The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

fastGLCM: 'GLCM' Texture Features

Two 'Gray Level Co-occurrence Matrix' ('GLCM') implementations are included: The first is a fast 'GLCM' feature texture computation based on 'Python' 'Numpy' arrays ('Github' Repository, <https://github.com/tzm030329/GLCM>). The second is a fast 'GLCM' 'RcppArmadillo' implementation which is parallelized (using 'OpenMP') with the option to return all 'GLCM' features at once. For more information, see "Artifact-Free Thin Cloud Removal Using Gans" by Toizumi Takahiro, Zini Simone, Sagi Kazutoshi, Kaneko Eiji, Tsukada Masato, Schettini Raimondo (2019), IEEE International Conference on Image Processing (ICIP), pp. 3596-3600, <doi:10.1109/ICIP.2019.8803652>.

Version: 1.0.2
Depends: R (≥ 3.2.3)
Imports: Rcpp (≥ 1.0.8.3), R6, rlang, OpenImageR, utils
LinkingTo: Rcpp, RcppArmadillo, OpenImageR
Suggests: reticulate, covr, knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2022-09-25
DOI: 10.32614/CRAN.package.fastGLCM
Author: Lampros Mouselimis ORCID iD [aut, cre], Takahiro Toizumi [cph] (Author of the fastGLCM Python code)
Maintainer: Lampros Mouselimis <mouselimislampros at gmail.com>
BugReports: https://github.com/mlampros/fastGLCM/issues
License: GPL-3
Copyright: inst/COPYRIGHTS
fastGLCM copyright details
URL: https://github.com/mlampros/fastGLCM
NeedsCompilation: yes
SystemRequirements: apt-get-pip: apt-get install -y python3-pip (deb), python3-pip: python3 -m pip install -U pip (deb), numpy: pip3 install -U numpy (deb), cv2: pip3 install -U opencv-python (deb), matplotlib: pip3 install -U matplotlib (deb), skimage: pip3 install -U scikit-image (deb), libarmadillo: apt-get install -y libarmadillo-dev (deb), libblas: apt-get install -y libblas-dev (deb), liblapack: apt-get install -y liblapack-dev (deb), libarpack++2: apt-get install -y libarpack++2-dev (deb), gfortran: apt-get install -y gfortran (deb)
Citation: fastGLCM citation info
Materials: README NEWS
CRAN checks: fastGLCM results

Documentation:

Reference manual: fastGLCM.pdf
Vignettes: Functionality of the fastGLCM R package

Downloads:

Package source: fastGLCM_1.0.2.tar.gz
Windows binaries: r-devel: fastGLCM_1.0.2.zip, r-release: fastGLCM_1.0.2.zip, r-oldrel: fastGLCM_1.0.2.zip
macOS binaries: r-release (arm64): fastGLCM_1.0.2.tgz, r-oldrel (arm64): fastGLCM_1.0.2.tgz, r-release (x86_64): fastGLCM_1.0.2.tgz, r-oldrel (x86_64): fastGLCM_1.0.2.tgz
Old sources: fastGLCM archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fastGLCM to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.