_082845.]: ### Starting with regression calculations ###
[20250402_082845.]: Entered 'regression_type1'-Function
[20250402_082848.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.1698489850618, 24.4781920312644, 38.173044740918, 52.3349371964438, 65.4582773627666, 75.0090795260796, 81.5271920968417, 100)
[20250402_082848.]: Logging df_agg: CpG#1
[20250402_082848.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082848.]: c(0, 12.1698489850618, 24.4781920312644, 38.173044740918, 52.3349371964438, 65.4582773627666, 75.0090795260796, 81.5271920968417, 100)
[20250402_082848.]: Entered 'hyperbolic_regression'-Function
[20250402_082848.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082849.]: Entered 'cubic_regression'-Function
[20250402_082849.]: 'cubic_regression': minmax = FALSE
[20250402_082850.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.13660501904968, 11.4129696733689, 26.174000526428, 35.1050449117028, 47.685500330611, 67.1440494417104, 75.7644668894086, 84.4054158616395, 100)
[20250402_082850.]: Logging df_agg: CpG#2
[20250402_082850.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082850.]: c(1.13660501904968, 11.4129696733689, 26.174000526428, 35.1050449117028, 47.685500330611, 67.1440494417104, 75.7644668894086, 84.4054158616395, 100)
[20250402_082850.]: Entered 'hyperbolic_regression'-Function
[20250402_082850.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082851.]: Entered 'cubic_regression'-Function
[20250402_082851.]: 'cubic_regression': minmax = FALSE
[20250402_082851.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.51235653688495, 10.7523884294604, 25.5218907947761, 36.5270462675211, 50.7909245028224, 64.8686317550184, 77.5524188495235, 80.4374617358174, 100)
[20250402_082851.]: Logging df_agg: CpG#3
[20250402_082851.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082851.]: c(0.51235653688495, 10.7523884294604, 25.5218907947761, 36.5270462675211, 50.7909245028224, 64.8686317550184, 77.5524188495235, 80.4374617358174, 100)
[20250402_082851.]: Entered 'hyperbolic_regression'-Function
[20250402_082851.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082852.]: Entered 'cubic_regression'-Function
[20250402_082852.]: 'cubic_regression': minmax = FALSE
[20250402_082852.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.4934147844872, 24.2685420024115, 38.0817128465023, 48.5843181174811, 67.6722399183037, 74.1549277799119, 82.8821797890026, 100)
[20250402_082852.]: Logging df_agg: CpG#4
[20250402_082852.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082852.]: c(0, 12.4934147844872, 24.2685420024115, 38.0817128465023, 48.5843181174811, 67.6722399183037, 74.1549277799119, 82.8821797890026, 100)
[20250402_082852.]: Entered 'hyperbolic_regression'-Function
[20250402_082852.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082853.]: Entered 'cubic_regression'-Function
[20250402_082853.]: 'cubic_regression': minmax = FALSE
[20250402_082853.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.41558626275183, 10.1649674907454, 23.9830820412762, 37.2773619900429, 50.8659386543864, 62.4342273571069, 76.3915260534323, 86.159788778566, 100)
[20250402_082853.]: Logging df_agg: CpG#5
[20250402_082853.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082853.]: c(2.41558626275183, 10.1649674907454, 23.9830820412762, 37.2773619900429, 50.8659386543864, 62.4342273571069, 76.3915260534323, 86.159788778566, 100)
[20250402_082853.]: Entered 'hyperbolic_regression'-Function
[20250402_082853.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082855.]: Entered 'cubic_regression'-Function
[20250402_082855.]: 'cubic_regression': minmax = FALSE
[20250402_082849.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.138163748613034, 11.8635558881981, 26.5107449550797, 35.3205073050661, 50.0570767570666, 64.9602944381018, 73.66890571617, 87.1266086585036, 100)
[20250402_082849.]: Logging df_agg: CpG#6
[20250402_082849.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082849.]: c(0.138163748613034, 11.8635558881981, 26.5107449550797, 35.3205073050661, 50.0570767570666, 64.9602944381018, 73.66890571617, 87.1266086585036, 100)
[20250402_082849.]: Entered 'hyperbolic_regression'-Function
[20250402_082849.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082850.]: Entered 'cubic_regression'-Function
[20250402_082850.]: 'cubic_regression': minmax = FALSE
[20250402_082850.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.1993162352498, 24.595178967123, 37.8310421041787, 53.5588739724067, 65.9364947980258, 75.7361094434913, 79.432823759854, 100)
[20250402_082850.]: Logging df_agg: CpG#7
[20250402_082850.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082850.]: c(0, 10.1993162352498, 24.595178967123, 37.8310421041787, 53.5588739724067, 65.9364947980258, 75.7361094434913, 79.432823759854, 100)
[20250402_082850.]: Entered 'hyperbolic_regression'-Function
[20250402_082850.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082851.]: Entered 'cubic_regression'-Function
[20250402_082851.]: 'cubic_regression': minmax = FALSE
[20250402_082851.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.80068218205093, 9.27535134596596, 25.4762621928197, 34.0122075735416, 51.7842655662325, 64.6732311906145, 78.4326978859189, 81.3427232852719, 100)
[20250402_082851.]: Logging df_agg: CpG#8
[20250402_082851.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082851.]: c(2.80068218205093, 9.27535134596596, 25.4762621928197, 34.0122075735416, 51.7842655662325, 64.6732311906145, 78.4326978859189, 81.3427232852719, 100)
[20250402_082851.]: Entered 'hyperbolic_regression'-Function
[20250402_082852.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082853.]: Entered 'cubic_regression'-Function
[20250402_082853.]: 'cubic_regression': minmax = FALSE
[20250402_082853.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.5082192457956, 26.9164567253388, 36.8334779159501, 52.0097895977263, 64.8930527921581, 74.5671055499357, 84.5294954832669, 100)
[20250402_082853.]: Logging df_agg: CpG#9
[20250402_082853.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082853.]: c(0, 10.5082192457956, 26.9164567253388, 36.8334779159501, 52.0097895977263, 64.8930527921581, 74.5671055499357, 84.5294954832669, 100)
[20250402_082853.]: Entered 'hyperbolic_regression'-Function
[20250402_082853.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082854.]: Entered 'cubic_regression'-Function
[20250402_082854.]: 'cubic_regression': minmax = FALSE
[20250402_082854.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.290941088603071, 11.0412408065783, 25.4081501047696, 36.5243719024532, 50.7348824329668, 65.3135209766198, 75.5342709041132, 83.2411228425212, 100)
[20250402_082854.]: Logging df_agg: row_means
[20250402_082854.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082854.]: c(0.290941088603071, 11.0412408065783, 25.4081501047696, 36.5243719024532, 50.7348824329668, 65.3135209766198, 75.5342709041132, 83.2411228425212, 100)
[20250402_082854.]: Entered 'hyperbolic_regression'-Function
[20250402_082854.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082855.]: Entered 'cubic_regression'-Function
[20250402_082855.]: 'cubic_regression': minmax = FALSE
[20250402_082857.]: Entered 'solving_equations'-Function
[20250402_082857.]: Solving cubic regression for CpG#1
Coefficients: -1.03617340067344Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 0
Root: 1.334
--> Root in between the borders! Added to results.
Coefficients: -8.34150673400678Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 12.5
Root: 11.446
--> Root in between the borders! Added to results.
Coefficients: -15.3881734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 25
Root: 22.228
--> Root in between the borders! Added to results.
Coefficients: -24.2801734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 37.5
Root: 36.374
--> Root in between the borders! Added to results.
Coefficients: -34.9006734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 50
Root: 52.044
--> Root in between the borders! Added to results.
Coefficients: -46.3541734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 62.5
Root: 66.144
--> Root in between the borders! Added to results.
Coefficients: -55.8931734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 75
Root: 75.864
--> Root in between the borders! Added to results.
Coefficients: -63.0981734006734Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 87.5
Root: 82.254
--> Root in between the borders! Added to results.
Coefficients: -91.0461734006735Coefficients: 0.784061853455188Coefficients: -0.0055806968734969Coefficients: 6.53413423120091e-05
[20250402_082857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.877
--> '100 < root < 110' --> substitute 100
[20250402_082857.]: Solving cubic regression for CpG#2
Coefficients: -0.283329966329966Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 0
Root: 0.549
--> Root in between the borders! Added to results.
Coefficients: -6.33999663299663Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 12.5
Root: 11.533
--> Root in between the borders! Added to results.
Coefficients: -15.93932996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 25
Root: 26.628
--> Root in between the borders! Added to results.
Coefficients: -22.33732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 37.5
Root: 35.509
--> Root in between the borders! Added to results.
Coefficients: -32.22832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 50
Root: 47.851
--> Root in between the borders! Added to results.
Coefficients: -49.96332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 62.5
Root: 66.893
--> Root in between the borders! Added to results.
Coefficients: -58.96582996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 75
Root: 75.431
--> Root in between the borders! Added to results.
Coefficients: -68.8366632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 87.5
Root: 84.118
--> Root in between the borders! Added to results.
Coefficients: -90.57732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082857.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.287
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#3
Coefficients: -0.90294781144782Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 0
Root: 1.441
--> Root in between the borders! Added to results.
Coefficients: -6.57294781144782Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 12.5
Root: 10.568
--> Root in between the borders! Added to results.
Coefficients: -15.4289478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 25
Root: 24.796
--> Root in between the borders! Added to results.
Coefficients: -22.6129478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 37.5
Root: 35.952
--> Root in between the borders! Added to results.
Coefficients: -32.7754478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 50
Root: 50.684
--> Root in between the borders! Added to results.
Coefficients: -43.8889478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 62.5
Root: 65.142
--> Root in between the borders! Added to results.
Coefficients: -54.9754478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 75
Root: 77.905
--> Root in between the borders! Added to results.
Coefficients: -57.6562811447812Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 87.5
Root: 80.767
--> Root in between the borders! Added to results.
Coefficients: -80.6649478114478Coefficients: 0.62783129228796Coefficients: -0.000797009331409346Coefficients: 2.30555869809204e-05
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.38
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#4
Coefficients: -0.597449494949524Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 0
Root: 0.858
--> Root in between the borders! Added to results.
Coefficients: -8.25278282828286Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 12.5
Root: 12.086
--> Root in between the borders! Added to results.
Coefficients: -15.8034494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 25
Root: 23.316
--> Root in between the borders! Added to results.
Coefficients: -25.5274494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 37.5
Root: 37.383
--> Root in between the borders! Added to results.
Coefficients: -33.6369494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 50
Root: 48.353
--> Root in between the borders! Added to results.
Coefficients: -50.2554494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 62.5
Root: 68.082
--> Root in between the borders! Added to results.
Coefficients: -56.5394494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 75
Root: 74.615
--> Root in between the borders! Added to results.
Coefficients: -65.5927828282829Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 87.5
Root: 83.254
--> Root in between the borders! Added to results.
Coefficients: -88.3214494949495Coefficients: 0.697398364598366Coefficients: -0.0015913142857143Coefficients: 3.2166356902357e-05
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.715
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#5
Coefficients: -0.623961279461278Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 0
Root: 1.458
--> Root in between the borders! Added to results.
Coefficients: -4.76796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 12.5
Root: 10.347
--> Root in between the borders! Added to results.
Coefficients: -12.7259612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 25
Root: 24.815
--> Root in between the borders! Added to results.
Coefficients: -21.1599612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 37.5
Root: 37.902
--> Root in between the borders! Added to results.
Coefficients: -30.6954612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 50
Root: 50.977
--> Root in between the borders! Added to results.
Coefficients: -39.6579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 62.5
Root: 62.126
--> Root in between the borders! Added to results.
Coefficients: -51.6829612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 75
Root: 75.852
--> Root in between the borders! Added to results.
Coefficients: -61.0146279461279Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 87.5
Root: 85.767
--> Root in between the borders! Added to results.
Coefficients: -76.0699612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.743
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#6
Coefficients: -0.196072390572403Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 0
Root: 0.349
--> Root in between the borders! Added to results.
Coefficients: -6.73873905723907Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 12.5
Root: 11.718
--> Root in between the borders! Added to results.
Coefficients: -15.8880723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 25
Root: 26.396
--> Root in between the borders! Added to results.
Coefficients: -22.0000723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 37.5
Root: 35.301
--> Root in between the borders! Added to results.
Coefficients: -33.4445723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 50
Root: 50.134
--> Root in between the borders! Added to results.
Coefficients: -46.9000723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 62.5
Root: 64.993
--> Root in between the borders! Added to results.
Coefficients: -55.8320723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 75
Root: 73.639
--> Root in between the borders! Added to results.
Coefficients: -71.5454057239057Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 87.5
Root: 87.043
--> Root in between the borders! Added to results.
Coefficients: -89.6560723905724Coefficients: 0.561022132435467Coefficients: 0.000918637037037021Coefficients: 2.38852884399552e-05
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.329
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#7
Coefficients: -1.21495454545456Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 0
Root: 2.13
--> Root in between the borders! Added to results.
Coefficients: -5.39562121212123Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 12.5
Root: 9.973
--> Root in between the borders! Added to results.
Coefficients: -11.2649545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 25
Root: 22.206
--> Root in between the borders! Added to results.
Coefficients: -17.4509545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 37.5
Root: 35.814
--> Root in between the borders! Added to results.
Coefficients: -26.0314545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 50
Root: 53.28
--> Root in between the borders! Added to results.
Coefficients: -33.9649545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 62.5
Root: 66.598
--> Root in between the borders! Added to results.
Coefficients: -41.1689545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 75
Root: 76.575
--> Root in between the borders! Added to results.
Coefficients: -44.1356212121212Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 87.5
Root: 80.219
--> Root in between the borders! Added to results.
Coefficients: -67.2229545454546Coefficients: 0.579588917748918Coefficients: -0.00436152150072151Coefficients: 4.98010505050505e-05
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.506
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#8
Coefficients: -1.09618518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 0
Root: 2.016
--> Root in between the borders! Added to results.
Coefficients: -5.44685185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 12.5
Root: 9.458
--> Root in between the borders! Added to results.
