The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Functions for evaluating and testing asset pricing models, including estimation and testing of factor risk premia, selection of "strong" risk factors (factors having nonzero population correlation with test asset returns), heteroskedasticity and autocorrelation robust covariance matrix estimation and testing for model misspecification and identification. The functions for estimating and testing factor risk premia implement the Fama-MachBeth (1973) <doi:10.1086/260061> two-pass approach, the misspecification-robust approaches of Kan-Robotti-Shanken (2013) <doi:10.1111/jofi.12035>, and the approaches based on tradable factor risk premia of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683>. The functions for selecting the "strong" risk factors are based on the Oracle estimator of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683> and the factor screening procedure of Gospodinov-Kan-Robotti (2014) <doi:10.2139/ssrn.2579821>. The functions for evaluating model misspecification implement the HJ model misspecification distance of Kan-Robotti (2008) <doi:10.1016/j.jempfin.2008.03.003>, which is a modification of the prominent Hansen-Jagannathan (1997) <doi:10.1111/j.1540-6261.1997.tb04813.x> distance. The functions for testing model identification specialize the Kleibergen-Paap (2006) <doi:10.1016/j.jeconom.2005.02.011> and the Chen-Fang (2019) <doi:10.1111/j.1540-6261.1997.tb04813.x> rank test to the regression coefficient matrix of test asset returns on risk factors. Finally, the function for heteroskedasticity and autocorrelation robust covariance estimation implements the Newey-West (1994) <doi:10.2307/2297912> covariance estimator.
Version: | 2.1.0 |
Depends: | R (≥ 4.3.0) |
Imports: | glmnet, graphics, Rcpp |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | testthat (≥ 3.0.0) |
Published: | 2024-04-15 |
DOI: | 10.32614/CRAN.package.intrinsicFRP |
Author: | Alberto Quaini [aut, cre, cph] |
Maintainer: | Alberto Quaini <alberto91quaini at gmail.com> |
BugReports: | https://github.com/a91quaini/intrinsicFRP/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/a91quaini/intrinsicFRP |
NeedsCompilation: | yes |
Materials: | README NEWS |
CRAN checks: | intrinsicFRP results |
Reference manual: | intrinsicFRP.pdf |
Package source: | intrinsicFRP_2.1.0.tar.gz |
Windows binaries: | r-devel: intrinsicFRP_2.1.0.zip, r-release: intrinsicFRP_2.1.0.zip, r-oldrel: intrinsicFRP_2.1.0.zip |
macOS binaries: | r-release (arm64): intrinsicFRP_2.1.0.tgz, r-oldrel (arm64): intrinsicFRP_2.1.0.tgz, r-release (x86_64): intrinsicFRP_2.1.0.tgz, r-oldrel (x86_64): intrinsicFRP_2.1.0.tgz |
Old sources: | intrinsicFRP archive |
Please use the canonical form https://CRAN.R-project.org/package=intrinsicFRP to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.