Last updated on 2025-08-27 23:49:11 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0.4 | 85.03 | 408.70 | 493.73 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.0.5 | 50.82 | 285.84 | 336.66 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.0.5 | 830.59 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.0.5 | 854.20 | OK | |||
r-devel-windows-x86_64 | 1.0.5 | 89.00 | 309.00 | 398.00 | ERROR | |
r-patched-linux-x86_64 | 1.0.5 | 87.96 | 395.67 | 483.63 | OK | |
r-release-linux-x86_64 | 1.0.4 | 81.38 | 384.96 | 466.34 | OK | |
r-release-macos-arm64 | 1.0.5 | 206.00 | OK | |||
r-release-macos-x86_64 | 1.0.5 | 408.00 | WARN | |||
r-release-windows-x86_64 | 1.0.4 | 96.00 | 398.00 | 494.00 | OK | |
r-oldrel-macos-arm64 | 1.0.5 | 196.00 | NOTE | |||
r-oldrel-macos-x86_64 | 1.0.5 | 359.00 | NOTE | |||
r-oldrel-windows-x86_64 | 1.0.5 | 85.00 | 347.00 | 432.00 | ERROR |
Version: 1.0.5
Check: tests
Result: ERROR
Running 'testthat.R' [170s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # CRAN OMP THREAD LIMIT
> Sys.setenv("OMP_THREAD_LIMIT" = 1)
>
> library(testthat)
> library(shapr)
Attaching package: 'shapr'
The following object is masked from 'package:testthat':
setup
>
> test_check("shapr")
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 5
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 5
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 128`, and is therefore set to `2^n_features = 128`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 7
* Number of observations to explain: 2
-- Main computation started --
i Using 128 of 128 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 64`, and is therefore set to `2^n_features = 64`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 6
* Number of observations to explain: 2
-- Main computation started --
i Using 64 of 64 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 2
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 10 of 32 coalitions, 2 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 2 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 14 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 2 new.
-- Iteration 7 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 8 -----------------------------------------------------------------
i Using 20 of 32 coalitions, 2 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 4 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 4 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 22 of 32 coalitions, 4 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 5
* Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
{"Month"}; Day: {"Day"}
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 4 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 4 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 22 of 32 coalitions, 4 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 10 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 3
* Feature groups: A: {"Solar.R", "Wind"}; B: {"Temp", "Month_factor"}; C:
{"Day"}
* Number of observations to explain: 3
-- Main computation started --
i Using 6 of 8 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` at 2025-08-26 02:10:22 --------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
* Computations (temporary) saved at:
'D:\temp\2025_08_26_01_50_00_7068\RtmpIXKhxo\shapr_obj_1bdc8db416ed.rds'
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian, gaussian, gaussian, and gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, independence, and empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, independence, and empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: vaeac
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 10
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Flavor: r-devel-windows-x86_64
Version: 1.0.5
Check: Rd files
Result: WARN
additional_regression_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
aicc_full_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
aicc_full_single_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
append_vS_list.Rd: Sections \title, and \name must exist and be unique in Rd files
categorical_to_one_hot_layer.Rd: Sections \title, and \name must exist and be unique in Rd files
check_categorical_valid_MCsamp.Rd: Sections \title, and \name must exist and be unique in Rd files
check_convergence.Rd: Sections \title, and \name must exist and be unique in Rd files
check_groups.Rd: Sections \title, and \name must exist and be unique in Rd files
check_verbose.Rd: Sections \title, and \name must exist and be unique in Rd files
cli_compute_vS.Rd: Sections \title, and \name must exist and be unique in Rd files
cli_iter.Rd: Sections \title, and \name must exist and be unique in Rd files
cli_startup.Rd: Sections \title, and \name must exist and be unique in Rd files
cli_topline.Rd: Sections \title, and \name must exist and be unique in Rd files
coalition_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
