The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Coxmos: Cox MultiBlock Survival

This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) <https://CRAN.R-project.org/package=survival>, Noah Simon et al. (2011) <doi:10.18637/jss.v039.i05>, Philippe Bastien et al. (2005) <doi:10.1016/j.csda.2004.02.005>, Philippe Bastien (2008) <doi:10.1016/j.chemolab.2007.09.009>, Philippe Bastien et al. (2014) <doi:10.1093/bioinformatics/btu660>, Kassu Mehari Beyene and Anouar El Ghouch (2020) <doi:10.1002/sim.8671>, Florian Rohart et al. (2017) <doi:10.1371/journal.pcbi.1005752>.

Version: 1.1.0
Depends: R (≥ 4.1.0)
Imports: caret, cowplot, furrr, future, ggrepel, ggplot2, ggpubr, glmnet, MASS, mixOmics, progress, purrr, Rdpack, scattermore, stats, survcomp, survival, survminer, svglite, tidyr, utils
Suggests: ggforce, grDevices, knitr, nsROC, patchwork, RColorConesa, risksetROC, rmarkdown, smoothROCtime, survivalROC
Published: 2025-01-18
DOI: 10.32614/CRAN.package.Coxmos
Author: Pedro Salguero García ORCID iD [aut, cre, rev], Sonia Tarazona Campos [ths], Ana Conesa Cegarra [ths], Kassu Mehari Beyene [ctb], Luis Meira Machado [ctb], Marta Sestelo [ctb], Artur Araújo [ctb]
Maintainer: Pedro Salguero García <pedrosalguerog at gmail.com>
BugReports: https://github.com/BiostatOmics/Coxmos/issues
License: CC BY 4.0
URL: https://github.com/BiostatOmics/Coxmos
NeedsCompilation: yes
Materials: README
CRAN checks: Coxmos results

Documentation:

Reference manual: Coxmos.pdf
Vignettes: Step-by-step guide to the MO-Coxmos pipeline (source, R code)
Step-by-step guide to the Coxmos pipeline (source, R code)

Downloads:

Package source: Coxmos_1.1.0.tar.gz
Windows binaries: r-devel: Coxmos_1.1.0.zip, r-release: Coxmos_1.1.0.zip, r-oldrel: Coxmos_1.1.0.zip
macOS binaries: r-release (arm64): Coxmos_1.0.2.tgz, r-oldrel (arm64): Coxmos_1.0.2.tgz, r-release (x86_64): Coxmos_1.1.0.tgz, r-oldrel (x86_64): Coxmos_1.0.2.tgz
Old sources: Coxmos archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=Coxmos to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.