The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

hdpGLM: Hierarchical Dirichlet Process Generalized Linear Models

Implementation of MCMC algorithms to estimate the Hierarchical Dirichlet Process Generalized Linear Model (hdpGLM) presented in the paper Ferrari (2020) Modeling Context-Dependent Latent Heterogeneity, Political Analysis <doi:10.1017/pan.2019.13> and <doi:10.18637/jss.v107.i10>.

Version: 1.0.3
Depends: R (≥ 3.3.3)
Imports: coda, data.table, dplyr, formula.tools, ggjoy, ggplot2, stringr, ggridges, ggpubr, Hmisc, isotone, questionr, LaplacesDemon, magrittr, methods, MASS, MCMCpack, mvtnorm, Rcpp, rprojroot, png, purrr, tibble, tidyr, tidyverse
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown
Published: 2023-10-12
DOI: 10.32614/CRAN.package.hdpGLM
Author: Diogo Ferrari [aut, cre]
Maintainer: Diogo Ferrari <diogoferrari at gmail.com>
BugReports: https://github.com/DiogoFerrari/hdpGLM/issues
License: MIT + file LICENSE
URL: https://github.com/DiogoFerrari/hdpGLM
NeedsCompilation: yes
Citation: hdpGLM citation info
Materials: README NEWS
CRAN checks: hdpGLM results

Documentation:

Reference manual: hdpGLM.pdf
Vignettes: hdpGLM

Downloads:

Package source: hdpGLM_1.0.3.tar.gz
Windows binaries: r-devel: hdpGLM_1.0.3.zip, r-release: hdpGLM_1.0.3.zip, r-oldrel: hdpGLM_1.0.3.zip
macOS binaries: r-release (arm64): hdpGLM_1.0.3.tgz, r-oldrel (arm64): hdpGLM_1.0.3.tgz, r-release (x86_64): hdpGLM_1.0.3.tgz, r-oldrel (x86_64): hdpGLM_1.0.3.tgz
Old sources: hdpGLM archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=hdpGLM to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.