Coefficients: -16.9301851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 25
Root: 26.35
--> Root in between the borders! Added to results.
Coefficients: -23.3501851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 37.5
Root: 34.728
--> Root in between the borders! Added to results.
Coefficients: -37.6251851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 50
Root: 51.781
--> Root in between the borders! Added to results.
Coefficients: -48.8261851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 62.5
Root: 64.192
--> Root in between the borders! Added to results.
Coefficients: -61.6676851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 75
Root: 77.804
--> Root in between the borders! Added to results.
Coefficients: -64.5101851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 87.5
Root: 80.758
--> Root in between the borders! Added to results.
Coefficients: -86.0601851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.834
--> '100 < root < 110' --> substitute 100
[20250402_082858.]: Solving cubic regression for CpG#9
Coefficients: -0.989865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 0
Root: 1.475
--> Root in between the borders! Added to results.
Coefficients: -6.39586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 12.5
Root: 10.12
--> Root in between the borders! Added to results.
Coefficients: -14.7058653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 25
Root: 24.844
--> Root in between the borders! Added to results.
Coefficients: -20.6238653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 37.5
Root: 35.327
--> Root in between the borders! Added to results.
Coefficients: -31.3958653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 50
Root: 51.855
--> Root in between the borders! Added to results.
Coefficients: -42.6858653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 62.5
Root: 65.265
--> Root in between the borders! Added to results.
Coefficients: -52.9033653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 75
Root: 74.915
--> Root in between the borders! Added to results.
Coefficients: -65.492531986532Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 87.5
Root: 84.67
--> Root in between the borders! Added to results.
Coefficients: -92.9898653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082858.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.082
--> '100 < root < 110' --> substitute 100
[20250402_082859.]: Solving cubic regression for row_means
Coefficients: -0.771215488215478Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 0
Root: 1.287
--> Root in between the borders! Added to results.
Coefficients: -6.47247474747474Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 12.5
Root: 10.847
--> Root in between the borders! Added to results.
Coefficients: -14.8972154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 25
Root: 24.737
--> Root in between the borders! Added to results.
Coefficients: -22.1492154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 37.5
Root: 36.02
--> Root in between the borders! Added to results.
Coefficients: -32.5259932659933Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 50
Root: 50.639
--> Root in between the borders! Added to results.
Coefficients: -44.7218821548821Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 62.5
Root: 65.497
--> Root in between the borders! Added to results.
Coefficients: -54.4032154882155Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 75
Root: 75.751
--> Root in between the borders! Added to results.
Coefficients: -62.4313636363636Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 87.5
Root: 83.403
--> Root in between the borders! Added to results.
Coefficients: -84.7343265993266Coefficients: 0.600117857944524Coefficients: -0.000629959275292592Coefficients: 2.88923726150392e-05
[20250402_082859.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.573
--> '100 < root < 110' --> substitute 100
[20250402_082859.]: ### Starting with regression calculations ###
[20250402_082859.]: Entered 'regression_type1'-Function
[20250402_082903.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.33401421032361, 11.4464168649749, 22.2276337872205, 36.3736525123061, 52.0438002576114, 66.1443249010516, 75.864353455204, 82.2543632311352, 100)
[20250402_082904.]: Logging df_agg: CpG#1
[20250402_082904.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082904.]: c(1.33401421032361, 11.4464168649749, 22.2276337872205, 36.3736525123061, 52.0438002576114, 66.1443249010516, 75.864353455204, 82.2543632311352, 100)
[20250402_082904.]: Entered 'hyperbolic_regression'-Function
[20250402_082904.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082906.]: Entered 'cubic_regression'-Function
[20250402_082906.]: 'cubic_regression': minmax = FALSE
[20250402_082906.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.548629212600373, 11.5334942360619, 26.6282428579604, 35.509046298922, 47.8509004857888, 66.8931714037845, 75.4313106569591, 84.1184829423144, 100)
[20250402_082906.]: Logging df_agg: CpG#2
[20250402_082906.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082906.]: c(0.548629212600373, 11.5334942360619, 26.6282428579604, 35.509046298922, 47.8509004857888, 66.8931714037845, 75.4313106569591, 84.1184829423144, 100)
[20250402_082906.]: Entered 'hyperbolic_regression'-Function
[20250402_082906.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082907.]: Entered 'cubic_regression'-Function
[20250402_082907.]: 'cubic_regression': minmax = FALSE
[20250402_082907.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.44072654766676, 10.5677206698424, 24.7956529081379, 35.9519154174756, 50.6840128730794, 65.1415439321287, 77.905329956603, 80.767122912268, 100)
[20250402_082907.]: Logging df_agg: CpG#3
[20250402_082907.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082907.]: c(1.44072654766676, 10.5677206698424, 24.7956529081379, 35.9519154174756, 50.6840128730794, 65.1415439321287, 77.905329956603, 80.767122912268, 100)
[20250402_082907.]: Entered 'hyperbolic_regression'-Function
[20250402_082907.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082909.]: Entered 'cubic_regression'-Function
[20250402_082909.]: 'cubic_regression': minmax = FALSE
[20250402_082909.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.858335161098707, 12.0855313705714, 23.3164186343997, 37.3830070750476, 48.3526815121735, 68.0824341519511, 74.6152796890845, 83.2536964524017, 100)
[20250402_082909.]: Logging df_agg: CpG#4
[20250402_082909.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082909.]: c(0.858335161098707, 12.0855313705714, 23.3164186343997, 37.3830070750476, 48.3526815121735, 68.0824341519511, 74.6152796890845, 83.2536964524017, 100)
[20250402_082909.]: Entered 'hyperbolic_regression'-Function
[20250402_082910.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082911.]: Entered 'cubic_regression'-Function
[20250402_082911.]: 'cubic_regression': minmax = FALSE
[20250402_082911.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.45815885872158, 10.3470047908467, 24.8150085082726, 37.902202434763, 50.9768599213374, 62.1264944886855, 75.8515940245021, 85.766767827257, 100)
[20250402_082911.]: Logging df_agg: CpG#5
[20250402_082911.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082911.]: c(1.45815885872158, 10.3470047908467, 24.8150085082726, 37.902202434763, 50.9768599213374, 62.1264944886855, 75.8515940245021, 85.766767827257, 100)
[20250402_082911.]: Entered 'hyperbolic_regression'-Function
[20250402_082911.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082912.]: Entered 'cubic_regression'-Function
[20250402_082912.]: 'cubic_regression': minmax = FALSE
[20250402_082905.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0.349289777689709, 11.718186424346, 26.3959840124278, 35.3009019621403, 50.1335677299922, 64.9927731962402, 73.6385743787925, 87.0433563205787, 100)
[20250402_082905.]: Logging df_agg: CpG#6
[20250402_082905.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082905.]: c(0.349289777689709, 11.718186424346, 26.3959840124278, 35.3009019621403, 50.1335677299922, 64.9927731962402, 73.6385743787925, 87.0433563205787, 100)
[20250402_082905.]: Entered 'hyperbolic_regression'-Function
[20250402_082905.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082908.]: Entered 'cubic_regression'-Function
[20250402_082908.]: 'cubic_regression': minmax = FALSE
[20250402_082908.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.12953119975094, 9.97257098314617, 22.2059559709309, 35.8143078912917, 53.2798169545709, 66.5977007121001, 76.5753720723248, 80.2192820049015, 100)
[20250402_082908.]: Logging df_agg: CpG#7
[20250402_082908.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082908.]: c(2.12953119975094, 9.97257098314617, 22.2059559709309, 35.8143078912917, 53.2798169545709, 66.5977007121001, 76.5753720723248, 80.2192820049015, 100)
[20250402_082908.]: Entered 'hyperbolic_regression'-Function
[20250402_082908.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082909.]: Entered 'cubic_regression'-Function
[20250402_082909.]: 'cubic_regression': minmax = FALSE
[20250402_082909.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.01554288922103, 9.4575966611002, 26.3496745529898, 34.7279879576046, 51.7805031081493, 64.1918409049086, 77.803935663705, 80.7580214011447, 100)
[20250402_082909.]: Logging df_agg: CpG#8
[20250402_082909.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082909.]: c(2.01554288922103, 9.4575966611002, 26.3496745529898, 34.7279879576046, 51.7805031081493, 64.1918409049086, 77.803935663705, 80.7580214011447, 100)
[20250402_082909.]: Entered 'hyperbolic_regression'-Function
[20250402_082909.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082909.]: Entered 'cubic_regression'-Function
[20250402_082909.]: 'cubic_regression': minmax = FALSE
[20250402_082909.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.4748520772151, 10.1196517054927, 24.843641290935, 35.3267260117639, 51.8546848506009, 65.2652545321194, 74.9150847744697, 84.6698630277555, 100)
[20250402_082909.]: Logging df_agg: CpG#9
[20250402_082909.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082909.]: c(1.4748520772151, 10.1196517054927, 24.843641290935, 35.3267260117639, 51.8546848506009, 65.2652545321194, 74.9150847744697, 84.6698630277555, 100)
[20250402_082909.]: Entered 'hyperbolic_regression'-Function
[20250402_082909.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082910.]: Entered 'cubic_regression'-Function
[20250402_082910.]: 'cubic_regression': minmax = FALSE
[20250402_082910.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(1.28674218034491, 10.8474062821721, 24.737384351039, 36.0200815402329, 50.6393222494118, 65.4974814516656, 75.7507242961973, 83.4027053898488, 100)
[20250402_082910.]: Logging df_agg: row_means
[20250402_082910.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082910.]: c(1.28674218034491, 10.8474062821721, 24.737384351039, 36.0200815402329, 50.6393222494118, 65.4974814516656, 75.7507242961973, 83.4027053898488, 100)
[20250402_082910.]: Entered 'hyperbolic_regression'-Function
[20250402_082910.]: 'hyperbolic_regression': minmax = FALSE
[20250402_082911.]: Entered 'cubic_regression'-Function
[20250402_082911.]: 'cubic_regression': minmax = FALSE
[20250402_082914.]: Entered 'solving_equations'-Function
[20250402_082914.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 79.8673456895745
[20250402_082914.]: Samplename: Sample#1
Root: 79.867
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.7900184340805
[20250402_082914.]: Samplename: Sample#10
Root: 29.79
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.6525415639691
[20250402_082914.]: Samplename: Sample#2
Root: 41.653
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.4652090254513
[20250402_082914.]: Samplename: Sample#3
Root: 57.465
--> Root in between the borders! Added to results.
Hyperbolic solved: 9.2007130627765
[20250402_082914.]: Samplename: Sample#4
Root: 9.201
--> Root in between the borders! Added to results.
Hyperbolic solved: 21.8059600538131
[20250402_082914.]: Samplename: Sample#5
Root: 21.806
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.083796735881
[20250402_082914.]: Samplename: Sample#6
Root: 23.084
--> Root in between the borders! Added to results.
Hyperbolic solved: 45.5034245569385
[20250402_082914.]: Samplename: Sample#7
Root: 45.503
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6987904075704
[20250402_082914.]: Samplename: Sample#8
Root: 85.699
--> Root in between the borders! Added to results.
Hyperbolic solved: -3.66512807265101
[20250402_082914.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -3.665
--> '-10 < root < 0' --> substitute 0
[20250402_082914.]: Solving cubic regression for CpG#2
Coefficients: -60.0166632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082914.]: Samplename: Sample#1
Root: 76.388
--> Root in between the borders! Added to results.
Coefficients: -19.33132996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#10
Root: 31.437
--> Root in between the borders! Added to results.
Coefficients: -28.1616632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#2
Root: 42.956
--> Root in between the borders! Added to results.
Coefficients: -42.07832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#3
Root: 58.838
--> Root in between the borders! Added to results.
Coefficients: -2.49332996632996Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#4
Root: 4.715
--> Root in between the borders! Added to results.
Coefficients: -11.94832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#5
Root: 20.644
--> Root in between the borders! Added to results.
Coefficients: -10.36332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#6
Root: 18.159
--> Root in between the borders! Added to results.
Coefficients: -26.77132996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#7
Root: 41.228
--> Root in between the borders! Added to results.
Coefficients: -70.81532996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#8
Root: 85.785
--> Root in between the borders! Added to results.
Coefficients: -1.41332996632996Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082915.]: Samplename: Sample#9
Root: 2.703
--> Root in between the borders! Added to results.
[20250402_082915.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 74.9349254100163
[20250402_082915.]: Samplename: Sample#1
Root: 74.935
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.6844381581493
[20250402_082915.]: Samplename: Sample#10
Root: 27.684
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.852019114379
[20250402_082915.]: Samplename: Sample#2
Root: 41.852
--> Root in between the borders! Added to results.
Hyperbolic solved: 55.8325180209418
[20250402_082915.]: Samplename: Sample#3
Root: 55.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.03519251633153
[20250402_082915.]: Samplename: Sample#4
Root: 8.035
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.1066315721853
[20250402_082915.]: Samplename: Sample#5
Root: 24.107
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2419820027673
[20250402_082915.]: Samplename: Sample#6
Root: 26.242
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.0944922703422
[20250402_082915.]: Samplename: Sample#7
Root: 44.094
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.8279382585787
[20250402_082915.]: Samplename: Sample#8
Root: 85.828
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.666482392725758
[20250402_082915.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.666
--> '-10 < root < 0' --> substitute 0
[20250402_082915.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 76.3495278640236
[20250402_082915.]: Samplename: Sample#1
Root: 76.35
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.2568553570941
[20250402_082915.]: Samplename: Sample#10
Root: 28.257
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.4089839390807
[20250402_082915.]: Samplename: Sample#2
Root: 43.409
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.5435236860146
[20250402_082915.]: Samplename: Sample#3
Root: 58.544
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.3087045690571
[20250402_082915.]: Samplename: Sample#4
Root: 10.309
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.183045165659
[20250402_082915.]: Samplename: Sample#5
Root: 22.183
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.1337769553499
[20250402_082915.]: Samplename: Sample#6
Root: 27.134
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.8321096080155
[20250402_082915.]: Samplename: Sample#7
Root: 41.832
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6890189074743
[20250402_082915.]: Samplename: Sample#8
Root: 85.689
--> Root in between the borders! Added to results.
