The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The most influential associative learning model, RW1972 (Rescorla & Wagner, 1972), learns from global error and posits no changes in stimulus associability.
Let \(v_{k,j}\) denote the associative strength from stimulus \(k\) to stimulus \(j\). On any given trial, the expectation of stimulus \(j\), \(e_j\), is given by:
\[ \tag{Eq.1} e_j = \sum_{k}^{K}x_k v_{k,j} \]
\(x_k\) denotes the presence (1) or absence (0) of stimulus \(k\), and the set \(K\) represents all stimuli in the design.
Changes to the association from stimulus \(i\) to \(j\), \(v_{i,j}\), are given by:
\[ \tag{Eq.2} \Delta v_{i,j} = \alpha_i \beta_j (\lambda_j - e_j) \]
where \(\alpha_i\) is the associability of stimulus \(i\), \(\beta_j\) is a learning rate parameter determined by the properties of \(j\)1, and \(\lambda_j\) is a the maximum association strength supported by \(j\) (the asymptote).
There is no specification of response-generating mechanisms in RW1972. However, the simplest response function that can be adopted is the identity function on stimulus expectations. If so, the responses reflecting the nature of \(j\), \(r_j\), are given by:
\[ \tag{Eq.3} r_j = e_j \]
The implementation of RW1972 allows the specification of
independent \(\beta\) values for
present and absent stimuli (beta_on
and
beta_off
, respectively).↩︎
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.