The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ctsmTMB: Continuous Time Stochastic Modelling using Template Model Builder

Perform state and parameter inference, and forecasting, in stochastic state-space systems using the 'ctsmTMB' class. This class, built with the 'R6' package, provides a user-friendly interface for defining and handling state-space models. Inference is based on maximum likelihood estimation, with derivatives efficiently computed through automatic differentiation enabled by the 'TMB'/'RTMB' packages (Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The available inference methods include Kalman filters, in addition to a Laplace approximation-based smoothing method. For further details of these methods refer to the documentation of the 'CTSMR' package <https://ctsm.info/ctsmr-reference.pdf> and Thygesen (2025) <doi:10.48550/arXiv.2503.21358>. Forecasting capabilities include moment predictions and stochastic path simulations, both implemented in 'C++' using 'Rcpp' (Eddelbuettel et al., 2018) <doi:10.1080/00031305.2017.1375990> for computational efficiency.

Version: 1.0.0
Depends: R (≥ 4.0.0)
Imports: TMB, RTMB (≥ 1.7), R6, Deriv, stringr, Rcpp, RcppEigen, RcppXPtrUtils, RcppZiggurat, Matrix, deSolve, ggplot2, ggfortify, patchwork
LinkingTo: Rcpp, RcppEigen, RcppZiggurat
Suggests: testthat (≥ 3.0.0), knitr, rmarkdown, RTMBode
Published: 2025-04-08
DOI: 10.32614/CRAN.package.ctsmTMB
Author: Phillip Vetter [aut, cre, cph], Jan Møller [ctb], Uffe Thygesen [ctb], Peder Bacher [ctb], Henrik Madsen [ctb]
Maintainer: Phillip Vetter <pbrve at dtu.dk>
BugReports: https://github.com/phillipbvetter/ctsmTMB/issues
License: GPL-3
Copyright: See the file COPYRIGHTS
ctsmTMB copyright details
URL: https://github.com/phillipbvetter/ctsmTMB
NeedsCompilation: yes
SystemRequirements: GNU GSL
Additional_repositories: https://kaskr.r-universe.dev
Citation: ctsmTMB citation info
Materials: README NEWS
CRAN checks: ctsmTMB results

Documentation:

Reference manual: ctsmTMB.pdf
Vignettes: Getting Started (source, R code)
Estimating Parameters (source, R code)
Extended Kalman Filter (source)
Laplace Approximation (source)
Linear Kalman Filter (source)
AddObs - Details (source, R code)
Moment Predictions (source, R code)
Stochastic Simulations (source, R code)
Unscented Kalman Filter (source)
Extracting the Likelihood Function and Changing Optimizer (source, R code)

Downloads:

Package source: ctsmTMB_1.0.0.tar.gz
Windows binaries: r-devel: ctsmTMB_1.0.0.zip, r-release: ctsmTMB_1.0.0.zip, r-oldrel: not available
macOS binaries: r-devel (arm64): ctsmTMB_1.0.0.tgz, r-release (arm64): ctsmTMB_1.0.0.tgz, r-oldrel (arm64): ctsmTMB_1.0.0.tgz, r-devel (x86_64): ctsmTMB_1.0.0.tgz, r-release (x86_64): ctsmTMB_1.0.0.tgz, r-oldrel (x86_64): ctsmTMB_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ctsmTMB to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.