Hyperbolic solved: 2.42232098177269
[20250402_082915.]: Samplename: Sample#9
Root: 2.422
--> Root in between the borders! Added to results.
[20250402_082916.]: Solving cubic regression for CpG#5
Coefficients: -48.4612946127946Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#1
Root: 72.291
--> Root in between the borders! Added to results.
Coefficients: -14.2119612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#10
Root: 27.256
--> Root in between the borders! Added to results.
Coefficients: -25.9451041366041Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#2
Root: 44.648
--> Root in between the borders! Added to results.
Coefficients: -32.6879612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#3
Root: 53.538
--> Root in between the borders! Added to results.
Coefficients: -4.69796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#4
Root: 10.206
--> Root in between the borders! Added to results.
Coefficients: -12.0579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#5
Root: 23.695
--> Root in between the borders! Added to results.
Coefficients: -13.9179612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#6
Root: 26.778
--> Root in between the borders! Added to results.
Coefficients: -24.9119612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#7
Root: 43.226
--> Root in between the borders! Added to results.
Coefficients: -63.7579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#8
Root: 88.581
--> Root in between the borders! Added to results.
Coefficients: -0.587961279461277Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082916.]: Samplename: Sample#9
Root: 1.375
--> Root in between the borders! Added to results.
[20250402_082916.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 79.2780593622711
[20250402_082916.]: Samplename: Sample#1
Root: 79.278
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.2012458984074
[20250402_082916.]: Samplename: Sample#10
Root: 30.201
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.8474393624107
[20250402_082916.]: Samplename: Sample#2
Root: 41.847
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.8423517321508
[20250402_082916.]: Samplename: Sample#3
Root: 56.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.87856046118588
[20250402_082916.]: Samplename: Sample#4
Root: 8.879
--> Root in between the borders! Added to results.
Hyperbolic solved: 18.69015950004
[20250402_082916.]: Samplename: Sample#5
Root: 18.69
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.9309263534749
[20250402_082916.]: Samplename: Sample#6
Root: 29.931
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.8148560027697
[20250402_082916.]: Samplename: Sample#7
Root: 42.815
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.7501831416152
[20250402_082916.]: Samplename: Sample#8
Root: 86.75
--> Root in between the borders! Added to results.
Hyperbolic solved: 1.51516194985267
[20250402_082916.]: Samplename: Sample#9
Root: 1.515
--> Root in between the borders! Added to results.
[20250402_082916.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 78.2565592569279
[20250402_082916.]: Samplename: Sample#1
Root: 78.257
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.488739349283
[20250402_082916.]: Samplename: Sample#10
Root: 25.489
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.3712258915285
[20250402_082916.]: Samplename: Sample#2
Root: 47.371
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.3142673189298
[20250402_082916.]: Samplename: Sample#3
Root: 58.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7212231360573
[20250402_082916.]: Samplename: Sample#4
Root: 11.721
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.3797485992238
[20250402_082916.]: Samplename: Sample#5
Root: 25.38
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.4095133062523
[20250402_082916.]: Samplename: Sample#6
Root: 29.41
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.5755071469546
[20250402_082916.]: Samplename: Sample#7
Root: 44.576
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.9628731021447
[20250402_082916.]: Samplename: Sample#8
Root: 85.963
--> Root in between the borders! Added to results.
Hyperbolic solved: -4.1645647175353
[20250402_082916.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -4.165
--> '-10 < root < 0' --> substitute 0
[20250402_082916.]: Solving cubic regression for CpG#8
Coefficients: -56.4535185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#1
Root: 72.337
--> Root in between the borders! Added to results.
Coefficients: -18.6701851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#10
Root: 28.678
--> Root in between the borders! Added to results.
Coefficients: -24.0387566137566Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#2
Root: 35.595
--> Root in between the borders! Added to results.
Coefficients: -43.9451851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#3
Root: 58.861
--> Root in between the borders! Added to results.
Coefficients: -5.70018518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#4
Root: 9.868
--> Root in between the borders! Added to results.
Coefficients: -12.4851851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#5
Root: 20.166
--> Root in between the borders! Added to results.
Coefficients: -26.8801851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#6
Root: 39.117
--> Root in between the borders! Added to results.
Coefficients: -31.8421851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#7
Root: 45.08
--> Root in between the borders! Added to results.
Coefficients: -68.0081851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#8
Root: 84.373
--> Root in between the borders! Added to results.
Coefficients: 2.07981481481482Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082916.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -4.026
--> '-10 < root < 0' --> substitute 0
[20250402_082916.]: Solving cubic regression for CpG#9
Coefficients: -60.8091986531987Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082916.]: Samplename: Sample#1
Root: 81.262
--> Root in between the borders! Added to results.
Coefficients: -14.5538653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082916.]: Samplename: Sample#10
Root: 24.569
--> Root in between the borders! Added to results.
Coefficients: -26.6344367484368Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082916.]: Samplename: Sample#2
Root: 45.035
--> Root in between the borders! Added to results.
Coefficients: -35.4783653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082916.]: Samplename: Sample#3
Root: 57.113
--> Root in between the borders! Added to results.
Coefficients: -4.73586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082916.]: Samplename: Sample#4
Root: 7.362
--> Root in between the borders! Added to results.
Coefficients: -12.5308653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082916.]: Samplename: Sample#5
Root: 20.907
--> Root in between the borders! Added to results.
Coefficients: -21.9358653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082917.]: Samplename: Sample#6
Root: 37.545
--> Root in between the borders! Added to results.
Coefficients: -25.1998653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082917.]: Samplename: Sample#7
Root: 42.828
--> Root in between the borders! Added to results.
Coefficients: -70.5118653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082917.]: Samplename: Sample#8
Root: 88.082
--> Root in between the borders! Added to results.
Coefficients: -0.505865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082917.]: Samplename: Sample#9
Root: 0.749
--> Root in between the borders! Added to results.
[20250402_082917.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 77.0692797356261
[20250402_082917.]: Samplename: Sample#1
Root: 77.069
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.3620040447844
[20250402_082917.]: Samplename: Sample#10
Root: 28.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.5026170660315
[20250402_082918.]: Samplename: Sample#2
Root: 42.503
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.2972045344154
[20250402_082918.]: Samplename: Sample#3
Root: 57.297
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.82704040274281
[20250402_082918.]: Samplename: Sample#4
Root: 8.827
--> Root in between the borders! Added to results.
Hyperbolic solved: 21.8102591233667
[20250402_082918.]: Samplename: Sample#5
Root: 21.81
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.722865717687
[20250402_082918.]: Samplename: Sample#6
Root: 28.723
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.4105098027891
[20250402_082918.]: Samplename: Sample#7
Root: 43.411
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.4143551699061
[20250402_082918.]: Samplename: Sample#8
Root: 86.414
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.237019926848022
[20250402_082918.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.237
--> '-10 < root < 0' --> substitute 0
[20250402_082918.]: Entered 'solving_equations'-Function
[20250402_082918.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: -2.23222990163966
[20250402_082918.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.232
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.1698489850618
[20250402_082918.]: Samplename: 12.5
Root: 12.17
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.4781920312644
[20250402_082918.]: Samplename: 25
Root: 24.478
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.173044740918
[20250402_082918.]: Samplename: 37.5
Root: 38.173
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3349371964438
[20250402_082918.]: Samplename: 50
Root: 52.335
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4582773627666
[20250402_082918.]: Samplename: 62.5
Root: 65.458
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.0090795260796
[20250402_082918.]: Samplename: 75
Root: 75.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.5271920968417
[20250402_082918.]: Samplename: 87.5
Root: 81.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.400893095062
[20250402_082918.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.401
--> '100 < root < 110' --> substitute 100
[20250402_082918.]: Solving cubic regression for CpG#2
Coefficients: -0.283329966329966Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 0
Root: 0.549
--> Root in between the borders! Added to results.
Coefficients: -6.33999663299663Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 12.5
Root: 11.533
--> Root in between the borders! Added to results.
Coefficients: -15.93932996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 25
Root: 26.628
--> Root in between the borders! Added to results.
Coefficients: -22.33732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 37.5
Root: 35.509
--> Root in between the borders! Added to results.
Coefficients: -32.22832996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 50
Root: 47.851
--> Root in between the borders! Added to results.
Coefficients: -49.96332996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 62.5
Root: 66.893
--> Root in between the borders! Added to results.
Coefficients: -58.96582996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 75
Root: 75.431
--> Root in between the borders! Added to results.
Coefficients: -68.8366632996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 87.5
Root: 84.118
--> Root in between the borders! Added to results.
Coefficients: -90.57732996633Coefficients: 0.514821742825076Coefficients: 0.00293158941798942Coefficients: 8.04237934904601e-06
[20250402_082918.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.287
--> '100 < root < 110' --> substitute 100
[20250402_082918.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0.51235653688495
[20250402_082918.]: Samplename: 0
Root: 0.512
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7523884294604
[20250402_082918.]: Samplename: 12.5
Root: 10.752
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.5218907947761
[20250402_082918.]: Samplename: 25
Root: 25.522
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5270462675211
[20250402_082918.]: Samplename: 37.5
Root: 36.527
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7909245028224
[20250402_082918.]: Samplename: 50
Root: 50.791
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8686317550184
[20250402_082918.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 77.5524188495235
[20250402_082918.]: Samplename: 75
Root: 77.552
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.4374617358174
[20250402_082918.]: Samplename: 87.5
Root: 80.437
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.704024900825
[20250402_082918.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.704
--> '100 < root < 110' --> substitute 100
[20250402_082918.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: -0.519503092357606
[20250402_082918.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.52
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 12.4934147844872
[20250402_082918.]: Samplename: 12.5
Root: 12.493
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2685420024115
[20250402_082918.]: Samplename: 25
Root: 24.269
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.0817128465023
[20250402_082918.]: Samplename: 37.5
Root: 38.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.5843181174811
[20250402_082918.]: Samplename: 50
Root: 48.584
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.6722399183037
[20250402_082918.]: Samplename: 62.5
Root: 67.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.1549277799119
[20250402_082918.]: Samplename: 75
Root: 74.155
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.8821797890026
[20250402_082918.]: Samplename: 87.5
Root: 82.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 102.0791269023
[20250402_082918.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.079
--> '100 < root < 110' --> substitute 100
[20250402_082918.]: Solving cubic regression for CpG#5
Coefficients: -0.623961279461278Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 0
Root: 1.458
--> Root in between the borders! Added to results.
Coefficients: -4.76796127946128Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 12.5
Root: 10.347
--> Root in between the borders! Added to results.
Coefficients: -12.7259612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 25
Root: 24.815
--> Root in between the borders! Added to results.
Coefficients: -21.1599612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 37.5
Root: 37.902
--> Root in between the borders! Added to results.
Coefficients: -30.6954612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 50
Root: 50.977
--> Root in between the borders! Added to results.
Coefficients: -39.6579612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 62.5
Root: 62.126
--> Root in between the borders! Added to results.
Coefficients: -51.6829612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082918.]: Samplename: 75
Root: 75.852
--> Root in between the borders! Added to results.
Coefficients: -61.0146279461279Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082919.]: Samplename: 87.5
Root: 85.767
--> Root in between the borders! Added to results.
Coefficients: -76.0699612794613Coefficients: 0.422446384479718Coefficients: 0.00375371236171235Coefficients: -4.48459708193036e-06
[20250402_082919.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.743
--> '100 < root < 110' --> substitute 100
[20250402_082919.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0.138163748613034
[20250402_082919.]: Samplename: 0
Root: 0.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.8635558881981
[20250402_082919.]: Samplename: 12.5
Root: 11.864
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5107449550797
[20250402_082919.]: Samplename: 25
Root: 26.511
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3205073050661
[20250402_082919.]: Samplename: 37.5
Root: 35.321
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.0570767570666
[20250402_082919.]: Samplename: 50
Root: 50.057
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9602944381018
[20250402_082919.]: Samplename: 62.5
Root: 64.96
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.66890571617
[20250402_082919.]: Samplename: 75
Root: 73.669
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.1266086585036
[20250402_082919.]: Samplename: 87.5
Root: 87.127
--> Root in between the borders! Added to results.
Hyperbolic solved: 100.261637014212
[20250402_082919.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100.262
--> '100 < root < 110' --> substitute 100
[20250402_082919.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: -1.37238087287012
[20250402_082919.]: Samplename: 0
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.372
--> '-10 < root < 0' --> substitute 0
Hyperbolic solved: 10.1993162352498
[20250402_082919.]: Samplename: 12.5
Root: 10.199
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.595178967123
[20250402_082919.]: Samplename: 25
Root: 24.595
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.8310421041787
[20250402_082919.]: Samplename: 37.5
Root: 37.831
--> Root in between the borders! Added to results.
Hyperbolic solved: 53.5588739724067
[20250402_082919.]: Samplename: 50
Root: 53.559
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.9364947980258
[20250402_082919.]: Samplename: 62.5
Root: 65.936
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.7361094434913
[20250402_082919.]: Samplename: 75
Root: 75.736
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.432823759854
[20250402_082919.]: Samplename: 87.5
Root: 79.433
--> Root in between the borders! Added to results.
Hyperbolic solved: 103.004237013737
[20250402_082919.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 103.004
--> '100 < root < 110' --> substitute 100
[20250402_082919.]: Solving cubic regression for CpG#8
Coefficients: -1.09618518518518Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 0
Root: 2.016
--> Root in between the borders! Added to results.
Coefficients: -5.44685185185185Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 12.5
Root: 9.458
--> Root in between the borders! Added to results.
Coefficients: -16.9301851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 25
Root: 26.35
--> Root in between the borders! Added to results.
Coefficients: -23.3501851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 37.5
Root: 34.728
--> Root in between the borders! Added to results.
Coefficients: -37.6251851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 50
Root: 51.781
--> Root in between the borders! Added to results.
Coefficients: -48.8261851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 62.5
Root: 64.192
--> Root in between the borders! Added to results.
Coefficients: -61.6676851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 75
Root: 77.804
--> Root in between the borders! Added to results.
