The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Three methods are provided to estimate graphical models with latent variables: (1) Jin, Y., Ning, Y., and Tan, K. M. (2020) (preprint available); (2) Chandrasekaran, V., Parrilo, P. A. & Willsky, A. S. (2012) <doi:10.1214/11-AOS949>; (3) Tan, K. M., Ning, Y., Witten, D. M. & Liu, H. (2016) <doi:10.1093/biomet/asw050>.
Version: | 1.1 |
Imports: | Rcpp, pracma, glmnet, MASS, stats |
LinkingTo: | Rcpp, RcppArmadillo |
Published: | 2020-12-10 |
DOI: | 10.32614/CRAN.package.latentgraph |
Author: | Yanxin Jin, Samantha Yang, Kean Ming Tan |
Maintainer: | Yanxin Jin <yanxinj at umich.edu> |
License: | GPL-3 |
NeedsCompilation: | yes |
CRAN checks: | latentgraph results |
Reference manual: | latentgraph.pdf |
Package source: | latentgraph_1.1.tar.gz |
Windows binaries: | r-devel: latentgraph_1.1.zip, r-release: latentgraph_1.1.zip, r-oldrel: latentgraph_1.1.zip |
macOS binaries: | r-release (arm64): latentgraph_1.1.tgz, r-oldrel (arm64): latentgraph_1.1.tgz, r-release (x86_64): latentgraph_1.1.tgz, r-oldrel (x86_64): latentgraph_1.1.tgz |
Old sources: | latentgraph archive |
Please use the canonical form https://CRAN.R-project.org/package=latentgraph to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.