compute_estimates.Rd: Sections \title, and \name must exist and be unique in Rd files
compute_shapley.Rd: Sections \title, and \name must exist and be unique in Rd files
compute_time.Rd: Sections \title, and \name must exist and be unique in Rd files
compute_vS.Rd: Sections \title, and \name must exist and be unique in Rd files
convert_feature_name_to_idx.Rd: Sections \title, and \name must exist and be unique in Rd files
correction_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
create_ctree.Rd: Sections \title, and \name must exist and be unique in Rd files
create_marginal_data_cat.Rd: Sections \title, and \name must exist and be unique in Rd files
create_marginal_data_gaussian.Rd: Sections \title, and \name must exist and be unique in Rd files
create_marginal_data_training.Rd: Sections \title, and \name must exist and be unique in Rd files
default_doc_export.Rd: Sections \title, and \name must exist and be unique in Rd files
default_doc_internal.Rd: Sections \title, and \name must exist and be unique in Rd files
exact_coalition_table.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
Error writing to connection: No space left on device
finalize_explanation.Rd: Sections \title, and \name must exist and be unique in Rd files
format_convergence_info.Rd: Sections \title, and \name must exist and be unique in Rd files
format_info_basic.Rd: Sections \title, and \name must exist and be unique in Rd files
Warning in for (i in seq_along(specs)) { :
closing unused connection 6 ()
Warning in for (i in seq_along(specs)) { :
closing unused connection 5 ()
Warning in for (i in seq_along(specs)) { :
closing unused connection 4 ()
Warning in for (i in seq_along(specs)) { :
closing unused connection 3 ()
format_info_extra.Rd: Sections \title, and \name must exist and be unique in Rd files
format_round.Rd: Sections \title, and \name must exist and be unique in Rd files
format_shapley_info.Rd: Sections \title, and \name must exist and be unique in Rd files
gauss_cat_loss.Rd: Sections \title, and \name must exist and be unique in Rd files
gauss_cat_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
gauss_cat_sampler_most_likely.Rd: Sections \title, and \name must exist and be unique in Rd files
gauss_cat_sampler_random.Rd: Sections \title, and \name must exist and be unique in Rd files
gaussian_transform.Rd: Sections \title, and \name must exist and be unique in Rd files
gaussian_transform_separate.Rd: Sections \title, and \name must exist and be unique in Rd files
get_S_causal_steps.Rd: Sections \title, and \name must exist and be unique in Rd files
get_cov_mat.Rd: Sections \title, and \name must exist and be unique in Rd files
get_data_forecast.Rd: Sections \title, and \name must exist and be unique in Rd files
get_data_specs.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
get_extra_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
get_feature_specs.Rd: Sections \title, and \name must exist and be unique in Rd files
get_iterative_args_default.Rd: Sections \title, and \name must exist and be unique in Rd files
get_max_n_coalitions_causal.Rd: Sections \title, and \name must exist and be unique in Rd files
get_model_specs.Rd: Sections \title, and \name must exist and be unique in Rd files
get_mu_vec.Rd: Sections \title, and \name must exist and be unique in Rd files
get_nice_time.Rd: Sections \title, and \name must exist and be unique in Rd files
get_output_args_default.Rd: Sections \title, and \name must exist and be unique in Rd files
get_predict_model.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
get_supported_approaches.Rd: Sections \title, and \name must exist and be unique in Rd files
get_supported_models.Rd: Sections \title, and \name must exist and be unique in Rd files
get_valid_causal_coalitions.Rd: Sections \title, and \name must exist and be unique in Rd files
group_forecast_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
hat_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
inv_gaussian_transform_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
lag_data.Rd: Sections \title, and \name must exist and be unique in Rd files
mahalanobis_distance_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
mcar_mask_generator.Rd: Sections \title, and \name must exist and be unique in Rd files
memory_layer.Rd: Sections \title, and \name must exist and be unique in Rd files
model_checker.Rd: Sections \title, and \name must exist and be unique in Rd files
num_str.Rd: Sections \title, and \name must exist and be unique in Rd files
observation_impute.Rd: Sections \title, and \name must exist and be unique in Rd files
observation_impute_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
paired_sampler.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
Error writing to connection: No space left on device
Error writing to connection: No space left on device
Error writing to connection: No space left on device
Error writing to connection: No space left on device