Coefficients: -64.5101851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 87.5
Root: 80.758
--> Root in between the borders! Added to results.
Coefficients: -86.0601851851852Coefficients: 0.534897737694404Coefficients: 0.00447978143338143Coefficients: -1.50060965207632e-05
[20250402_082919.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 102.834
--> '100 < root < 110' --> substitute 100
[20250402_082919.]: Solving cubic regression for CpG#9
Coefficients: -0.989865319865327Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 0
Root: 1.475
--> Root in between the borders! Added to results.
Coefficients: -6.39586531986533Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 12.5
Root: 10.12
--> Root in between the borders! Added to results.
Coefficients: -14.7058653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 25
Root: 24.844
--> Root in between the borders! Added to results.
Coefficients: -20.6238653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 37.5
Root: 35.327
--> Root in between the borders! Added to results.
Coefficients: -31.3958653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 50
Root: 51.855
--> Root in between the borders! Added to results.
Coefficients: -42.6858653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 62.5
Root: 65.265
--> Root in between the borders! Added to results.
Coefficients: -52.9033653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 75
Root: 74.915
--> Root in between the borders! Added to results.
Coefficients: -65.492531986532Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 87.5
Root: 84.67
--> Root in between the borders! Added to results.
Coefficients: -92.9898653198653Coefficients: 0.67899229597563Coefficients: -0.00542281173641174Coefficients: 7.72300426487093e-05
[20250402_082919.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.082
--> '100 < root < 110' --> substitute 100
[20250402_082919.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0.290941088603071
[20250402_082919.]: Samplename: 0
Root: 0.291
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0412408065783
[20250402_082919.]: Samplename: 12.5
Root: 11.041
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.4081501047696
[20250402_082919.]: Samplename: 25
Root: 25.408
--> Root in between the borders! Added to results.
Hyperbolic solved: 36.5243719024532
[20250402_082919.]: Samplename: 37.5
Root: 36.524
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.7348824329668
[20250402_082919.]: Samplename: 50
Root: 50.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.3135209766198
[20250402_082919.]: Samplename: 62.5
Root: 65.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.5342709041132
[20250402_082919.]: Samplename: 75
Root: 75.534
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.2411228425212
[20250402_082920.]: Samplename: 87.5
Root: 83.241
--> Root in between the borders! Added to results.
Hyperbolic solved: 101.666942781592
[20250402_082920.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 101.667
--> '100 < root < 110' --> substitute 100
[20250402_082923.]: Entered 'clean_dt'-Function
[20250402_082923.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_082923.]: got experimental data
[20250402_082923.]: Entered 'clean_dt'-Function
[20250402_082923.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_082923.]: got calibration data
[20250402_082923.]: ### Starting with regression calculations ###
[20250402_082924.]: Entered 'regression_type1'-Function
[20250402_082925.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082925.]: Logging df_agg: CpG#1
[20250402_082925.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082925.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_082925.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082925.]: Entered 'hyperbolic_regression'-Function
[20250402_082925.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082927.]: Entered 'cubic_regression'-Function
[20250402_082927.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082928.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082928.]: Logging df_agg: CpG#2
[20250402_082928.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082928.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_082928.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082928.]: Entered 'hyperbolic_regression'-Function
[20250402_082928.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082930.]: Entered 'cubic_regression'-Function
[20250402_082930.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082931.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082931.]: Logging df_agg: CpG#3
[20250402_082931.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082931.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_082931.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082931.]: Entered 'hyperbolic_regression'-Function
[20250402_082931.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082933.]: Entered 'cubic_regression'-Function
[20250402_082933.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082934.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082934.]: Logging df_agg: CpG#4
[20250402_082934.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082934.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_082934.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082934.]: Entered 'hyperbolic_regression'-Function
[20250402_082934.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082935.]: Entered 'cubic_regression'-Function
[20250402_082935.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082936.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082936.]: Logging df_agg: CpG#5
[20250402_082936.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082936.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_082936.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_082936.]: Entered 'hyperbolic_regression'-Function
[20250402_082936.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082937.]: Entered 'cubic_regression'-Function
[20250402_082937.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082927.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082927.]: Logging df_agg: CpG#6
[20250402_082927.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082927.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_082927.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082927.]: Entered 'hyperbolic_regression'-Function
[20250402_082927.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082929.]: Entered 'cubic_regression'-Function
[20250402_082929.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082930.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082930.]: Logging df_agg: CpG#7
[20250402_082930.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082930.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_082930.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082930.]: Entered 'hyperbolic_regression'-Function
[20250402_082930.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082931.]: Entered 'cubic_regression'-Function
[20250402_082931.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082932.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082932.]: Logging df_agg: CpG#8
[20250402_082932.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082932.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_082932.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082932.]: Entered 'hyperbolic_regression'-Function
[20250402_082932.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082934.]: Entered 'cubic_regression'-Function
[20250402_082934.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082934.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082934.]: Logging df_agg: CpG#9
[20250402_082934.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082934.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_082934.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082934.]: Entered 'hyperbolic_regression'-Function
[20250402_082934.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082935.]: Entered 'cubic_regression'-Function
[20250402_082935.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082936.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082936.]: Logging df_agg: row_means
[20250402_082936.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082936.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_082936.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082936.]: Entered 'hyperbolic_regression'-Function
[20250402_082936.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082937.]: Entered 'cubic_regression'-Function
[20250402_082937.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082949.]: Entered 'regression_type1'-Function
[20250402_082950.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082951.]: Logging df_agg: CpG#1
[20250402_082951.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082951.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_082951.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_082951.]: Entered 'hyperbolic_regression'-Function
[20250402_082951.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082953.]: Entered 'cubic_regression'-Function
[20250402_082953.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082954.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082955.]: Logging df_agg: CpG#2
[20250402_082955.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082955.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_082955.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_082955.]: Entered 'hyperbolic_regression'-Function
[20250402_082955.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082956.]: Entered 'cubic_regression'-Function
[20250402_082956.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082957.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082957.]: Logging df_agg: CpG#3
[20250402_082957.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082957.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_082957.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_082957.]: Entered 'hyperbolic_regression'-Function
[20250402_082957.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082958.]: Entered 'cubic_regression'-Function
[20250402_082958.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082959.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082959.]: Logging df_agg: CpG#4
[20250402_082959.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082959.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_082959.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_082959.]: Entered 'hyperbolic_regression'-Function
[20250402_082959.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083000.]: Entered 'cubic_regression'-Function
[20250402_083000.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083001.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_083001.]: Logging df_agg: CpG#5
[20250402_083001.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083001.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_083001.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_083001.]: Entered 'hyperbolic_regression'-Function
[20250402_083001.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083003.]: Entered 'cubic_regression'-Function
[20250402_083003.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082951.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082952.]: Logging df_agg: CpG#6
[20250402_082952.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082952.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_082952.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_082952.]: Entered 'hyperbolic_regression'-Function
[20250402_082952.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082953.]: Entered 'cubic_regression'-Function
[20250402_082953.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082953.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082954.]: Logging df_agg: CpG#7
[20250402_082954.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082954.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_082954.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_082954.]: Entered 'hyperbolic_regression'-Function
[20250402_082954.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082954.]: Entered 'cubic_regression'-Function
[20250402_082954.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082956.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082956.]: Logging df_agg: CpG#8
[20250402_082956.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082956.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_082956.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_082956.]: Entered 'hyperbolic_regression'-Function
[20250402_082956.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082957.]: Entered 'cubic_regression'-Function
[20250402_082957.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082958.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082958.]: Logging df_agg: CpG#9
[20250402_082958.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082958.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_082958.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_082958.]: Entered 'hyperbolic_regression'-Function
[20250402_082958.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082959.]: Entered 'cubic_regression'-Function
[20250402_082959.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_082959.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082959.]: Logging df_agg: row_means
[20250402_082959.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_082959.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_082959.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_082959.]: Entered 'hyperbolic_regression'-Function
[20250402_082959.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083001.]: Entered 'cubic_regression'-Function
[20250402_083001.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083009.]: Entered 'clean_dt'-Function
[20250402_083009.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_083009.]: got experimental data
[20250402_083009.]: Entered 'clean_dt'-Function
[20250402_083009.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_083009.]: got calibration data
[20250402_083009.]: ### Starting with regression calculations ###
[20250402_083009.]: Entered 'regression_type1'-Function
[20250402_083011.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_083011.]: Logging df_agg: CpG#1
[20250402_083011.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083011.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_083011.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_083011.]: Entered 'hyperbolic_regression'-Function
[20250402_083011.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083013.]: Entered 'cubic_regression'-Function
[20250402_083013.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083013.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_083013.]: Logging df_agg: CpG#2
[20250402_083013.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083013.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_083013.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_083013.]: Entered 'hyperbolic_regression'-Function
[20250402_083013.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083014.]: Entered 'cubic_regression'-Function
[20250402_083014.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083015.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_083015.]: Logging df_agg: CpG#3
[20250402_083015.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083015.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_083015.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_083015.]: Entered 'hyperbolic_regression'-Function
[20250402_083015.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083016.]: Entered 'cubic_regression'-Function
[20250402_083016.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083017.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_083017.]: Logging df_agg: CpG#4
[20250402_083017.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083017.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_083017.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_083017.]: Entered 'hyperbolic_regression'-Function
[20250402_083017.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083018.]: Entered 'cubic_regression'-Function
[20250402_083018.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083018.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_083018.]: Logging df_agg: CpG#5
[20250402_083018.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083018.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_083018.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_083018.]: Entered 'hyperbolic_regression'-Function
[20250402_083018.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083020.]: Entered 'cubic_regression'-Function
[20250402_083020.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083013.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_083013.]: Logging df_agg: CpG#6
[20250402_083013.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083013.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_083013.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_083013.]: Entered 'hyperbolic_regression'-Function
[20250402_083013.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083014.]: Entered 'cubic_regression'-Function
[20250402_083014.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083014.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_083014.]: Logging df_agg: CpG#7
[20250402_083014.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083014.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_083014.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_083014.]: Entered 'hyperbolic_regression'-Function
[20250402_083014.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083015.]: Entered 'cubic_regression'-Function
[20250402_083015.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083015.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_083015.]: Logging df_agg: CpG#8
[20250402_083015.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083015.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_083015.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_083015.]: Entered 'hyperbolic_regression'-Function
[20250402_083015.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083017.]: Entered 'cubic_regression'-Function
[20250402_083017.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083017.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_083017.]: Logging df_agg: CpG#9
[20250402_083017.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083017.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_083017.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_083017.]: Entered 'hyperbolic_regression'-Function
[20250402_083017.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083018.]: Entered 'cubic_regression'-Function
[20250402_083018.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083018.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_083018.]: Logging df_agg: row_means
[20250402_083018.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083018.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_083018.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_083018.]: Entered 'hyperbolic_regression'-Function
[20250402_083018.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083019.]: Entered 'cubic_regression'-Function
[20250402_083019.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083029.]: Entered 'regression_type1'-Function
[20250402_083031.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_083033.]: Logging df_agg: CpG#1
[20250402_083033.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083033.]: c(2.968, 10.2733333333333, 17.32, 26.212, 36.8325, 48.286, 57.825, 65.03, 92.978)[20250402_083033.]: c(0.784136467714645, 3.04161689456995, 1.76398696140306, 3.58204829671516, 2.74881034873877, 2.65410625258297, 4.52087380934261, 2.01106936727702, 0.717892749649975)
[20250402_083033.]: Entered 'hyperbolic_regression'-Function
[20250402_083033.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083034.]: Entered 'cubic_regression'-Function
[20250402_083034.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083035.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_083035.]: Logging df_agg: CpG#2
[20250402_083035.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083035.]: c(9.56, 15.6166666666667, 25.216, 31.614, 41.505, 59.24, 68.2425, 78.1133333333333, 99.854)[20250402_083035.]: c(1.73731114081502, 3.47246790241945, 5.1327702072078, 7.8896913754595, 6.75096783184949, 5.34066943369462, 6.12841673408937, 3.68391548943965, 0.326465924714971)
[20250402_083035.]: Entered 'hyperbolic_regression'-Function
[20250402_083035.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083036.]: Entered 'cubic_regression'-Function
[20250402_083036.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083037.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_083037.]: Logging df_agg: CpG#3
[20250402_083037.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083037.]: c(4.79, 10.46, 19.316, 26.5, 36.6625, 47.776, 58.8625, 61.5433333333333, 84.552)[20250402_083037.]: c(1.09893129903557, 3.07434545879281, 2.06842452122382, 5.15145125183186, 2.05736684461798, 1.72031392484047, 3.61472336424241, 1.32869610270119, 2.92314385550899)
[20250402_083037.]: Entered 'hyperbolic_regression'-Function
[20250402_083037.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083038.]: Entered 'cubic_regression'-Function
[20250402_083038.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083038.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_083038.]: Logging df_agg: CpG#4
[20250402_083038.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083038.]: c(6.768, 14.4233333333333, 21.974, 31.698, 39.8075, 56.426, 62.71, 71.7633333333333, 94.492)[20250402_083038.]: c(2.01053972853063, 1.4578865982419, 2.5033038169587, 4.72756491229893, 2.63379795479203, 3.99248418907326, 9.01051977783006, 4.24883905712294, 3.62526136988769)
[20250402_083038.]: Entered 'hyperbolic_regression'-Function
[20250402_083039.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083040.]: Entered 'cubic_regression'-Function
[20250402_083040.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083041.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_083041.]: Logging df_agg: CpG#5
[20250402_083041.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083041.]: c(5.796, 9.94, 17.898, 26.332, 35.8675, 44.83, 56.855, 66.1866666666667, 81.242)[20250402_083041.]: c(1.07867047794959, 2.24581833637541, 2.57018870902508, 3.58584996897528, 5.496025078788, 6.08278308013692, 5.04371886607491, 2.40791057419775, 5.77276969919986)
[20250402_083041.]: Entered 'hyperbolic_regression'-Function
[20250402_083041.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083042.]: Entered 'cubic_regression'-Function
[20250402_083042.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083033.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_083034.]: Logging df_agg: CpG#6
[20250402_083034.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083034.]: c(6.344, 12.8866666666667, 22.036, 28.148, 39.5925, 53.048, 61.98, 77.6933333333333, 95.804)[20250402_083034.]: c(1.10974321354086, 4.54314135079829, 1.96134647627593, 5.4722545627922, 4.77866351608899, 7.74987225701172, 5.11307474356999, 3.32800741185072, 5.10348214457541)
[20250402_083034.]: Entered 'hyperbolic_regression'-Function
[20250402_083034.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083035.]: Entered 'cubic_regression'-Function
[20250402_083035.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083035.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_083035.]: Logging df_agg: CpG#7
[20250402_083035.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083035.]: c(2.936, 7.11666666666667, 12.986, 19.172, 27.7525, 35.686, 42.89, 45.8566666666667, 68.944)[20250402_083035.]: c(1.12025889864799, 1.95152077450724, 1.75196461151474, 2.51024301612414, 3.79406883613534, 5.03340143441788, 9.26798791539998, 2.22086319554657, 4.43931638881484)
[20250402_083035.]: Entered 'hyperbolic_regression'-Function
[20250402_083035.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083036.]: Entered 'cubic_regression'-Function
[20250402_083037.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083037.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_083037.]: Logging df_agg: CpG#8
[20250402_083037.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083037.]: c(10.666, 15.0166666666667, 26.5, 32.92, 47.195, 58.396, 71.2375, 74.08, 95.63)[20250402_083037.]: c(2.09203967457599, 1.0042576030747, 6.57304723853404, 9.3202655541567, 13.0680615752044, 12.1853736093728, 8.65580104130557, 4.16176645188074, 6.5153434291678)
[20250402_083037.]: Entered 'hyperbolic_regression'-Function
[20250402_083037.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083038.]: Entered 'cubic_regression'-Function
[20250402_083038.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083039.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_083039.]: Logging df_agg: CpG#9
[20250402_083039.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083039.]: c(3.714, 9.12, 17.43, 23.348, 34.12, 45.41, 55.6275, 68.2166666666667, 95.714)[20250402_083039.]: c(1.02119048174178, 2.16589473428419, 5.20318171891007, 6.16761055839293, 7.42462120245875, 9.14966392825442, 15.0005163800006, 4.36616918285736, 4.89711956153819)
[20250402_083039.]: Entered 'hyperbolic_regression'-Function
[20250402_083039.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083040.]: Entered 'cubic_regression'-Function
[20250402_083040.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083041.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_083041.]: Logging df_agg: row_means
[20250402_083041.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083041.]: c(5.94911111111111, 11.6503703703704, 20.0751111111111, 27.3271111111111, 37.7038888888889, 49.8997777777778, 59.5811111111111, 67.6092592592593, 89.9122222222222)[20250402_083041.]: c(0.633290154473514, 1.0960165433854, 1.72385972331829, 4.20633088405713, 3.39104782475775, 2.96189059992531, 5.65352273733499, 0.926454367723125, 2.47760998435345)
[20250402_083041.]: Entered 'hyperbolic_regression'-Function
[20250402_083041.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083042.]: Entered 'cubic_regression'-Function
[20250402_083042.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083045.]: Entered 'solving_equations'-Function
[20250402_083045.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 0
[20250402_083045.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 14.1381159662486
[20250402_083045.]: Samplename: 12.5
Root: 14.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1241053609707
[20250402_083045.]: Samplename: 25
Root: 26.124
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.3567419170867
[20250402_083045.]: Samplename: 37.5
Root: 39.357
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.9273107806133
[20250402_083045.]: Samplename: 50
Root: 52.927
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4010628999278
[20250402_083045.]: Samplename: 62.5
Root: 65.401
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.4183184249663
[20250402_083045.]: Samplename: 75
Root: 74.418
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.5431520527512
[20250402_083045.]: Samplename: 87.5
Root: 80.543
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#2
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.7851657015183
[20250402_083046.]: Samplename: 12.5
Root: 10.785
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.0727152156421
[20250402_083046.]: Samplename: 25
Root: 26.073
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.2074258210424
[20250402_083046.]: Samplename: 37.5
Root: 35.207
--> Root in between the borders! Added to results.
