The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Rforestry: Random Forests, Linear Trees, and Gradient Boosting for Inference and Interpretability

Provides fast implementations of Honest Random Forests, Gradient Boosting, and Linear Random Forests, with an emphasis on inference and interpretability. Additionally contains methods for variable importance, out-of-bag prediction, regression monotonicity, and several methods for missing data imputation. Soren R. Kunzel, Theo F. Saarinen, Edward W. Liu, Jasjeet S. Sekhon (2019) <doi:10.48550/arXiv.1906.06463>.

Version: 0.10.0
Imports: Rcpp (≥ 0.12.9), parallel, methods, visNetwork, glmnet (≥ 4.1), grDevices, onehot, pROC
LinkingTo: Rcpp, RcppArmadillo, RcppThread
Suggests: testthat, knitr, rmarkdown, mvtnorm
Published: 2023-03-25
DOI: 10.32614/CRAN.package.Rforestry
Author: Sören Künzel [aut], Theo Saarinen [aut, cre], Simon Walter [aut], Sam Antonyan [aut], Edward Liu [aut], Allen Tang [aut], Jasjeet Sekhon [aut]
Maintainer: Theo Saarinen <theo_s at berkeley.edu>
BugReports: https://github.com/forestry-labs/Rforestry/issues
License: GPL (≥ 3)
URL: https://github.com/forestry-labs/Rforestry
NeedsCompilation: yes
In views: MissingData
CRAN checks: Rforestry results

Documentation:

Reference manual: Rforestry.pdf

Downloads:

Package source: Rforestry_0.10.0.tar.gz
Windows binaries: r-devel: Rforestry_0.10.0.zip, r-release: Rforestry_0.10.0.zip, r-oldrel: Rforestry_0.10.0.zip
macOS binaries: r-release (arm64): Rforestry_0.10.0.tgz, r-oldrel (arm64): Rforestry_0.10.0.tgz, r-release (x86_64): Rforestry_0.10.0.tgz, r-oldrel (x86_64): Rforestry_0.10.0.tgz
Old sources: Rforestry archive

Reverse dependencies:

Reverse imports: distillML

Linking:

Please use the canonical form https://CRAN.R-project.org/package=Rforestry to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.