The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

bssm: Bayesian Inference of Non-Linear and Non-Gaussian State Space Models

Efficient methods for Bayesian inference of state space models via Markov chain Monte Carlo (MCMC) based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>), particle MCMC, and its delayed acceptance version. Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported. See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details.

Version: 2.0.2
Depends: R (≥ 4.1.0)
Imports: bayesplot, checkmate, coda (≥ 0.18-1), diagis, dplyr, posterior, Rcpp (≥ 0.12.3), rlang, tidyr
LinkingTo: ramcmc, Rcpp, RcppArmadillo, sitmo
Suggests: covr, ggplot2 (≥ 2.0.0), KFAS (≥ 1.2.1), knitr (≥ 1.11), MASS, rmarkdown (≥ 0.8.1), ramcmc, sde, sitmo, testthat
Published: 2023-10-27
DOI: 10.32614/CRAN.package.bssm
Author: Jouni Helske ORCID iD [aut, cre], Matti Vihola ORCID iD [aut]
Maintainer: Jouni Helske <jouni.helske at iki.fi>
BugReports: https://github.com/helske/bssm/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/helske/bssm
NeedsCompilation: yes
SystemRequirements: pandoc (>= 1.12.3, needed for vignettes)
Citation: bssm citation info
Materials: README NEWS
In views: TimeSeries
CRAN checks: bssm results

Documentation:

Reference manual: bssm.pdf
Vignettes: bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R
Non-linear models with bssm
$\\psi$-APF for non-linear Gaussian state space models
Diffusion models with bssm

Downloads:

Package source: bssm_2.0.2.tar.gz
Windows binaries: r-devel: bssm_2.0.2.zip, r-release: bssm_2.0.2.zip, r-oldrel: bssm_2.0.2.zip
macOS binaries: r-release (arm64): bssm_2.0.2.tgz, r-oldrel (arm64): bssm_2.0.2.tgz, r-release (x86_64): bssm_2.0.2.tgz, r-oldrel (x86_64): bssm_2.0.2.tgz
Old sources: bssm archive

Reverse dependencies:

Reverse suggests: Ecfun

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bssm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.