The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

btb: Beyond the Border - Kernel Density Estimation for Urban Geography

The kernelSmoothing() function allows you to square and smooth geolocated data. It calculates a classical kernel smoothing (conservative) or a geographically weighted median. There are four major call modes of the function. The first call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth) for a classical kernel smoothing and automatic grid. The second call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles) for a geographically weighted median and automatic grid. The third call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, centroids) for a classical kernel smoothing and user grid. The fourth call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles, centroids) for a geographically weighted median and user grid. Geographically weighted summary statistics : a framework for localised exploratory data analysis, C.Brunsdon & al., in Computers, Environment and Urban Systems C.Brunsdon & al. (2002) <doi:10.1016/S0198-9715(01)00009-6>, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition, Diggle, pp. 83-86, (2003) <doi:10.1080/13658816.2014.937718>.

Version: 0.2.0
Depends: R (≥ 3.3.0), dplyr, mapsf
Imports: methods, Rcpp (≥ 1.0.9), sf, RcppParallel, magrittr
LinkingTo: Rcpp, RcppParallel, BH (≥ 1.60.0-1), RcppArmadillo
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2022-10-24
DOI: 10.32614/CRAN.package.btb
Author: Arlindo Dos Santos [aut], François Sémécurbe [aut], Julien Pramil [aut], Kim Antunez [cre, ctb], Auriane Renaud [ctb], Farida Marouchi [ctb], Joachim Timotéo [ctb], Institut national de la statistique et des études économiques [cph]
Maintainer: Kim Antunez <antuki.kim+cran at gmail.com>
BugReports: https://github.com/InseeFr/btb/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/InseeFr/btb, https://inseefr.github.io/btb/
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: btb results

Documentation:

Reference manual: btb.pdf
Vignettes: Spatial smoothing with 'btb' R package
Smoothed logo created with 'btb' !

Downloads:

Package source: btb_0.2.0.tar.gz
Windows binaries: r-devel: btb_0.2.0.zip, r-release: btb_0.2.0.zip, r-oldrel: btb_0.2.0.zip
macOS binaries: r-release (arm64): btb_0.2.0.tgz, r-oldrel (arm64): btb_0.2.0.tgz, r-release (x86_64): btb_0.2.0.tgz, r-oldrel (x86_64): btb_0.2.0.tgz
Old sources: btb archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=btb to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.