Hyperbolic solved: 47.9305924748583
[20250402_083046.]: Samplename: 50
Root: 47.931
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.2847555363015
[20250402_083046.]: Samplename: 62.5
Root: 67.285
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.735332403378
[20250402_083046.]: Samplename: 75
Root: 75.735
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.1313047876192
[20250402_083046.]: Samplename: 87.5
Root: 84.131
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.8497990553835
[20250402_083046.]: Samplename: 12.5
Root: 10.85
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1511183533449
[20250402_083046.]: Samplename: 25
Root: 26.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2940213300522
[20250402_083046.]: Samplename: 37.5
Root: 37.294
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.419361136507
[20250402_083046.]: Samplename: 50
Root: 51.419
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0212050873619
[20250402_083046.]: Samplename: 62.5
Root: 65.021
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.9977789568509
[20250402_083046.]: Samplename: 75
Root: 76.998
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.686036177122
[20250402_083046.]: Samplename: 87.5
Root: 79.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.2434477796981
[20250402_083046.]: Samplename: 12.5
Root: 13.243
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.0815867666892
[20250402_083046.]: Samplename: 25
Root: 25.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.7956859187734
[20250402_083046.]: Samplename: 37.5
Root: 38.796
--> Root in between the borders! Added to results.
Hyperbolic solved: 49.1001600195185
[20250402_083046.]: Samplename: 50
Root: 49.1
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.5620415214226
[20250402_083046.]: Samplename: 62.5
Root: 67.562
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.7554076043322
[20250402_083046.]: Samplename: 75
Root: 73.755
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.0327440839301
[20250402_083046.]: Samplename: 87.5
Root: 82.033
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#5
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.36665146544904
[20250402_083046.]: Samplename: 12.5
Root: 8.367
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.0855280383989
[20250402_083046.]: Samplename: 25
Root: 23.086
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0098400819818
[20250402_083046.]: Samplename: 37.5
Root: 37.01
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.0085868408378
[20250402_083046.]: Samplename: 50
Root: 51.009
--> Root in between the borders! Added to results.
Hyperbolic solved: 62.7441416833696
[20250402_083046.]: Samplename: 62.5
Root: 62.744
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.6857826005162
[20250402_083046.]: Samplename: 75
Root: 76.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.3046084696663
[20250402_083046.]: Samplename: 87.5
Root: 86.305
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.822687731114
[20250402_083046.]: Samplename: 12.5
Root: 11.823
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5494368772504
[20250402_083046.]: Samplename: 25
Root: 26.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3846787677878
[20250402_083046.]: Samplename: 37.5
Root: 35.385
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.1264563333089
[20250402_083046.]: Samplename: 50
Root: 50.126
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9875101866844
[20250402_083046.]: Samplename: 62.5
Root: 64.988
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.6494948240195
[20250402_083046.]: Samplename: 75
Root: 73.649
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.0033714659226
[20250402_083046.]: Samplename: 87.5
Root: 87.003
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7925453863418
[20250402_083046.]: Samplename: 12.5
Root: 11.793
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2042827174053
[20250402_083046.]: Samplename: 25
Root: 26.204
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.2081609373531
[20250402_083046.]: Samplename: 37.5
Root: 39.208
--> Root in between the borders! Added to results.
Hyperbolic solved: 54.3620766326312
[20250402_083046.]: Samplename: 50
Root: 54.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 66.0664882334621
[20250402_083046.]: Samplename: 62.5
Root: 66.066
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.1981507250883
[20250402_083046.]: Samplename: 75
Root: 75.198
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.6124357632637
[20250402_083046.]: Samplename: 87.5
Root: 78.612
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#8
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 7.27736114274885
[20250402_083046.]: Samplename: 12.5
Root: 7.277
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.9863834890886
[20250402_083046.]: Samplename: 25
Root: 24.986
--> Root in between the borders! Added to results.
Hyperbolic solved: 34.0400823094579
[20250402_083046.]: Samplename: 37.5
Root: 34.04
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3077192847199
[20250402_083046.]: Samplename: 50
Root: 52.308
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0861558866387
[20250402_083046.]: Samplename: 62.5
Root: 65.086
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.3136588178128
[20250402_083046.]: Samplename: 75
Root: 78.314
--> Root in between the borders! Added to results.
Hyperbolic solved: 81.058248740059
[20250402_083046.]: Samplename: 87.5
Root: 81.058
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 12.2094906593745
[20250402_083046.]: Samplename: 12.5
Root: 12.209
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.0738986154201
[20250402_083046.]: Samplename: 25
Root: 28.074
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.6720254587223
[20250402_083046.]: Samplename: 37.5
Root: 37.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3746308870569
[20250402_083046.]: Samplename: 50
Root: 52.375
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8693631845077
[20250402_083046.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.2598902601534
[20250402_083046.]: Samplename: 75
Root: 74.26
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.9376844048195
[20250402_083046.]: Samplename: 87.5
Root: 83.938
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0
[20250402_083046.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.1506882890389
[20250402_083046.]: Samplename: 12.5
Root: 11.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.841636381907
[20250402_083046.]: Samplename: 25
Root: 25.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0462679509085
[20250402_083046.]: Samplename: 37.5
Root: 37.046
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.1681297765954
[20250402_083046.]: Samplename: 50
Root: 51.168
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4258217891781
[20250402_083046.]: Samplename: 62.5
Root: 65.426
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.285632789037
[20250402_083046.]: Samplename: 75
Root: 75.286
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.6475419323379
[20250402_083046.]: Samplename: 87.5
Root: 82.648
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083046.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083046.]: ### Starting with regression calculations ###
[20250402_083046.]: Entered 'regression_type1'-Function
[20250402_083050.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 14.1381159662486, 26.1241053609707, 39.3567419170867, 52.9273107806133, 65.4010628999278, 74.4183184249663, 80.5431520527512, 100)
[20250402_083051.]: Logging df_agg: CpG#1
[20250402_083051.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083051.]: c(0, 14.1381159662486, 26.1241053609707, 39.3567419170867, 52.9273107806133, 65.4010628999278, 74.4183184249663, 80.5431520527512, 100)
[20250402_083051.]: Entered 'hyperbolic_regression'-Function
[20250402_083051.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083052.]: Entered 'cubic_regression'-Function
[20250402_083052.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083053.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.7851657015183, 26.0727152156421, 35.2074258210424, 47.9305924748583, 67.2847555363015, 75.735332403378, 84.1313047876192, 100)
[20250402_083053.]: Logging df_agg: CpG#2
[20250402_083053.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083053.]: c(0, 10.7851657015183, 26.0727152156421, 35.2074258210424, 47.9305924748583, 67.2847555363015, 75.735332403378, 84.1313047876192, 100)
[20250402_083053.]: Entered 'hyperbolic_regression'-Function
[20250402_083053.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083054.]: Entered 'cubic_regression'-Function
[20250402_083054.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083055.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.8497990553835, 26.1511183533449, 37.2940213300522, 51.419361136507, 65.0212050873619, 76.9977789568509, 79.686036177122, 100)
[20250402_083055.]: Logging df_agg: CpG#3
[20250402_083055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083055.]: c(0, 10.8497990553835, 26.1511183533449, 37.2940213300522, 51.419361136507, 65.0212050873619, 76.9977789568509, 79.686036177122, 100)
[20250402_083055.]: Entered 'hyperbolic_regression'-Function
[20250402_083055.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083056.]: Entered 'cubic_regression'-Function
[20250402_083056.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083057.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 13.2434477796981, 25.0815867666892, 38.7956859187734, 49.1001600195185, 67.5620415214226, 73.7554076043322, 82.0327440839301, 100)
[20250402_083057.]: Logging df_agg: CpG#4
[20250402_083057.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083057.]: c(0, 13.2434477796981, 25.0815867666892, 38.7956859187734, 49.1001600195185, 67.5620415214226, 73.7554076043322, 82.0327440839301, 100)
[20250402_083057.]: Entered 'hyperbolic_regression'-Function
[20250402_083057.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083057.]: Entered 'cubic_regression'-Function
[20250402_083057.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083058.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.36665146544904, 23.0855280383989, 37.0098400819818, 51.0085868408378, 62.7441416833696, 76.6857826005162, 86.3046084696663, 100)
[20250402_083058.]: Logging df_agg: CpG#5
[20250402_083058.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083058.]: c(0, 8.36665146544904, 23.0855280383989, 37.0098400819818, 51.0085868408378, 62.7441416833696, 76.6857826005162, 86.3046084696663, 100)
[20250402_083058.]: Entered 'hyperbolic_regression'-Function
[20250402_083058.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083059.]: Entered 'cubic_regression'-Function
[20250402_083059.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083052.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.822687731114, 26.5494368772504, 35.3846787677878, 50.1264563333089, 64.9875101866844, 73.6494948240195, 87.0033714659226, 100)
[20250402_083052.]: Logging df_agg: CpG#6
[20250402_083052.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083052.]: c(0, 11.822687731114, 26.5494368772504, 35.3846787677878, 50.1264563333089, 64.9875101866844, 73.6494948240195, 87.0033714659226, 100)
[20250402_083052.]: Entered 'hyperbolic_regression'-Function
[20250402_083052.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083054.]: Entered 'cubic_regression'-Function
[20250402_083054.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083055.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.7925453863418, 26.2042827174053, 39.2081609373531, 54.3620766326312, 66.0664882334621, 75.1981507250883, 78.6124357632637, 100)
[20250402_083055.]: Logging df_agg: CpG#7
[20250402_083055.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083055.]: c(0, 11.7925453863418, 26.2042827174053, 39.2081609373531, 54.3620766326312, 66.0664882334621, 75.1981507250883, 78.6124357632637, 100)
[20250402_083055.]: Entered 'hyperbolic_regression'-Function
[20250402_083055.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083056.]: Entered 'cubic_regression'-Function
[20250402_083056.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083057.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 7.27736114274885, 24.9863834890886, 34.0400823094579, 52.3077192847199, 65.0861558866387, 78.3136588178128, 81.058248740059, 100)
[20250402_083057.]: Logging df_agg: CpG#8
[20250402_083057.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083057.]: c(0, 7.27736114274885, 24.9863834890886, 34.0400823094579, 52.3077192847199, 65.0861558866387, 78.3136588178128, 81.058248740059, 100)
[20250402_083057.]: Entered 'hyperbolic_regression'-Function
[20250402_083057.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083059.]: Entered 'cubic_regression'-Function
[20250402_083059.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083059.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 12.2094906593745, 28.0738986154201, 37.6720254587223, 52.3746308870569, 64.8693631845077, 74.2598902601534, 83.9376844048195, 100)
[20250402_083059.]: Logging df_agg: CpG#9
[20250402_083059.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083059.]: c(0, 12.2094906593745, 28.0738986154201, 37.6720254587223, 52.3746308870569, 64.8693631845077, 74.2598902601534, 83.9376844048195, 100)
[20250402_083059.]: Entered 'hyperbolic_regression'-Function
[20250402_083059.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083101.]: Entered 'cubic_regression'-Function
[20250402_083101.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083101.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.1506882890389, 25.841636381907, 37.0462679509085, 51.1681297765954, 65.4258217891781, 75.285632789037, 82.6475419323379, 100)
[20250402_083101.]: Logging df_agg: row_means
[20250402_083101.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083101.]: c(0, 11.1506882890389, 25.841636381907, 37.0462679509085, 51.1681297765954, 65.4258217891781, 75.285632789037, 82.6475419323379, 100)
[20250402_083101.]: Entered 'hyperbolic_regression'-Function
[20250402_083102.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083102.]: Entered 'cubic_regression'-Function
[20250402_083102.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083106.]: Entered 'solving_equations'-Function
[20250402_083106.]: Solving cubic regression for CpG#1
Coefficients: 0Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -7.30533333333333Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 12.5
Root: 10.279
--> Root in between the borders! Added to results.
