CRAN Package Check Results for Package spinner

Last updated on 2025-04-12 18:52:09 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1.0 14.67 1095.44 1110.11 OK
r-devel-linux-x86_64-debian-gcc 1.1.0 9.48 1262.76 1272.24 OK
r-devel-linux-x86_64-fedora-clang 1.1.0 1248.46 OK
r-devel-linux-x86_64-fedora-gcc 1.1.0 1076.06 OK
r-devel-macos-arm64 1.1.0 280.00 OK
r-devel-macos-x86_64 1.1.0 70.00 OK
r-devel-windows-x86_64 1.1.0 16.00 260.00 276.00 ERROR
r-patched-linux-x86_64 1.1.0 13.84 1218.94 1232.78 OK
r-release-linux-x86_64 1.1.0 OK
r-release-macos-arm64 1.1.0 44.00 OK
r-release-macos-x86_64 1.1.0 73.00 OK
r-release-windows-x86_64 1.1.0 20.00 455.00 475.00 OK
r-oldrel-macos-arm64 1.1.0 OK
r-oldrel-macos-x86_64 1.1.0 60.00 OK
r-oldrel-windows-x86_64 1.1.0 20.00 527.00 547.00 OK

Check Details

Version: 1.1.0
Check: tests
Result: ERROR Running 'testthat.R' [156s] Running the tests in 'tests/testthat.R' failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(spinner) > > test_check("spinner") OMP: Warning #96: Cannot form a team with 48 threads, using 2 instead. OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set). epoch: 10 Train loss: 0.7582316 Val loss: 0.7391504 epoch: 20 Train loss: 0.7072309 Val loss: 0.837458 epoch: 30 Train loss: 0.7379733 Val loss: 0.8203105 early stop at epoch: 30 Train loss: 0.7379733 Val loss: 0.8203105 epoch: 10 Train loss: 0.7947251 Val loss: 0.8099958 epoch: 20 Train loss: 0.7160762 Val loss: 0.768764 epoch: 30 Train loss: 0.7567238 Val loss: 0.8039885 early stop at epoch: 30 Train loss: 0.7567238 Val loss: 0.8039885 epoch: 10 Train loss: 0.7418396 Val loss: 0.5419666 epoch: 20 Train loss: 0.8346889 Val loss: 0.7731465 epoch: 30 Train loss: 0.7708114 Val loss: 0.8349199 epoch: 40 Train loss: 0.7779557 Val loss: 0.5689498 early stop at epoch: 48 Train loss: 0.5047165 Val loss: 0.7209942 epoch: 10 Train loss: 0.7208713 Val loss: 0.7897916 epoch: 20 Train loss: 0.7392786 Val loss: 0.7631863 epoch: 30 Train loss: 0.702674 Val loss: 0.611358 epoch: 40 Train loss: 0.7129558 Val loss: 0.4897506 epoch: 50 Train loss: 0.7146271 Val loss: 0.2373372 epoch: 60 Train loss: 0.7795256 Val loss: 0.5987026 epoch: 70 Train loss: 0.7179822 Val loss: 0.7206399 epoch: 80 Train loss: 0.7707198 Val loss: 0.4507432 epoch: 90 Train loss: 0.7182872 Val loss: 0.5520208 epoch: 100 Train loss: 0.735483 Val loss: 0.794884 time: 43.58 sec elapsed epoch: 10 Train loss: 0.737593 Val loss: 0.7964824 epoch: 20 Train loss: 0.7628953 Val loss: 0.7709303 epoch: 30 Train loss: 0.7256792 Val loss: 0.8058355 early stop at epoch: 30 Train loss: 0.7256792 Val loss: 0.8058355 epoch: 10 Train loss: 0.7123053 Val loss: 0.7207983 epoch: 20 Train loss: 0.7652806 Val loss: 0.7287926 epoch: 30 Train loss: 0.6607275 Val loss: 0.7177234 early stop at epoch: 34 Train loss: 0.7106651 Val loss: 0.7581643 epoch: 10 Train loss: 0.7217296 Val loss: 0.6899732 epoch: 20 Train loss: 0.6493021 Val loss: 0.6095485 epoch: 30 Train loss: 0.6911808 Val loss: 0.6813338 early stop at epoch: 38 Train loss: 0.6191614 Val loss: 0.7227661 epoch: 10 Train loss: 0.6781733 Val loss: 0.6063893 epoch: 20 Train loss: 0.6293673 Val loss: 0.6771112 epoch: 30 Train loss: 0.6510519 Val loss: 0.6451957 early stop at epoch: 37 Train loss: 0.6193765 Val loss: 0.7445753 time: 26.72 sec elapsed epoch: 10 Train loss: 0.3323455 Val loss: 0.2057697 epoch: 20 Train loss: 0.3128992 Val loss: 0.2961397 epoch: 30 Train loss: 0.3213869 Val loss: 0.3488863 early stop at epoch: 31 Train loss: 0.2884755 Val loss: 0.3758954 epoch: 10 Train loss: 0.3286971 Val loss: 0.4907381 epoch: 20 Train loss: 0.2883044 Val loss: 0.3324824 epoch: 30 Train loss: 0.3368618 Val loss: 0.2853904 early stop at epoch: 32 Train loss: 0.3554772 Val loss: 0.4938169 epoch: 10 Train loss: 0.2695414 Val loss: 0.2147921 epoch: 20 Train loss: 0.2195314 Val loss: 0.1746842 epoch: 30 Train loss: 0.2348154 Val loss: 0.3264962 early stop at epoch: 30 Train loss: 0.2348154 Val loss: 0.3264962 epoch: 10 Train loss: 0.2818162 Val loss: 0.3142842 epoch: 20 Train