The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Implements a Bayesian algorithm for overcoming weak separation in Bayesian latent class analysis. Reference: Li et al. (2023) <doi:10.48550/arXiv.2306.04700>.
Version: | 0.2.1 |
Depends: | R (≥ 4.3) |
Imports: | ape (≥ 5.6-2), data.table (≥ 1.14.4), extraDistr (≥ 1.9.1), ggplot2 (≥ 3.4.0), ggpubr (≥ 0.6.0), ggtext (≥ 0.1.2), ggtree (≥ 3.4.0), label.switching (≥ 1.8), matrixStats (≥ 0.62.0), methods (≥ 4.2.3), phylobase (≥ 0.8.10), poLCA (≥ 1.6.0.1), testthat (≥ 3.1.7), truncnorm (≥ 1.0-8), BayesLogit (≥ 2.1), Matrix (≥ 1.5-1), Rdpack (≥ 2.5), R.utils (≥ 2.12.2) |
Suggests: | knitr, parallel, rmarkdown, xfun |
Published: | 2024-04-04 |
DOI: | 10.32614/CRAN.package.ddtlcm |
Author: | Mengbing Li [cre, aut], Briana Stephenson [ctb], Zhenke Wu [ctb] |
Maintainer: | Mengbing Li <mengbing at umich.edu> |
BugReports: | https://github.com/limengbinggz/ddtlcm/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/limengbinggz/ddtlcm |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | ddtlcm results |
Reference manual: | ddtlcm.pdf |
Vignettes: |
Vignettes for ddtlcm: An R package for fitting tree-regularized Bayesian latent class models |
Package source: | ddtlcm_0.2.1.tar.gz |
Windows binaries: | r-devel: ddtlcm_0.2.1.zip, r-release: ddtlcm_0.2.1.zip, r-oldrel: ddtlcm_0.2.1.zip |
macOS binaries: | r-release (arm64): ddtlcm_0.2.1.tgz, r-oldrel (arm64): ddtlcm_0.2.1.tgz, r-release (x86_64): ddtlcm_0.2.1.tgz, r-oldrel (x86_64): ddtlcm_0.2.1.tgz |
Old sources: | ddtlcm archive |
Please use the canonical form https://CRAN.R-project.org/package=ddtlcm to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.