Error writing to connection: No space left on device
prepare_data.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_data_causal.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_data_copula_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_data_copula_cpp_caus.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_data_gaussian_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_data_gaussian_cpp_caus.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_data_single_coalition.Rd: Sections \title, and \name must exist and be unique in Rd files
prepare_next_iteration.Rd: Sections \title, and \name must exist and be unique in Rd files
print.shapr.Rd: Sections \title, and \name must exist and be unique in Rd files
print_iter.Rd: Sections \title, and \name must exist and be unique in Rd files
process_factor_data.Rd: Sections \title, and \name must exist and be unique in Rd files
quantile_type7_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
reg_forecast_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.check_namespaces.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.check_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.check_recipe_func.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.check_sur_n_comb.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.check_vfold_cv_para.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.cv_message.Rd: Sections \title, and \name must exist and be unique in Rd files
regression.get_string_to_R.Rd: Sections \title, and \name must exist and be unique in Rd files
Warning in for (block in blocks) { : closing unused connection 10 ()
Warning in for (block in blocks) { : closing unused connection 9 ()
Warning in for (block in blocks) { : closing unused connection 8 ()
Warning in for (block in blocks) { : closing unused connection 7 ()
Warning in for (block in blocks) { : closing unused connection 6 ()
Warning in for (block in blocks) { : closing unused connection 5 ()
Warning in for (block in blocks) { : closing unused connection 4 ()
Warning in for (block in blocks) { : closing unused connection 3 ()
round_manual.Rd: Sections \title, and \name must exist and be unique in Rd files
rss_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
sample_coalitions_cpp_str_paired.Rd: Sections \title, and \name must exist and be unique in Rd files
sample_combinations.Rd: Sections \title, and \name must exist and be unique in Rd files
sample_ctree.Rd: Sections \title, and \name must exist and be unique in Rd files
save_results.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
Error writing to connection: No space left on device
shapley_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
shapley_weights.Rd: Sections \title, and \name must exist and be unique in Rd files
shapr-package.Rd: Sections \title, and \name must exist and be unique in Rd files
skip_connection.Rd: Sections \title, and \name must exist and be unique in Rd files
specified_masks_mask_generator.Rd: Sections \title, and \name must exist and be unique in Rd files
specified_prob_mask_generator.Rd: Sections \title, and \name must exist and be unique in Rd files
summary.shapr.Rd: Sections \title, and \name must exist and be unique in Rd files
test_predict_model.Rd: Sections \title, and \name must exist and be unique in Rd files
testing_cleanup.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
vaeac_categorical_parse_params.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_activation_func.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_cuda.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_epoch_values.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_extra_named_list.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_logicals.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_mask_gen.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_masking_ratio.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
vaeac_check_positive_integers.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_positive_numerics.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_probabilities.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_save_names.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_save_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_which_vaeac_model.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_check_x_colnames.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_compute_normalization.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_dataset.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_extend_batch.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_current_save_state.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
vaeac_get_evaluation_criteria.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