loss: 0.2333577 Val loss: 0.3371244 epoch: 30 Train loss: 0.2111709 Val loss: 0.1535637 early stop at epoch: 33 Train loss: 0.2429444 Val loss: 0.5181284 time: 24.42 sec elapsed epoch: 10 Train loss: 1.062477 Val loss: 0.4094163 epoch: 20 Train loss: 1.062477 Val loss: 0.4131407 epoch: 30 Train loss: 1.062477 Val loss: 0.4131407 epoch: 40 Train loss: 1.062477 Val loss: 0.4131407 epoch: 50 Train loss: 1.062477 Val loss: 0.4131407 epoch: 60 Train loss: 1.062477 Val loss: 0.4131407 epoch: 70 Train loss: 1.062477 Val loss: 0.4131407 epoch: 80 Train loss: 1.062477 Val loss: 0.4131407 epoch: 90 Train loss: 1.062477 Val loss: 0.4131407 epoch: 100 Train loss: 1.062477 Val loss: 0.4131407 epoch: 10 Train loss: 0.4641428 Val loss: 0.6449512 epoch: 20 Train loss: 0.4641428 Val loss: 0.6449512 epoch: 30 Train loss: 0.4641428 Val loss: 0.6449512 early stop at epoch: 32 Train loss: 0.4641428 Val loss: 0.6756557 epoch: 10 Train loss: 0.3412416 Val loss: 0.3526876 epoch: 20 Train loss: 0.3412416 Val loss: 0.3527545 epoch: 30 Train loss: 0.375169 Val loss: 0.3526876 early stop at epoch: 30 Train loss: 0.375169 Val loss: 0.3526876 time: 14.17 sec elapsed epoch: 10 Train loss: 0.5028319 Val loss: 0.5703739 epoch: 20 Train loss: 0.5028319 Val loss: 0.5852911 epoch: 30 Train loss: 0.5028319 Val loss: 0.5871185 early stop at epoch: 30 Train loss: 0.5028319 Val loss: 0.5871185 epoch: 10 Train loss: 0.712052 Val loss: 0.7242787 epoch: 20 Train loss: 0.712052 Val loss: 0.6541753 epoch: 30 Train loss: 0.712052 Val loss: 0.7090073 epoch: 40 Train loss: 0.712052 Val loss: 0.6541753 epoch: 50 Train loss: 0.712052 Val loss: 0.6840382 epoch: 60 Train loss: 0.712052 Val loss: 0.6578554 epoch: 70 Train loss: 0.7296538 Val loss: 0.6514337 epoch: 80 Train loss: 0.712052 Val loss: 0.7169247 epoch: 90 Train loss: 0.712052 Val loss: 0.65622 early stop at epoch: 95 Train loss: 0.7360142 Val loss: 0.671432 epoch: 10 Train loss: 0.6344905 Val loss: 0.6964411 epoch: 20 Train loss: 0.6629397 Val loss: 0.6997733 epoch: 30 Train loss: 0.6344905 Val loss: 0.7371905 early stop at epoch: 30 Train loss: 0.6344905 Val loss: 0.7371905 time: 15.05 sec elapsed epoch: 10 Train loss: 0.6652319 Val loss: 0.638321 epoch: 20 Train loss: 0.6470566 Val loss: 0.5407597 epoch: 30 Train loss: 0.6489133 Val loss: 0.5958034 epoch: 40 Train loss: 0.6663947 Val loss: 0.5789232 epoch: 50 Train loss: 0.6749999 Val loss: 0.5949006 epoch: 60 Train loss: 0.6133571 Val loss: 0.6109828 early stop at epoch: 62 Train loss: 0.7054131 Val loss: 0.6310146 epoch: 10 Train loss: 0.4299256 Val loss: 0.566372 epoch: 20 Train loss: 0.4163472 Val loss: 0.5448638 epoch: 30 Train loss: 0.4592139 Val loss: 0.2928243 epoch: 40 Train loss: 0.3731425 Val loss: 0.5574184 early stop at epoch: 40 Train loss: 0.3731425 Val loss: 0.5574184 epoch: 10 Train loss: 0.6346897 Val loss: 0.4070109 epoch: 20 Train loss: 0.6061462 Val loss: 0.5735349 epoch: 30 Train loss: 0.5904976 Val loss: 0.4818239 early stop at epoch: 31 Train loss: 0.5914701 Val loss: 0.7047771 time: 25.3 sec elapsed random search: 54.52 sec elapsed [ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test.R:89:13'): Correct outcome format and size for base outcome3 ─── <purrr_error_indexed/rlang_error/error/condition> Error in `purrr::pmap(hyper_params, ~spinner(graph, target, node_labels, edge_labels, context_labels, direction = ..1, sampling = NA, threshold = 0.01, method = ..2, node_embedding_size = ..13, edge_embedding_size = ..14, context_embedding_size = ..15, update_order = ..3, n_layers = ..4, skip_shortcut = ..5, forward_layer = ..6, forward_activation = ..7, forward_drop = ..8, mode = ..9, optimization = ..10, epochs, lr = ..11, patience, weight_decay = ..12, reps, folds, holdout, verbose, seed))`: i In index: 1. Caused by error in `pmap()`: i In index: 1. Caused by error in `training_function()`: ! not enough data for training [ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ] Error: Test failures Execution halted Flavor: r-devel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.