The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
model_parameters
model_parameters("RW1972")
## $name
## [1] "alphas" "betas_on" "betas_off" "lambdas"
##
## $default_value
## [1] 0.4 0.4 0.4 1.0
alphas |
\(\alpha\) |
Learning rate for presented stimulus |
betas_on, betas_off |
\(\beta_{on},\beta_{off}\) |
Intensity of presented and absent target |
lambdas |
\(\lambda\) |
Maximum learning supported by target |
model_parameters("MAC1975")
## $name
## [1] "alphas" "min_alphas" "max_alphas" "betas_on" "betas_off"
## [6] "lambdas" "thetas" "gammas"
##
## $default_value
## [1] 0.4 0.1 1.0 0.4 0.4 1.0 0.2 0.3
alphas |
\(\alpha\) |
Starting associability (learning rate) for presented
stimulus |
min_alphas, max_alphas |
\(\alpha_{min},
\alpha_{max}\) |
Minimum and maximum associability for stimulus |
betas_on, betas_off |
\(\beta_{on},\beta_{off}\) |
Intensity of presented and absent target |
lambdas |
\(\lambda\) |
Maximum learning supported by target |
thetas |
\(\theta\) |
Attentional learning rate parameter for stimulus |
gammas |
\(\gamma\) |
Attentional learning weight for stimulus |
model_parameters("PKH1982")
## $name
## [1] "alphas" "min_alphas" "max_alphas" "betas_ex" "betas_in"
## [6] "lambdas" "thetas" "gammas"
##
## $default_value
## [1] 0.4 0.1 1.0 0.4 0.3 1.0 1.0 0.3
alphas |
\(\alpha\) |
Learning rate for presented stimulus |
min_alphas, max_alphas |
\(\alpha_{min},
\alpha_{max}\) |
Minimum and maximum associability for stimulus |
betas_in, betas_ex |
\(\beta_{in},\beta_{ex}\) |
Learning rates for inhibitory and excitatory
associations |
lambdas |
\(\lambda\) |
Maximum learning supported by target |
thetas |
\(\theta\) |
Decay/strengthening associability rate parameter for
stimulus |
gammas |
\(\gamma\) |
Attentional learning weight for stimulus |
model_parameters("SM2007")
## $name
## [1] "alphas" "lambdas" "omegas" "rhos" "gammas" "taus" "order"
##
## $default_value
## [1] 0.4 1.0 0.2 1.0 1.0 0.2 1.0
alphas |
\(\alpha\) |
Learning rate for presented stimulus |
lambdas |
\(\lambda\) |
Maximum learning supported by target |
omegas |
\(\omega\) |
Weakening rate for presented stimulus |
rhos |
\(\rho\) |
Salience contribution for unconditioned activation of
target |
gammas |
\(\gamma\) |
Contribution of stimulus to comparison process |
taus |
\(\tau\) |
Learning rate for operator switch |
order |
\(order\) |
Order for the comparison process |
model_parameters("HDI2020")
## $name
## [1] "alphas"
##
## $default_value
## [1] 0.4
model_parameters("HD2022")
## $name
## [1] "alphas"
##
## $default_value
## [1] 0.4
alphas |
\(\alpha\) |
Learning rate for presented stimulus |
## $name
## [1] "alphas" "betas_on" "betas_off" "lambdas" "gamma" "sigma"
##
## $default_value
## [1] 0.05 0.40 0.40 1.00 0.95 0.90
alphas |
\(\alpha\) |
Learning rate for presented stimulus |
betas_on, betas_off |
\(\beta_{on},\beta_{off}\) |
Intensity of presented and absent target |
lambdas |
\(\lambda\) |
Maximum learning supported by target |
gamma |
\(\gamma\) |
Temporal discount parameter |
sigma |
\(\sigma\) |
Rate of decay for eligibility traces |
model_parameters("ANCCR")
## $name
## [1] "reward_magnitude" "betas" "cost"
## [4] "temperature" "threshold" "k"
## [7] "w" "minimum_rate" "sampling_interval"
## [10] "use_exact_mean" "t_ratio" "t_constant"
## [13] "alpha" "alpha_reward" "use_timed_alpha"
## [16] "alpha_exponent" "alpha_init" "alpha_min"
## [19] "add_beta" "jitter"
##
## $default_value
## [1] 1.000 1.000 0.000 1.000 0.600 1.000 0.500 0.001 0.200 0.000 1.200 NA
## [13] 0.020 0.200 0.000 1.000 1.000 0.000 0.000 1.000
reward_magnitude |
\(CW_{j,j}\) |
Reward magnitude for target |
betas |
\(\beta\) |
Unconditional value for target |
cost |
\(cost\) |
Response cost |
temperature |
\(temperature\) |
Temperature for softmax function |
threshold |
\(\theta\) |
Threshold to become meaningful causal target/putative
cause |
k,alpha,alpha_reward |
\(k,\alpha,\alpha_{reward}\) |
Learning rates for predecessor representation,
predecessor representation contingency, and causal weights. |
w |
\(w\) |
Weight for net contingency computation |
minimum_rate |
\(minimum\_rate\) |
Lower bound on perceivable event rates |
sampling_interval |
\(sampling\_interval\) |
Time interval to update base rate calculations |
use_exact_mean |
\(use\_exact\_mean\) |
Whether to use exact mean calculations for \(\alpha\) |
t_ratio |
\(t\_ratio\) |
Ratio to calculate time constant |
use_timed_alpha |
\(use\_timed\_alpha\) |
Whether to use exponential decay for \(\alpha\) |
alpha_exponent, alpha_init, alpha_min |
\(alpha\_exponent,alpha\_init,
alpha\_min\) |
Parameters for exponential decay of \(\alpha\) |
add_beta |
\(add\_beta\) |
Whether to add \(\beta\) to dopaminergic activity |
jitter |
\(jitter\) |
Magnitude of perceptual noise for simultaneous
events |
## $name
## [1] "alphas"
##
## $default_value
## [1] 0.4
alphas |
\(\alpha\) |
Placeholder; no meaning. |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.