The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

latentgraph: Graphical Models with Latent Variables

Three methods are provided to estimate graphical models with latent variables: (1) Jin, Y., Ning, Y., and Tan, K. M. (2020) (preprint available); (2) Chandrasekaran, V., Parrilo, P. A. & Willsky, A. S. (2012) <doi:10.1214/11-AOS949>; (3) Tan, K. M., Ning, Y., Witten, D. M. & Liu, H. (2016) <doi:10.1093/biomet/asw050>.

Version: 1.1
Imports: Rcpp, pracma, glmnet, MASS, stats
LinkingTo: Rcpp, RcppArmadillo
Published: 2020-12-10
DOI: 10.32614/CRAN.package.latentgraph
Author: Yanxin Jin, Samantha Yang, Kean Ming Tan
Maintainer: Yanxin Jin <yanxinj at umich.edu>
License: GPL-3
NeedsCompilation: yes
CRAN checks: latentgraph results

Documentation:

Reference manual: latentgraph.pdf

Downloads:

Package source: latentgraph_1.1.tar.gz
Windows binaries: r-devel: latentgraph_1.1.zip, r-release: latentgraph_1.1.zip, r-oldrel: latentgraph_1.1.zip
macOS binaries: r-release (arm64): latentgraph_1.1.tgz, r-oldrel (arm64): latentgraph_1.1.tgz, r-release (x86_64): latentgraph_1.1.tgz, r-oldrel (x86_64): latentgraph_1.1.tgz
Old sources: latentgraph archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=latentgraph to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.