Coefficients: -14.352Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 25
Root: 21.591
--> Root in between the borders! Added to results.
Coefficients: -23.244Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 37.5
Root: 36.617
--> Root in between the borders! Added to results.
Coefficients: -33.8645Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 50
Root: 52.729
--> Root in between the borders! Added to results.
Coefficients: -45.318Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 62.5
Root: 66.532
--> Root in between the borders! Added to results.
Coefficients: -54.857Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 75
Root: 75.773
--> Root in between the borders! Added to results.
Coefficients: -62.062Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 87.5
Root: 81.772
--> Root in between the borders! Added to results.
Coefficients: -90.01Coefficients: 0.769986404107641Coefficients: -0.00657663513476353Coefficients: 7.87777109368712e-05
[20250402_083106.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083106.]: Solving cubic regression for CpG#2
Coefficients: 0Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.05666666666666Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 12.5
Root: 10.991
--> Root in between the borders! Added to results.
Coefficients: -15.656Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 25
Root: 26.435
--> Root in between the borders! Added to results.
Coefficients: -22.054Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 37.5
Root: 35.545
--> Root in between the borders! Added to results.
Coefficients: -31.945Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 50
Root: 48.102
--> Root in between the borders! Added to results.
Coefficients: -49.68Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 62.5
Root: 67.086
--> Root in between the borders! Added to results.
Coefficients: -58.6825Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 75
Root: 75.419
--> Root in between the borders! Added to results.
Coefficients: -68.5533333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 87.5
Root: 83.785
--> Root in between the borders! Added to results.
Coefficients: -90.294Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083106.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083106.]: Solving cubic regression for CpG#3
Coefficients: 0Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.67Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 12.5
Root: 9.387
--> Root in between the borders! Added to results.
Coefficients: -14.526Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 25
Root: 24.373
--> Root in between the borders! Added to results.
Coefficients: -21.71Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 37.5
Root: 36.135
--> Root in between the borders! Added to results.
Coefficients: -31.8725Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 50
Root: 51.29
--> Root in between the borders! Added to results.
Coefficients: -42.986Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 62.5
Root: 65.561
--> Root in between the borders! Added to results.
Coefficients: -54.0725Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 75
Root: 77.683
--> Root in between the borders! Added to results.
Coefficients: -56.7533333333333Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 87.5
Root: 80.348
--> Root in between the borders! Added to results.
Coefficients: -79.762Coefficients: 0.617172193771691Coefficients: -0.00173040359673478Coefficients: 3.53488165901787e-05
[20250402_083106.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083107.]: Solving cubic regression for CpG#4
Coefficients: 0Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -7.65533333333333Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 12.5
Root: 11.333
--> Root in between the borders! Added to results.
Coefficients: -15.206Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 25
Root: 22.933
--> Root in between the borders! Added to results.
Coefficients: -24.93Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 37.5
Root: 37.542
--> Root in between the borders! Added to results.
Coefficients: -33.0395Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 50
Root: 48.772
--> Root in between the borders! Added to results.
Coefficients: -49.658Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 62.5
Root: 68.324
--> Root in between the borders! Added to results.
Coefficients: -55.942Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 75
Root: 74.614
--> Root in between the borders! Added to results.
Coefficients: -64.9953333333333Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 87.5
Root: 82.816
--> Root in between the borders! Added to results.
Coefficients: -87.724Coefficients: 0.698880117659818Coefficients: -0.00255689967362793Coefficients: 4.34049849702976e-05
[20250402_083107.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083107.]: Solving cubic regression for CpG#5
Coefficients: 0Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.144Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 12.5
Root: 9.593
--> Root in between the borders! Added to results.
Coefficients: -12.102Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 25
Root: 24.704
--> Root in between the borders! Added to results.
Coefficients: -20.536Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 37.5
Root: 38.051
--> Root in between the borders! Added to results.
Coefficients: -30.0715Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 50
Root: 51.187
--> Root in between the borders! Added to results.
Coefficients: -39.034Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 62.5
Root: 62.269
--> Root in between the borders! Added to results.
Coefficients: -51.059Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 75
Root: 75.786
--> Root in between the borders! Added to results.
Coefficients: -60.3906666666667Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 87.5
Root: 85.475
--> Root in between the borders! Added to results.
Coefficients: -75.446Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083107.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_083107.]: Solving cubic regression for CpG#6
Coefficients: 0Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.54266666666667Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 12.5
Root: 11.495
--> Root in between the borders! Added to results.
Coefficients: -15.692Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 25
Root: 26.346
--> Root in between the borders! Added to results.
Coefficients: -21.804Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 37.5
Root: 35.332
--> Root in between the borders! Added to results.
Coefficients: -33.2485Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 50
Root: 50.228
--> Root in between the borders! Added to results.
Coefficients: -46.704Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 62.5
Root: 65.055
--> Root in between the borders! Added to results.
Coefficients: -55.636Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 75
Root: 73.641
--> Root in between the borders! Added to results.
Coefficients: -71.3493333333333Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 87.5
Root: 86.903
--> Root in between the borders! Added to results.
Coefficients: -89.46Coefficients: 0.556476268933529Coefficients: 0.000806932475066736Coefficients: 2.57430483559797e-05
[20250402_083107.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083107.]: Solving cubic regression for CpG#7
Coefficients: 0Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.18066666666667Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 12.5
Root: 8.108
--> Root in between the borders! Added to results.
Coefficients: -10.05Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 25
Root: 21.288
--> Root in between the borders! Added to results.
Coefficients: -16.236Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 37.5
Root: 36.173
--> Root in between the borders! Added to results.
Coefficients: -24.8165Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 50
Root: 54.247
--> Root in between the borders! Added to results.
Coefficients: -32.75Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 62.5
Root: 67.087
--> Root in between the borders! Added to results.
Coefficients: -39.954Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 75
Root: 76.377
--> Root in between the borders! Added to results.
Coefficients: -42.9206666666667Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 87.5
Root: 79.728
--> Root in between the borders! Added to results.
Coefficients: -66.008Coefficients: 0.55303217575518Coefficients: -0.00511940384404101Coefficients: 6.18988208648922e-05
[20250402_083107.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083107.]: Solving cubic regression for CpG#8
Coefficients: 0Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.35066666666667Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 12.5
Root: 8.039
--> Root in between the borders! Added to results.
Coefficients: -15.834Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 25
Root: 26.079
--> Root in between the borders! Added to results.
Coefficients: -22.254Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 37.5
Root: 34.864
--> Root in between the borders! Added to results.
Coefficients: -36.529Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 50
Root: 52.311
--> Root in between the borders! Added to results.
Coefficients: -47.73Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 62.5
Root: 64.584
--> Root in between the borders! Added to results.
Coefficients: -60.5715Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 75
Root: 77.576
--> Root in between the borders! Added to results.
Coefficients: -63.414Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 87.5
Root: 80.326
--> Root in between the borders! Added to results.
Coefficients: -84.964Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083107.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_083107.]: Solving cubic regression for CpG#9
Coefficients: 0Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.406Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 12.5
Root: 8.93
--> Root in between the borders! Added to results.
Coefficients: -13.716Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 25
Root: 24.492
--> Root in between the borders! Added to results.
Coefficients: -19.634Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 37.5
Root: 35.53
--> Root in between the borders! Added to results.
Coefficients: -30.406Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 50
Root: 52.349
--> Root in between the borders! Added to results.
Coefficients: -41.696Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 62.5
Root: 65.528
--> Root in between the borders! Added to results.
Coefficients: -51.9135Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 75
Root: 74.87
--> Root in between the borders! Added to results.
Coefficients: -64.5026666666667Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083107.]: Samplename: 87.5
Root: 84.256
--> Root in between the borders! Added to results.
Coefficients: -92Coefficients: 0.649873072577863Coefficients: -0.00573518801387237Coefficients: 8.43645728809374e-05
[20250402_083108.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083108.]: Solving cubic regression for row_means
Coefficients: 0Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -5.70125925925926Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 12.5
Root: 9.866
--> Root in between the borders! Added to results.
Coefficients: -14.126Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 25
Root: 24.413
--> Root in between the borders! Added to results.
Coefficients: -21.378Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 37.5
Root: 36.177
--> Root in between the borders! Added to results.
Coefficients: -31.7547777777778Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 50
Root: 51.091
--> Root in between the borders! Added to results.
Coefficients: -43.9506666666667Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 62.5
Root: 65.785
--> Root in between the borders! Added to results.
Coefficients: -53.632Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 75
Root: 75.683
--> Root in between the borders! Added to results.
Coefficients: -61.6601481481482Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 87.5
Root: 82.966
--> Root in between the borders! Added to results.
Coefficients: -83.9631111111111Coefficients: 0.586398180119032Coefficients: -0.00123897828816967Coefficients: 3.77130759809046e-05
[20250402_083108.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083108.]: ### Starting with regression calculations ###
[20250402_083108.]: Entered 'regression_type1'-Function
[20250402_083111.]: # CpG-site: CpG#1
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.2789379687773, 21.5912618581737, 36.6165063803141, 52.7290217620987, 66.5324318982031, 75.7732681056135, 81.7721530184166, 100)
[20250402_083111.]: Logging df_agg: CpG#1
[20250402_083111.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083111.]: c(0, 10.2789379687773, 21.5912618581737, 36.6165063803141, 52.7290217620987, 66.5324318982031, 75.7732681056135, 81.7721530184166, 100)
[20250402_083111.]: Entered 'hyperbolic_regression'-Function
[20250402_083111.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083112.]: Entered 'cubic_regression'-Function
[20250402_083112.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083113.]: # CpG-site: CpG#2
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 10.9910200331058, 26.4347343794858, 35.5445484590422, 48.1023951945168, 67.0857465067419, 75.4194602180407, 83.7851017057913, 100)
[20250402_083113.]: Logging df_agg: CpG#2
[20250402_083113.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083113.]: c(0, 10.9910200331058, 26.4347343794858, 35.5445484590422, 48.1023951945168, 67.0857465067419, 75.4194602180407, 83.7851017057913, 100)
[20250402_083113.]: Entered 'hyperbolic_regression'-Function
[20250402_083113.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083115.]: Entered 'cubic_regression'-Function
[20250402_083115.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083116.]: # CpG-site: CpG#3
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.38673392637229, 24.3726553415377, 36.1351252190462, 51.290483481273, 65.5610869969825, 77.682931580408, 80.3481110749784, 100)
[20250402_083116.]: Logging df_agg: CpG#3
[20250402_083116.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083116.]: c(0, 9.38673392637229, 24.3726553415377, 36.1351252190462, 51.290483481273, 65.5610869969825, 77.682931580408, 80.3481110749784, 100)
[20250402_083116.]: Entered 'hyperbolic_regression'-Function
[20250402_083116.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083117.]: Entered 'cubic_regression'-Function
[20250402_083117.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083118.]: # CpG-site: CpG#4
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.333221967818, 22.9327025441323, 37.5415761160868, 48.7723103653381, 68.323814507742, 74.6144361781331, 82.8156863832731, 100)
[20250402_083118.]: Logging df_agg: CpG#4
[20250402_083118.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083118.]: c(0, 11.333221967818, 22.9327025441323, 37.5415761160868, 48.7723103653381, 68.323814507742, 74.6144361781331, 82.8156863832731, 100)
[20250402_083118.]: Entered 'hyperbolic_regression'-Function
[20250402_083118.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083119.]: Entered 'cubic_regression'-Function
[20250402_083119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083120.]: # CpG-site: CpG#5
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.59307352472009, 24.7039196286167, 38.0513608286781, 51.1867356506794, 62.26862037854, 75.7858670101849, 85.4752679494875, 100)
[20250402_083120.]: Logging df_agg: CpG#5
[20250402_083120.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083120.]: c(0, 9.59307352472009, 24.7039196286167, 38.0513608286781, 51.1867356506794, 62.26862037854, 75.7858670101849, 85.4752679494875, 100)
[20250402_083120.]: Entered 'hyperbolic_regression'-Function
[20250402_083120.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083121.]: Entered 'cubic_regression'-Function
[20250402_083121.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083112.]: # CpG-site: CpG#6
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 11.4954220530927, 26.3463219064414, 35.3317252573924, 50.227923198103, 65.0547254327623, 73.6409323113027, 86.9034526462823, 100)
[20250402_083113.]: Logging df_agg: CpG#6
[20250402_083113.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083113.]: c(0, 11.4954220530927, 26.3463219064414, 35.3317252573924, 50.227923198103, 65.0547254327623, 73.6409323113027, 86.9034526462823, 100)
[20250402_083113.]: Entered 'hyperbolic_regression'-Function
[20250402_083113.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083114.]: Entered 'cubic_regression'-Function
[20250402_083114.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083115.]: # CpG-site: CpG#7
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.10849051770153, 21.2877667704468, 36.173114142988, 54.2470474820822, 67.0869477341973, 76.3774195175699, 79.7282731837602, 100)
[20250402_083115.]: Logging df_agg: CpG#7
[20250402_083115.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083115.]: c(0, 8.10849051770153, 21.2877667704468, 36.173114142988, 54.2470474820822, 67.0869477341973, 76.3774195175699, 79.7282731837602, 100)
[20250402_083115.]: Entered 'hyperbolic_regression'-Function
[20250402_083115.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083116.]: Entered 'cubic_regression'-Function
[20250402_083116.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083117.]: # CpG-site: CpG#8
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.03884794173082, 26.0790124661259, 34.8640244910097, 52.3106100864949, 64.5844806617511, 77.5764831155946, 80.3258936673854, 100)
[20250402_083117.]: Logging df_agg: CpG#8
[20250402_083117.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083117.]: c(0, 8.03884794173082, 26.0790124661259, 34.8640244910097, 52.3106100864949, 64.5844806617511, 77.5764831155946, 80.3258936673854, 100)
[20250402_083117.]: Entered 'hyperbolic_regression'-Function
[20250402_083117.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083119.]: Entered 'cubic_regression'-Function
[20250402_083119.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083120.]: # CpG-site: CpG#9
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 8.92983720232018, 24.492281299778, 35.5300863746257, 52.3487602415591, 65.5277236843712, 74.8697077038883, 84.2557944227308, 100)
[20250402_083120.]: Logging df_agg: CpG#9
[20250402_083120.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083120.]: c(0, 8.92983720232018, 24.492281299778, 35.5300863746257, 52.3487602415591, 65.5277236843712, 74.8697077038883, 84.2557944227308, 100)
[20250402_083120.]: Entered 'hyperbolic_regression'-Function
[20250402_083120.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083121.]: Entered 'cubic_regression'-Function
[20250402_083121.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083122.]: # CpG-site: row_means
c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)c(0, 9.86641397663336, 24.4129321171961, 36.1766819844577, 51.09059907333, 65.7845651788236, 75.6825697981982, 82.9660082109242, 100)
[20250402_083122.]: Logging df_agg: row_means
[20250402_083122.]: c(0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100)[20250402_083122.]: c(0, 9.86641397663336, 24.4129321171961, 36.1766819844577, 51.09059907333, 65.7845651788236, 75.6825697981982, 82.9660082109242, 100)
[20250402_083122.]: Entered 'hyperbolic_regression'-Function
[20250402_083122.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083123.]: Entered 'cubic_regression'-Function
[20250402_083123.]: 'cubic_regression': minmax = TRUE --> WARNING: this is experimental
[20250402_083128.]: Entered 'solving_equations'-Function
[20250402_083128.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 78.9856894800976
[20250402_083128.]: Samplename: Sample#1
Root: 78.986
--> Root in between the borders! Added to results.
