The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

predhy.GUI: Genomic Prediction of Hybrid Performance with Graphical User Interface

Performs genomic prediction of hybrid performance using eight GS methods including GBLUP, BayesB, RKHS, PLS, LASSO, Elastic net, XGBoost and LightGBM. GBLUP: genomic best liner unbiased prediction, RKHS: reproducing kernel Hilbert space, PLS: partial least squares regression, LASSO: least absolute shrinkage and selection operator, XGBoost: extreme gradient boosting, LightGBM: light gradient boosting machine. It also provides fast cross-validation and mating design scheme for training population (Xu S et al (2016) <doi:10.1111/tpj.13242>; Xu S (2017) <doi:10.1534/g3.116.038059>).

Version: 2.0.1
Depends: R (≥ 4.1.0)
Imports: shiny, data.table, DT, predhy (≥ 2.1), BGLR, pls, glmnet, xgboost, lightgbm, foreach, doParallel, parallel, htmltools
Published: 2024-06-17
DOI: 10.32614/CRAN.package.predhy.GUI
Author: Yang Xu [aut], Guangning Yu [aut], Yuxiang Zhang [aut, cre], Yanru Cui [ctb], Shizhong Xu [ctb], Chenwu Xu [ctb]
Maintainer: Yuxiang Zhang <yuxiangzhang_99 at foxmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: predhy.GUI results

Documentation:

Reference manual: predhy.GUI.pdf

Downloads:

Package source: predhy.GUI_2.0.1.tar.gz
Windows binaries: r-devel: predhy.GUI_2.0.1.zip, r-release: predhy.GUI_2.0.1.zip, r-oldrel: predhy.GUI_2.0.1.zip
macOS binaries: r-release (arm64): predhy.GUI_2.0.1.tgz, r-oldrel (arm64): predhy.GUI_2.0.1.tgz, r-release (x86_64): predhy.GUI_2.0.1.tgz, r-oldrel (x86_64): predhy.GUI_2.0.1.tgz
Old sources: predhy.GUI archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=predhy.GUI to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.