The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Inference for the Lorenz and penalized Lorenz regressions. More broadly, the package proposes functions to assess inequality and graphically represent it. The Lorenz Regression procedure is introduced in Heuchenne and Jacquemain (2022) <doi:10.1016/j.csda.2021.107347> and in Jacquemain, A., C. Heuchenne, and E. Pircalabelu (2024) <doi:10.1214/23-EJS2200>.
Version: | 2.1.0 |
Depends: | R (≥ 3.3.1) |
Imports: | stats, ggplot2, scales, parsnip, boot, rsample, parallel, doParallel, foreach, MASS, GA, locpol, Rearrangement, Rcpp (≥ 0.11.0) |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | rmarkdown |
Published: | 2024-10-11 |
DOI: | 10.32614/CRAN.package.LorenzRegression |
Author: | Alexandre Jacquemain [aut, cre], Xingjie Shi [ctb] (Author of an R implementation of the FABS algorithm available at https://github.com/shuanggema/Fabs, of which function Lorenz.FABS is derived) |
Maintainer: | Alexandre Jacquemain <aljacquemain at gmail.com> |
BugReports: | https://github.com/AlJacq/LorenzRegression/issues |
License: | GPL-3 |
URL: | https://github.com/AlJacq/LorenzRegression |
NeedsCompilation: | yes |
Materials: | README NEWS |
CRAN checks: | LorenzRegression results |
Reference manual: | LorenzRegression.pdf |
Package source: | LorenzRegression_2.1.0.tar.gz |
Windows binaries: | r-devel: LorenzRegression_2.1.0.zip, r-release: LorenzRegression_2.1.0.zip, r-oldrel: LorenzRegression_2.1.0.zip |
macOS binaries: | r-release (arm64): LorenzRegression_2.1.0.tgz, r-oldrel (arm64): LorenzRegression_2.1.0.tgz, r-release (x86_64): LorenzRegression_2.1.0.tgz, r-oldrel (x86_64): LorenzRegression_2.1.0.tgz |
Old sources: | LorenzRegression archive |
Please use the canonical form https://CRAN.R-project.org/package=LorenzRegression to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.