Hyperbolic solved: 31.2695317984092
[20250402_083128.]: Samplename: Sample#10
Root: 31.27
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.7015782380441
[20250402_083128.]: Samplename: Sample#2
Root: 42.702
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.8152127901709
[20250402_083128.]: Samplename: Sample#3
Root: 57.815
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.2334360674289
[20250402_083128.]: Samplename: Sample#4
Root: 11.233
--> Root in between the borders! Added to results.
Hyperbolic solved: 23.5293831001518
[20250402_083128.]: Samplename: Sample#5
Root: 23.529
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.7706743072545
[20250402_083128.]: Samplename: Sample#6
Root: 24.771
--> Root in between the borders! Added to results.
Hyperbolic solved: 46.3953425213349
[20250402_083128.]: Samplename: Sample#7
Root: 46.395
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.45071436915
[20250402_083128.]: Samplename: Sample#8
Root: 84.451
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.41337105576252
[20250402_083128.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.413
--> '-10 < root < 0' --> substitute 0
[20250402_083128.]: Solving cubic regression for CpG#2
Coefficients: -59.7333333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#1
Root: 76.346
--> Root in between the borders! Added to results.
Coefficients: -19.048Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#10
Root: 31.371
--> Root in between the borders! Added to results.
Coefficients: -27.8783333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#2
Root: 43.142
--> Root in between the borders! Added to results.
Coefficients: -41.795Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#3
Root: 59.121
--> Root in between the borders! Added to results.
Coefficients: -2.21Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#4
Root: 4.128
--> Root in between the borders! Added to results.
Coefficients: -11.665Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#5
Root: 20.292
--> Root in between the borders! Added to results.
Coefficients: -10.08Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#6
Root: 17.745
--> Root in between the borders! Added to results.
Coefficients: -26.488Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#7
Root: 41.383
--> Root in between the borders! Added to results.
Coefficients: -70.532Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#8
Root: 85.378
--> Root in between the borders! Added to results.
Coefficients: -1.13Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083128.]: Samplename: Sample#9
Root: 2.127
--> Root in between the borders! Added to results.
[20250402_083128.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 74.5474014641742
[20250402_083128.]: Samplename: Sample#1
Root: 74.547
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.3579002775045
[20250402_083128.]: Samplename: Sample#10
Root: 28.358
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.6085496577593
[20250402_083128.]: Samplename: Sample#2
Root: 42.609
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.3286114696456
[20250402_083128.]: Samplename: Sample#3
Root: 56.329
--> Root in between the borders! Added to results.
Hyperbolic solved: 7.99034441243248
[20250402_083128.]: Samplename: Sample#4
Root: 7.99
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.7023143744962
[20250402_083128.]: Samplename: Sample#5
Root: 24.702
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.8868798900698
[20250402_083128.]: Samplename: Sample#6
Root: 26.887
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.8318233973603
[20250402_083128.]: Samplename: Sample#7
Root: 44.832
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6737871528405
[20250402_083128.]: Samplename: Sample#8
Root: 84.674
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.26200732612128
[20250402_083128.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.262
--> '-10 < root < 0' --> substitute 0
[20250402_083128.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 75.8433680333876
[20250402_083128.]: Samplename: Sample#1
Root: 75.843
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.0603248948201
[20250402_083128.]: Samplename: Sample#10
Root: 29.06
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.0355928114108
[20250402_083128.]: Samplename: Sample#2
Root: 44.036
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.7751115686327
[20250402_083128.]: Samplename: Sample#3
Root: 58.775
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.0319154866029
[20250402_083128.]: Samplename: Sample#4
Root: 11.032
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.9948971650737
[20250402_083128.]: Samplename: Sample#5
Root: 22.995
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.9415139419957
[20250402_083128.]: Samplename: Sample#6
Root: 27.942
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.4874049425657
[20250402_083128.]: Samplename: Sample#7
Root: 42.487
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6802730343613
[20250402_083128.]: Samplename: Sample#8
Root: 84.68
--> Root in between the borders! Added to results.
Hyperbolic solved: 3.00887785677921
[20250402_083128.]: Samplename: Sample#9
Root: 3.009
--> Root in between the borders! Added to results.
[20250402_083128.]: Solving cubic regression for CpG#5
Coefficients: -47.8373333333333Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083128.]: Samplename: Sample#1
Root: 72.291
--> Root in between the borders! Added to results.
Coefficients: -13.588Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#10
Root: 27.212
--> Root in between the borders! Added to results.
Coefficients: -25.3211428571429Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#2
Root: 44.85
--> Root in between the borders! Added to results.
Coefficients: -32.064Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#3
Root: 53.741
--> Root in between the borders! Added to results.
Coefficients: -4.074Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#4
Root: 9.444
--> Root in between the borders! Added to results.
Coefficients: -11.434Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#5
Root: 23.55
--> Root in between the borders! Added to results.
Coefficients: -13.294Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#6
Root: 26.722
--> Root in between the borders! Added to results.
Coefficients: -24.288Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#7
Root: 43.42
--> Root in between the borders! Added to results.
Coefficients: -63.134Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#8
Root: 88.215
--> Root in between the borders! Added to results.
Coefficients: 0.0360000000000005Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083129.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.091
--> '-10 < root < 0' --> substitute 0
[20250402_083129.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 79.2200555510382
[20250402_083129.]: Samplename: Sample#1
Root: 79.22
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.2526528381147
[20250402_083129.]: Samplename: Sample#10
Root: 30.253
--> Root in between the borders! Added to results.
Hyperbolic solved: 41.9196854329573
[20250402_083129.]: Samplename: Sample#2
Root: 41.92
--> Root in between the borders! Added to results.
Hyperbolic solved: 56.8984354098215
[20250402_083129.]: Samplename: Sample#3
Root: 56.898
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.81576403111374
[20250402_083129.]: Samplename: Sample#4
Root: 8.816
--> Root in between the borders! Added to results.
Hyperbolic solved: 18.6921622783918
[20250402_083129.]: Samplename: Sample#5
Root: 18.692
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.9815019073132
[20250402_083129.]: Samplename: Sample#6
Root: 29.982
--> Root in between the borders! Added to results.
Hyperbolic solved: 42.8875178508205
[20250402_083129.]: Samplename: Sample#7
Root: 42.888
--> Root in between the borders! Added to results.
Hyperbolic solved: 86.6303733181195
[20250402_083129.]: Samplename: Sample#8
Root: 86.63
--> Root in between the borders! Added to results.
Hyperbolic solved: 1.38997712955107
[20250402_083129.]: Samplename: Sample#9
Root: 1.39
--> Root in between the borders! Added to results.
[20250402_083129.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 77.5278331978133
[20250402_083129.]: Samplename: Sample#1
Root: 77.528
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.0895401031897
[20250402_083129.]: Samplename: Sample#10
Root: 27.09
--> Root in between the borders! Added to results.
Hyperbolic solved: 48.4382794903846
[20250402_083129.]: Samplename: Sample#2
Root: 48.438
--> Root in between the borders! Added to results.
Hyperbolic solved: 58.8815971416453
[20250402_083129.]: Samplename: Sample#3
Root: 58.882
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.3295768294236
[20250402_083129.]: Samplename: Sample#4
Root: 13.33
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.9816196357542
[20250402_083129.]: Samplename: Sample#5
Root: 26.982
--> Root in between the borders! Added to results.
Hyperbolic solved: 30.9612159665911
[20250402_083129.]: Samplename: Sample#6
Root: 30.961
--> Root in between the borders! Added to results.
Hyperbolic solved: 45.7456547820365
[20250402_083129.]: Samplename: Sample#7
Root: 45.746
--> Root in between the borders! Added to results.
Hyperbolic solved: 84.6033538318025
[20250402_083129.]: Samplename: Sample#8
Root: 84.603
--> Root in between the borders! Added to results.
Hyperbolic solved: -2.87380061592101
[20250402_083130.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -2.874
--> '-10 < root < 0' --> substitute 0
[20250402_083130.]: Solving cubic regression for CpG#8
Coefficients: -55.3573333333333Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#1
Root: 72.421
--> Root in between the borders! Added to results.
Coefficients: -17.574Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#10
Root: 28.533
--> Root in between the borders! Added to results.
Coefficients: -22.9425714285714Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#2
Root: 35.766
--> Root in between the borders! Added to results.
Coefficients: -42.849Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#3
Root: 59.36
--> Root in between the borders! Added to results.
Coefficients: -4.604Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#4
Root: 8.481
--> Root in between the borders! Added to results.
Coefficients: -11.389Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#5
Root: 19.519
--> Root in between the borders! Added to results.
Coefficients: -25.784Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#6
Root: 39.413
--> Root in between the borders! Added to results.
Coefficients: -30.746Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#7
Root: 45.53
--> Root in between the borders! Added to results.
Coefficients: -66.912Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#8
Root: 83.654
--> Root in between the borders! Added to results.
Coefficients: 3.176Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083130.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -6.535
--> '-10 < root < 0' --> substitute 0
[20250402_083130.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 80.5486410672961
[20250402_083130.]: Samplename: Sample#1
Root: 80.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 27.810468482135
[20250402_083130.]: Samplename: Sample#10
Root: 27.81
--> Root in between the borders! Added to results.
Hyperbolic solved: 46.2641649294309
[20250402_083130.]: Samplename: Sample#2
Root: 46.264
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.1903653427228
[20250402_083130.]: Samplename: Sample#3
Root: 57.19
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.63886339746086
[20250402_083130.]: Samplename: Sample#4
Root: 8.639
--> Root in between the borders! Added to results.
Hyperbolic solved: 24.2162393845509
[20250402_083130.]: Samplename: Sample#5
Root: 24.216
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.6394430638471
[20250402_083130.]: Samplename: Sample#6
Root: 39.639
--> Root in between the borders! Added to results.
Hyperbolic solved: 44.3080887012493
[20250402_083130.]: Samplename: Sample#7
Root: 44.308
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.3259098830063
[20250402_083130.]: Samplename: Sample#8
Root: 87.326
--> Root in between the borders! Added to results.
Hyperbolic solved: -1.17959639730045
[20250402_083130.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -1.18
--> '-10 < root < 0' --> substitute 0
[20250402_083130.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 76.7568961192102
[20250402_083130.]: Samplename: Sample#1
Root: 76.757
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.8326630603664
[20250402_083130.]: Samplename: Sample#10
Root: 28.833
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.0145327025204
[20250402_083130.]: Samplename: Sample#2
Root: 43.015
--> Root in between the borders! Added to results.
Hyperbolic solved: 57.6144798147902
[20250402_083130.]: Samplename: Sample#3
Root: 57.614
--> Root in between the borders! Added to results.
Hyperbolic solved: 8.86517972238162
[20250402_083130.]: Samplename: Sample#4
Root: 8.865
--> Root in between the borders! Added to results.
