CRAN Package Check Results for Maintainer ‘Tobias Schmidt <tobias.schmidt331 at gmail.com>’

Last updated on 2025-12-04 09:50:34 CET.

Package ERROR NOTE OK
FastRet 2 11
metabodecon 3 10
toscmask 13
toscutil 13

Package FastRet

Current CRAN status: ERROR: 2, OK: 11

Version: 1.1.4
Check: tests
Result: ERROR Running ‘testthat.R’ [65s/112s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(FastRet) > > test_check("FastRet") Starting 2 test processes. Saving _problems/test-train_frm-gbtree-11.R Saving _problems/test-fit_gbtree-8.R Saving _problems/test-fit_gbtree-16.R > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.27<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.27<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.89<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.89<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.94<1b>[0m Starting model Adjustment > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.95<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.00<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.00<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.00<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.00<1b>[0m predictors: 1, 2 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.00<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.00<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.03<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.04<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.21<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.22<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.25<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.26<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.43<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-03 10:48:48.44<1b>[0m Returning adjusted frm object > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:49.33<1b>[0m Starting Selective Measuring > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:49.34<1b>[0m Preprocessing input data > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:49.34<1b>[0m Mocking is enabled for 'preprocess_data'. Returning 'mockdata/RPCD_prepro.rds'. > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:49.39<1b>[0m Standardizing features > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:49.43<1b>[0m Training Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:49.44<1b>[0m Fitting Ridge model > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:51.27<1b>[0m End training > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:51.27<1b>[0m Scaling features by coefficients of Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:51.29<1b>[0m Applying PAM clustering > test-selective_measuring.R: <1b>[1;30m2025-12-03 10:48:52.16<1b>[0m Returning clustering results > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:47.95<1b>[0m dim(new_data): 25 x 3 > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.23<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.23<1b>[0m nfolds: 5 > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.23<1b>[0m Preprocessing data > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.28<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.29<1b>[0m Estimating performance of adjusted model in CV > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.69<1b>[0m Fitting adjustment model on full new data set > test-plot_frm.R: <1b>[1;30m2025-12-03 10:48:53.72<1b>[0m Returning adjusted frm object [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-train_frm-gbtree.R:5:5'): train_frm works if `method == "GBTree"` ── <subscriptOutOfBoundsError/error/condition> Error in `FUN(X[[i]], ...)`: subscript out of bounds Backtrace: ▆ 1. └─FastRet::train_frm(...) at test-train_frm-gbtree.R:5:5 2. └─base::lapply(tmp, "[[", 2) ── Error ('test-fit_gbtree.R:8:5'): fit.gbtrees works as expected ────────────── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:8:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) ── Error ('test-fit_gbtree.R:16:5'): fit.gbtrees works for data from reverse phase column ── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:16:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.1.4
Check: tests
Result: ERROR Running ‘testthat.R’ [65s/142s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(FastRet) > > test_check("FastRet") Starting 2 test processes. Saving _problems/test-train_frm-gbtree-11.R Saving _problems/test-fit_gbtree-8.R Saving _problems/test-fit_gbtree-16.R > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:54.34<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:54.35<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:56.18<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:56.18<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:56.26<1b>[0m Starting model Adjustment > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:56.26<1b>[0m dim(original_data): 442 x 126 > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:56.26<1b>[0m dim(new_data): 25 x 3 > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.05<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.05<1b>[0m nfolds: 5 > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.05<1b>[0m Preprocessing data > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.14<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.16<1b>[0m Estimating performance of adjusted model in CV > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.66<1b>[0m Fitting adjustment model on full new data set > test-plot_frm.R: <1b>[1;30m2025-12-03 11:34:57.68<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.80<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.82<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.82<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.82<1b>[0m predictors: 1, 2 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.82<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.82<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.87<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:58.89<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.24<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.27<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.35<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:34:59.37<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:35:00.33<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-03 11:35:00.37<1b>[0m Returning adjusted frm object > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:01.45<1b>[0m Starting Selective Measuring > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:01.45<1b>[0m Preprocessing input data > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:01.45<1b>[0m Mocking is enabled for 'preprocess_data'. Returning 'mockdata/RPCD_prepro.rds'. > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:01.48<1b>[0m Standardizing features > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:01.52<1b>[0m Training Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:01.53<1b>[0m Fitting Ridge model > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:04.75<1b>[0m End training > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:04.76<1b>[0m Scaling features by coefficients of Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:05.04<1b>[0m Applying PAM clustering > test-selective_measuring.R: <1b>[1;30m2025-12-03 11:35:10.56<1b>[0m Returning clustering results [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-train_frm-gbtree.R:5:5'): train_frm works if `method == "GBTree"` ── <subscriptOutOfBoundsError/error/condition> Error in `FUN(X[[i]], ...)`: subscript out of bounds Backtrace: ▆ 1. └─FastRet::train_frm(...) at test-train_frm-gbtree.R:5:5 2. └─base::lapply(tmp, "[[", 2) ── Error ('test-fit_gbtree.R:8:5'): fit.gbtrees works as expected ────────────── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:8:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) ── Error ('test-fit_gbtree.R:16:5'): fit.gbtrees works for data from reverse phase column ── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:16:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package metabodecon

Current CRAN status: NOTE: 3, OK: 10

Version: 1.6.2
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘mdrb’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package toscmask

Current CRAN status: OK: 13

Package toscutil

Current CRAN status: OK: 13

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.