The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

predhy: Genomic Prediction of Hybrid Performance

Performs genomic prediction of hybrid performance using eight GS methods including GBLUP, BayesB, RKHS, PLS, LASSO, Elastic net, LightGBM and XGBoost. It also provides fast cross-validation and mating design scheme for training population (Xu S et al (2016) <doi:10.1111/tpj.13242>; Xu S (2017) <doi:10.1534/g3.116.038059>).

Version: 2.1.1
Depends: R (≥ 4.1.0)
Imports: BGLR, pls, glmnet, xgboost, lightgbm, foreach, doParallel, parallel
Published: 2024-05-23
DOI: 10.32614/CRAN.package.predhy
Author: Yang Xu, Guangning Yu, Yanru Cui, Shizhong Xu, Chenwu Xu
Maintainer: Yang Xu <xuyang_89 at 126.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: predhy results

Documentation:

Reference manual: predhy.pdf

Downloads:

Package source: predhy_2.1.1.tar.gz
Windows binaries: r-devel: predhy_2.1.1.zip, r-release: predhy_2.1.1.zip, r-oldrel: predhy_2.1.1.zip
macOS binaries: r-release (arm64): predhy_2.1.1.tgz, r-oldrel (arm64): predhy_2.1.1.tgz, r-release (x86_64): predhy_2.1.1.tgz, r-oldrel (x86_64): predhy_2.1.1.tgz
Old sources: predhy archive

Reverse dependencies:

Reverse imports: predhy.GUI

Linking:

Please use the canonical form https://CRAN.R-project.org/package=predhy to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.