The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

SelectBoost.gamlss: Stability-Selection via Correlated Resampling for 'GAMLSS' Models

Extends the 'SelectBoost' approach to Generalized Additive Models for Location, Scale and Shape (GAMLSS). Implements bootstrap stability-selection across parameter-specific formulas (mu, sigma, nu, tau) via gamlss::stepGAIC(). Includes optional standardization of predictors and helper functions for corrected AIC calculation. More details can be found in Bertrand and Maumy (2024) <https://hal.science/hal-05352041> that highlights correlation-aware resampling to improve variable selection for GAMLSS and quantile regression when predictors are numerous and highly correlated.

Version: 0.2.2
Depends: R (≥ 4.1.0)
Imports: gamlss, Rcpp, rlang, SelectBoost, stats, utils
LinkingTo: Rcpp, RcppArmadillo
Suggests: doParallel, foreach, future, future.apply, gamlss.data, gamlss.dist, ggplot2, glmnet, grpreg, knitr, knockoff, MASS, microbenchmark, nlme, parallel, pkgdown, pscl, rmarkdown, SGL, testthat (≥ 3.0.0)
Published: 2025-11-25
DOI: 10.32614/CRAN.package.SelectBoost.gamlss (may not be active yet)
Author: Frederic Bertrand ORCID iD [cre, aut]
Maintainer: Frederic Bertrand <frederic.bertrand at lecnam.net>
BugReports: https://github.com/fbertran/SelectBoost.gamlss/issues
License: GPL-3
URL: https://fbertran.github.io/SelectBoost.gamlss/, https://github.com/fbertran/SelectBoost.gamlss
NeedsCompilation: yes
SystemRequirements: C++17
Classification/MSC: 62H11, 62J12, 62J99
Citation: SelectBoost.gamlss citation info
Materials: README, NEWS
CRAN checks: SelectBoost.gamlss results

Documentation:

Reference manual: SelectBoost.gamlss.html , SelectBoost.gamlss.pdf
Vignettes: Advanced Real Data Examples: Zero-Inflation, Semicontinuous, and Longitudinal Growth (source, R code)
Algorithmic Pseudocode for SelectBoost.gamlss (source, R code)
Benchmark: Stepwise vs Grouped vs Glmnet Engines (source, R code)
Comparing SelectBoost-GAMLSS Variants (source, R code)
Confidence Functionals for SelectBoost-GAMLSS (source, R code)
Fast Deviance: Microbenchmarks (source, R code)
Fast Deviance: Numerical Equality Checks (source, R code)
Real Data Examples with Different Distributions (source, R code)
Stability-Selection for GAMLSS with SelectBoost.gamlss (source, R code)

Downloads:

Package source: SelectBoost.gamlss_0.2.2.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: SelectBoost.gamlss_0.2.2.zip
macOS binaries: r-release (arm64): SelectBoost.gamlss_0.2.2.tgz, r-oldrel (arm64): SelectBoost.gamlss_0.2.2.tgz, r-release (x86_64): SelectBoost.gamlss_0.2.2.tgz, r-oldrel (x86_64): SelectBoost.gamlss_0.2.2.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SelectBoost.gamlss to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.