The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Implements an adaptively weighted group Lasso procedure for simultaneous variable selection and structure identification in varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates. The methodology, grounded in a strong sparsity condition, establishes selection consistency under certain weight conditions. To address the challenge of tuning parameter selection in practice, a BIC-type criterion named high-dimensional information criterion (HDIC) is proposed. The Lasso procedure, guided by HDIC-determined tuning parameters, maintains selection consistency. Theoretical findings are strongly supported by simulation studies. (Toshio Honda, Ching-Kang Ing, Wei-Ying Wu, 2019, <doi:10.3150/18-BEJ1091>).
Version: | 1.0.0 |
Depends: | R (≥ 3.4.0) |
Imports: | Rcpp (≥ 1.0.12), ggplot2 |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | knitr, rmarkdown, testthat (≥ 2.1.0) |
Published: | 2024-01-16 |
DOI: | 10.32614/CRAN.package.QuantRegGLasso |
Author: | Wen-Ting Wang [aut, cre], Wei-Ying Wu [aut], Toshio Honda [aut], Ching-Kang Ing [aut] |
Maintainer: | Wen-Ting Wang <egpivo at gmail.com> |
BugReports: | https://github.com/egpivo/QuantRegGLasso/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/egpivo/SpatPCA |
NeedsCompilation: | yes |
SystemRequirements: | GNU make |
Materials: | README NEWS |
CRAN checks: | QuantRegGLasso results |
Reference manual: | QuantRegGLasso.pdf |
Package source: | QuantRegGLasso_1.0.0.tar.gz |
Windows binaries: | r-devel: QuantRegGLasso_1.0.0.zip, r-release: QuantRegGLasso_1.0.0.zip, r-oldrel: QuantRegGLasso_1.0.0.zip |
macOS binaries: | r-release (arm64): QuantRegGLasso_1.0.0.tgz, r-oldrel (arm64): QuantRegGLasso_1.0.0.tgz, r-release (x86_64): QuantRegGLasso_1.0.0.tgz, r-oldrel (x86_64): QuantRegGLasso_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=QuantRegGLasso to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.