The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ddtlcm: Latent Class Analysis with Dirichlet Diffusion Tree Process Prior

Implements a Bayesian algorithm for overcoming weak separation in Bayesian latent class analysis. Reference: Li et al. (2023) <doi:10.48550/arXiv.2306.04700>.

Version: 0.2.1
Depends: R (≥ 4.3)
Imports: ape (≥ 5.6-2), data.table (≥ 1.14.4), extraDistr (≥ 1.9.1), ggplot2 (≥ 3.4.0), ggpubr (≥ 0.6.0), ggtext (≥ 0.1.2), ggtree (≥ 3.4.0), label.switching (≥ 1.8), matrixStats (≥ 0.62.0), methods (≥ 4.2.3), phylobase (≥ 0.8.10), poLCA (≥ 1.6.0.1), testthat (≥ 3.1.7), truncnorm (≥ 1.0-8), BayesLogit (≥ 2.1), Matrix (≥ 1.5-1), Rdpack (≥ 2.5), R.utils (≥ 2.12.2)
Suggests: knitr, parallel, rmarkdown, xfun
Published: 2024-04-04
DOI: 10.32614/CRAN.package.ddtlcm
Author: Mengbing Li ORCID iD [cre, aut], Briana Stephenson [ctb], Zhenke Wu ORCID iD [ctb]
Maintainer: Mengbing Li <mengbing at umich.edu>
BugReports: https://github.com/limengbinggz/ddtlcm/issues
License: MIT + file LICENSE
URL: https://github.com/limengbinggz/ddtlcm
NeedsCompilation: no
Materials: README NEWS
CRAN checks: ddtlcm results

Documentation:

Reference manual: ddtlcm.pdf
Vignettes: Vignettes for ddtlcm: An R package for fitting tree-regularized Bayesian latent class models

Downloads:

Package source: ddtlcm_0.2.1.tar.gz
Windows binaries: r-devel: ddtlcm_0.2.1.zip, r-release: ddtlcm_0.2.1.zip, r-oldrel: ddtlcm_0.2.1.zip
macOS binaries: r-release (arm64): ddtlcm_0.2.1.tgz, r-oldrel (arm64): ddtlcm_0.2.1.tgz, r-release (x86_64): ddtlcm_0.2.1.tgz, r-oldrel (x86_64): ddtlcm_0.2.1.tgz
Old sources: ddtlcm archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ddtlcm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.