Hyperbolic solved: 22.1849817550475
[20250402_083130.]: Samplename: Sample#5
Root: 22.185
--> Root in between the borders! Added to results.
Hyperbolic solved: 29.1973843238972
[20250402_083130.]: Samplename: Sample#6
Root: 29.197
--> Root in between the borders! Added to results.
Hyperbolic solved: 43.9174258632975
[20250402_083130.]: Samplename: Sample#7
Root: 43.917
--> Root in between the borders! Added to results.
Hyperbolic solved: 85.6607695784409
[20250402_083130.]: Samplename: Sample#8
Root: 85.661
--> Root in between the borders! Added to results.
Hyperbolic solved: -0.551158207550385
[20250402_083130.]: Samplename: Sample#9
## WARNING ##
No fitting root within the borders found.
Negative numeric root found:
Root: -0.551
--> '-10 < root < 0' --> substitute 0
[20250402_083130.]: Entered 'solving_equations'-Function
[20250402_083130.]: Solving hyperbolic regression for CpG#1
Hyperbolic solved: 0
[20250402_083130.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 14.1381159662486
[20250402_083130.]: Samplename: 12.5
Root: 14.138
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1241053609707
[20250402_083130.]: Samplename: 25
Root: 26.124
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.3567419170867
[20250402_083130.]: Samplename: 37.5
Root: 39.357
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.9273107806133
[20250402_083130.]: Samplename: 50
Root: 52.927
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4010628999278
[20250402_083130.]: Samplename: 62.5
Root: 65.401
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.4183184249663
[20250402_083130.]: Samplename: 75
Root: 74.418
--> Root in between the borders! Added to results.
Hyperbolic solved: 80.5431520527512
[20250402_083130.]: Samplename: 87.5
Root: 80.543
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083130.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083130.]: Solving cubic regression for CpG#2
Coefficients: 0Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -6.05666666666666Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 12.5
Root: 10.991
--> Root in between the borders! Added to results.
Coefficients: -15.656Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 25
Root: 26.435
--> Root in between the borders! Added to results.
Coefficients: -22.054Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 37.5
Root: 35.545
--> Root in between the borders! Added to results.
Coefficients: -31.945Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 50
Root: 48.102
--> Root in between the borders! Added to results.
Coefficients: -49.68Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 62.5
Root: 67.086
--> Root in between the borders! Added to results.
Coefficients: -58.6825Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083130.]: Samplename: 75
Root: 75.419
--> Root in between the borders! Added to results.
Coefficients: -68.5533333333333Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083131.]: Samplename: 87.5
Root: 83.785
--> Root in between the borders! Added to results.
Coefficients: -90.294Coefficients: 0.526816753036989Coefficients: 0.00201323875068832Coefficients: 1.7479937189418e-05
[20250402_083131.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083131.]: Solving hyperbolic regression for CpG#3
Hyperbolic solved: 0
[20250402_083131.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 10.8497990553835
[20250402_083131.]: Samplename: 12.5
Root: 10.85
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.1511183533449
[20250402_083131.]: Samplename: 25
Root: 26.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.2940213300522
[20250402_083131.]: Samplename: 37.5
Root: 37.294
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.419361136507
[20250402_083131.]: Samplename: 50
Root: 51.419
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.0212050873619
[20250402_083131.]: Samplename: 62.5
Root: 65.021
--> Root in between the borders! Added to results.
Hyperbolic solved: 76.9977789568509
[20250402_083131.]: Samplename: 75
Root: 76.998
--> Root in between the borders! Added to results.
Hyperbolic solved: 79.686036177122
[20250402_083131.]: Samplename: 87.5
Root: 79.686
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083131.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083131.]: Solving hyperbolic regression for CpG#4
Hyperbolic solved: 0
[20250402_083131.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 13.2434477796981
[20250402_083131.]: Samplename: 12.5
Root: 13.243
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.0815867666892
[20250402_083131.]: Samplename: 25
Root: 25.082
--> Root in between the borders! Added to results.
Hyperbolic solved: 38.7956859187734
[20250402_083131.]: Samplename: 37.5
Root: 38.796
--> Root in between the borders! Added to results.
Hyperbolic solved: 49.1001600195185
[20250402_083131.]: Samplename: 50
Root: 49.1
--> Root in between the borders! Added to results.
Hyperbolic solved: 67.5620415214226
[20250402_083131.]: Samplename: 62.5
Root: 67.562
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.7554076043322
[20250402_083131.]: Samplename: 75
Root: 73.755
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.0327440839301
[20250402_083131.]: Samplename: 87.5
Root: 82.033
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083131.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083131.]: Solving cubic regression for CpG#5
Coefficients: 0Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.144Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 12.5
Root: 9.593
--> Root in between the borders! Added to results.
Coefficients: -12.102Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 25
Root: 24.704
--> Root in between the borders! Added to results.
Coefficients: -20.536Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 37.5
Root: 38.051
--> Root in between the borders! Added to results.
Coefficients: -30.0715Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 50
Root: 51.187
--> Root in between the borders! Added to results.
Coefficients: -39.034Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 62.5
Root: 62.269
--> Root in between the borders! Added to results.
Coefficients: -51.059Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 75
Root: 75.786
--> Root in between the borders! Added to results.
Coefficients: -60.3906666666667Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 87.5
Root: 85.475
--> Root in between the borders! Added to results.
Coefficients: -75.446Coefficients: 0.394384751236424Coefficients: 0.00395257736579547Coefficients: -3.51824878159709e-06
[20250402_083131.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_083131.]: Solving hyperbolic regression for CpG#6
Hyperbolic solved: 0
[20250402_083131.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.822687731114
[20250402_083131.]: Samplename: 12.5
Root: 11.823
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.5494368772504
[20250402_083131.]: Samplename: 25
Root: 26.549
--> Root in between the borders! Added to results.
Hyperbolic solved: 35.3846787677878
[20250402_083131.]: Samplename: 37.5
Root: 35.385
--> Root in between the borders! Added to results.
Hyperbolic solved: 50.1264563333089
[20250402_083131.]: Samplename: 50
Root: 50.126
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.9875101866844
[20250402_083131.]: Samplename: 62.5
Root: 64.988
--> Root in between the borders! Added to results.
Hyperbolic solved: 73.6494948240195
[20250402_083131.]: Samplename: 75
Root: 73.649
--> Root in between the borders! Added to results.
Hyperbolic solved: 87.0033714659226
[20250402_083131.]: Samplename: 87.5
Root: 87.003
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083131.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083132.]: Solving hyperbolic regression for CpG#7
Hyperbolic solved: 0
[20250402_083132.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.7925453863418
[20250402_083132.]: Samplename: 12.5
Root: 11.793
--> Root in between the borders! Added to results.
Hyperbolic solved: 26.2042827174053
[20250402_083132.]: Samplename: 25
Root: 26.204
--> Root in between the borders! Added to results.
Hyperbolic solved: 39.2081609373531
[20250402_083132.]: Samplename: 37.5
Root: 39.208
--> Root in between the borders! Added to results.
Hyperbolic solved: 54.3620766326312
[20250402_083132.]: Samplename: 50
Root: 54.362
--> Root in between the borders! Added to results.
Hyperbolic solved: 66.0664882334621
[20250402_083132.]: Samplename: 62.5
Root: 66.066
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.1981507250883
[20250402_083132.]: Samplename: 75
Root: 75.198
--> Root in between the borders! Added to results.
Hyperbolic solved: 78.6124357632637
[20250402_083132.]: Samplename: 87.5
Root: 78.612
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083132.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083132.]: Solving cubic regression for CpG#8
Coefficients: 0Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Coefficients: -4.35066666666667Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 12.5
Root: 8.039
--> Root in between the borders! Added to results.
Coefficients: -15.834Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 25
Root: 26.079
--> Root in between the borders! Added to results.
Coefficients: -22.254Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 37.5
Root: 34.864
--> Root in between the borders! Added to results.
Coefficients: -36.529Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 50
Root: 52.311
--> Root in between the borders! Added to results.
Coefficients: -47.73Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 62.5
Root: 64.584
--> Root in between the borders! Added to results.
Coefficients: -60.5715Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 75
Root: 77.576
--> Root in between the borders! Added to results.
Coefficients: -63.414Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 87.5
Root: 80.326
--> Root in between the borders! Added to results.
Coefficients: -84.964Coefficients: 0.51096176300103Coefficients: 0.00379498058303308Coefficients: -4.08198213043375e-06
[20250402_083132.]: Samplename: 100
## WARNING ##
No fitting root within the borders found.
Positive numeric root found:
Root: 100
--> '100 < root < 110' --> substitute 100
[20250402_083132.]: Solving hyperbolic regression for CpG#9
Hyperbolic solved: 0
[20250402_083132.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 12.2094906593745
[20250402_083132.]: Samplename: 12.5
Root: 12.209
--> Root in between the borders! Added to results.
Hyperbolic solved: 28.0738986154201
[20250402_083132.]: Samplename: 25
Root: 28.074
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.6720254587223
[20250402_083132.]: Samplename: 37.5
Root: 37.672
--> Root in between the borders! Added to results.
Hyperbolic solved: 52.3746308870569
[20250402_083132.]: Samplename: 50
Root: 52.375
--> Root in between the borders! Added to results.
Hyperbolic solved: 64.8693631845077
[20250402_083132.]: Samplename: 62.5
Root: 64.869
--> Root in between the borders! Added to results.
Hyperbolic solved: 74.2598902601534
[20250402_083132.]: Samplename: 75
Root: 74.26
--> Root in between the borders! Added to results.
Hyperbolic solved: 83.9376844048195
[20250402_083132.]: Samplename: 87.5
Root: 83.938
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083132.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
[20250402_083132.]: Solving hyperbolic regression for row_means
Hyperbolic solved: 0
[20250402_083132.]: Samplename: 0
Root: 0
--> Root in between the borders! Added to results.
Hyperbolic solved: 11.1506882890389
[20250402_083132.]: Samplename: 12.5
Root: 11.151
--> Root in between the borders! Added to results.
Hyperbolic solved: 25.841636381907
[20250402_083132.]: Samplename: 25
Root: 25.842
--> Root in between the borders! Added to results.
Hyperbolic solved: 37.0462679509085
[20250402_083132.]: Samplename: 37.5
Root: 37.046
--> Root in between the borders! Added to results.
Hyperbolic solved: 51.1681297765954
[20250402_083132.]: Samplename: 50
Root: 51.168
--> Root in between the borders! Added to results.
Hyperbolic solved: 65.4258217891781
[20250402_083132.]: Samplename: 62.5
Root: 65.426
--> Root in between the borders! Added to results.
Hyperbolic solved: 75.285632789037
[20250402_083132.]: Samplename: 75
Root: 75.286
--> Root in between the borders! Added to results.
Hyperbolic solved: 82.6475419323379
[20250402_083132.]: Samplename: 87.5
Root: 82.648
--> Root in between the borders! Added to results.
Hyperbolic solved: 100
[20250402_083132.]: Samplename: 100
Root: 100
--> Root in between the borders! Added to results.
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
[20250402_083539.]: Entered 'clean_dt'-Function
[20250402_083539.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_083539.]: got experimental data
[20250402_083539.]: Entered 'clean_dt'-Function
[20250402_083539.]: Importing data of type 2: Many loci in one sample (e.g., next-gen seq or microarray data)
[20250402_083539.]: got experimental data
[20250402_083540.]: Entered 'clean_dt'-Function
[20250402_083540.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_083540.]: got calibration data
[20250402_083540.]: Entered 'clean_dt'-Function
[20250402_083540.]: Importing data of type 1: One locus in many samples (e.g., pyrosequencing data)
[20250402_083540.]: got calibration data
[20250402_083540.]: Entered 'hyperbolic_regression'-Function
[20250402_083540.]: 'hyperbolic_regression': minmax = TRUE --> WARNING: this is experimental
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
Error in (function (formula, data = parent.frame(), start, control = nls.control(), :
singular gradient
[ FAIL 5 | WARN 51 | SKIP 4 | PASS 51 ]
══ Skipped tests (4) ═══════════════════════════════════════════════════════════
• On CRAN (4): 'test-algorithm_minmax_FALSE.R:80:5',
'test-algorithm_minmax_TRUE.R:76:5', 'test-hyperbolic.R:27:5',
'test-lints.R:12:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-algorithm_minmax_FALSE_re.R:170:5'): algorithm test, type 1, minmax = FALSE selection_method = RelError ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-algorithm_minmax_FALSE_re.R:170:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-algorithm_minmax_TRUE_re.R:170:5'): algorithm test, type 1, minmax = TRUE selection_method = RelError ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-algorithm_minmax_TRUE_re.R:170:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-clean_dt.R:17:5'): test normal function of file import of type 1 ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-clean_dt.R:17:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-clean_dt.R:65:5'): test normal function of file import of type 2 ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-clean_dt.R:65:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
── Error ('test-create_aggregated.R:19:5'): test functioning of aggregated function ──
Error in `structure(.Data = base::quote(NULL))`: attempt to set an attribute on NULL
Backtrace:
▆
1. └─testthat::expect_snapshot_value(...) at test-create_aggregated.R:19:5
2. ├─testthat:::check_roundtrip(...)
3. │ └─testthat:::waldo_compare(...)
4. │ └─waldo::compare(x, y, ..., x_arg = x_arg, y_arg = y_arg)
5. │ └─waldo:::compare_structure(x, y, paths = c(x_arg, y_arg), opts = opts)
6. │ └─rlang::is_missing(y)
7. └─testthat (local) load(save(x))
8. └─jsonlite::unserializeJSON(x)
9. └─jsonlite:::unpack(parseJSON(txt))
10. └─base::lapply(obj$attributes, unpack)
11. └─jsonlite (local) FUN(X[[i]], ...)
12. ├─base::do.call("structure", newdata, quote = TRUE)
13. └─base::structure(.Data = base::quote(NULL))
[ FAIL 5 | WARN 51 | SKIP 4 | PASS 51 ]
Error: Test failures
Execution halted
Error in deferred_run(env) : could not find function "deferred_run"
Calls: <Anonymous>
Flavor: r-devel-linux-x86_64-fedora-gcc
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.