The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
It fits a univariate left, right, or interval censored linear regression model with autoregressive errors, considering the normal or the Student-t distribution for the innovations. It provides estimates and standard errors of the parameters, predicts future observations, and supports missing values on the dependent variable. References used for this package: Schumacher, F. L., Lachos, V. H., & Dey, D. K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics, 45(4), 375-392 <doi:10.1002/cjs.11338>. Schumacher, F. L., Lachos, V. H., Vilca-Labra, F. E., & Castro, L. M. (2018). Influence diagnostics for censored regression models with autoregressive errors. Australian & New Zealand Journal of Statistics, 60(2), 209-229 <doi:10.1111/anzs.12229>. Valeriano, K. A., Schumacher, F. L., Galarza, C. E., & Matos, L. A. (2021). Censored autoregressive regression models with Student-t innovations. arXiv preprint <doi:10.48550/arXiv.2110.00224>.
Version: | 3.0.1 |
Imports: | ggplot2, gridExtra, matrixcalc, methods, msm, mvtnorm, numDeriv, qqplotr, Rcpp, Rdpack, stats, tmvtnorm, utils |
LinkingTo: | RcppArmadillo, Rcpp |
Suggests: | SMNCensReg |
Published: | 2023-08-29 |
DOI: | 10.32614/CRAN.package.ARCensReg |
Author: | Fernanda L. Schumacher [aut, cre], Katherine A. L. Valeriano [ctb], Victor H. Lachos [ctb], Christian G. Morales [ctb], Larissa A. Matos [ctb] |
Maintainer: | Fernanda L. Schumacher <fernandalschumacher at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | yes |
Materials: | README NEWS |
In views: | TimeSeries |
CRAN checks: | ARCensReg results |
Reference manual: | ARCensReg.pdf |
Package source: | ARCensReg_3.0.1.tar.gz |
Windows binaries: | r-devel: ARCensReg_3.0.1.zip, r-release: ARCensReg_3.0.1.zip, r-oldrel: ARCensReg_3.0.1.zip |
macOS binaries: | r-release (arm64): ARCensReg_3.0.1.tgz, r-oldrel (arm64): ARCensReg_3.0.1.tgz, r-release (x86_64): ARCensReg_3.0.1.tgz, r-oldrel (x86_64): ARCensReg_3.0.1.tgz |
Old sources: | ARCensReg archive |
Please use the canonical form https://CRAN.R-project.org/package=ARCensReg to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.