vaeac_get_full_state_list.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_mask_generator_name.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_model_from_checkp.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_n_decimals.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_optimizer.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_save_file_names.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_val_iwae.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_get_x_explain_extended.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_impute_missing_entries.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_kl_normal_normal.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_normal_parse_params.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_normalize_data.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_postprocess_data.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_preprocess_data.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_print_train_summary.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_save_state.Rd: Sections \title, and \name must exist and be unique in Rd files
Error writing to connection: No space left on device
Error writing to connection: No space left on device
vaeac_train_model_continue.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_update_para_locations.Rd: Sections \title, and \name must exist and be unique in Rd files
vaeac_update_pretrained_model.Rd: Sections \title, and \name must exist and be unique in Rd files
weight_matrix.Rd: Sections \title, and \name must exist and be unique in Rd files
weight_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
problems found in ‘additional_regression_setup.Rd’, ‘aicc_full_cpp.Rd’, ‘aicc_full_single_cpp.Rd’, ‘append_vS_list.Rd’, ‘categorical_to_one_hot_layer.Rd’, ‘check_categorical_valid_MCsamp.Rd’, ‘check_convergence.Rd’, ‘check_groups.Rd’, ‘check_verbose.Rd’, ‘cli_compute_vS.Rd’, ‘cli_iter.Rd’, ‘cli_startup.Rd’, ‘cli_topline.Rd’, ‘coalition_matrix_cpp.Rd’, ‘compute_MSEv_eval_crit.Rd’, ‘compute_estimates.Rd’, ‘compute_shapley.Rd’, ‘compute_time.Rd’, ‘compute_vS.Rd’, ‘convert_feature_name_to_idx.Rd’, ‘correction_matrix_cpp.Rd’, ‘create_coalition_table.Rd’, ‘create_ctree.Rd’, ‘create_marginal_data_cat.Rd’, ‘create_marginal_data_gaussian.Rd’, ‘create_marginal_data_training.Rd’, ‘default_doc_export.Rd’, ‘default_doc_internal.Rd’, ‘exact_coalition_table.Rd’, ‘explain.Rd’, ‘explain_forecast.Rd’, ‘finalize_explanation.Rd’, ‘format_convergence_info.Rd’, ‘format_info_basic.Rd’, ‘format_info_extra.Rd’, ‘format_round.Rd’, ‘format_shapley_info.Rd’, ‘gauss_cat_loss.Rd’, ‘gauss_cat_parameters.Rd’, ‘gauss_cat_sampler_most_likely.Rd’, ‘gauss_cat_sampler_random.Rd’, ‘gaussian_transform.Rd’, ‘gaussian_transform_separate.Rd’, ‘get_S_causal_steps.Rd’, ‘get_cov_mat.Rd’, ‘get_data_forecast.Rd’, ‘get_data_specs.Rd’, ‘get_extra_comp_args_default.Rd’, ‘get_extra_parameters.Rd’, ‘get_feature_specs.Rd’, ‘get_iterative_args_default.Rd’, ‘get_max_n_coalitions_causal.Rd’, ‘get_model_specs.Rd’, ‘get_mu_vec.Rd’, ‘get_nice_time.Rd’, ‘get_output_args_default.Rd’, ‘get_predict_model.Rd’, ‘get_results.Rd’, ‘get_supported_approaches.Rd’, ‘get_supported_models.Rd’, ‘get_valid_causal_coalitions.Rd’, ‘group_forecast_setup.Rd’, ‘hat_matrix_cpp.Rd’, ‘inv_gaussian_transform_cpp.Rd’, ‘lag_data.Rd’, ‘mahalanobis_distance_cpp.Rd’, ‘mcar_mask_generator.Rd’, ‘memory_layer.Rd’, ‘model_checker.Rd’, ‘num_str.Rd’, ‘observation_impute.Rd’, ‘observation_impute_cpp.Rd’, ‘paired_sampler.Rd’, ‘plot.shapr.Rd’, ‘plot_MSEv_eval_crit.Rd’, ‘plot_SV_several_approaches.Rd’, ‘plot_vaeac_eval_crit.Rd’, ‘plot_vaeac_imputed_ggpairs.Rd’, ‘predict_model.Rd’, ‘prepare_data.Rd’, ‘prepare_data_causal.Rd’, ‘prepare_data_copula_cpp.Rd’, ‘prepare_data_copula_cpp_caus.Rd’, ‘prepare_data_gaussian_cpp.Rd’, ‘prepare_data_gaussian_cpp_caus.Rd’, ‘prepare_data_single_coalition.Rd’, ‘prepare_next_iteration.Rd’, ‘print.shapr.Rd’, ‘print_iter.Rd’, ‘process_factor_data.Rd’, ‘quantile_type7_cpp.Rd’, ‘reg_forecast_setup.Rd’, ‘regression.check_namespaces.Rd’, ‘regression.check_parameters.Rd’, ‘regression.check_recipe_func.Rd’, ‘regression.check_sur_n_comb.Rd’, ‘regression.check_vfold_cv_para.Rd’, ‘regression.cv_message.Rd’, ‘regression.get_string_to_R.Rd’, ‘round_manual.Rd’, ‘rss_cpp.Rd’, ‘sample_coalition_table.Rd’, ‘sample_coalitions_cpp_str_paired.Rd’, ‘sample_combinations.Rd’, ‘sample_ctree.Rd’, ‘save_results.Rd’, ‘setup.Rd’, ‘setup_approach.Rd’, ‘shapley_setup.Rd’, ‘shapley_weights.Rd’, ‘shapr-package.Rd’, ‘skip_connection.Rd’, ‘specified_masks_mask_generator.Rd’, ‘specified_prob_mask_generator.Rd’, ‘summary.shapr.Rd’, ‘test_predict_model.Rd’, ‘testing_cleanup.Rd’, ‘vaeac.Rd’, ‘vaeac_categorical_parse_params.Rd’, ‘vaeac_check_activation_func.Rd’, ‘vaeac_check_cuda.Rd’, ‘vaeac_check_epoch_values.Rd’, ‘vaeac_check_extra_named_list.Rd’, ‘vaeac_check_logicals.Rd’, ‘vaeac_check_mask_gen.Rd’, ‘vaeac_check_masking_ratio.Rd’, ‘vaeac_check_parameters.Rd’, ‘vaeac_check_positive_integers.Rd’, ‘vaeac_check_positive_numerics.Rd’, ‘vaeac_check_probabilities.Rd’, ‘vaeac_check_save_names.Rd’, ‘vaeac_check_save_parameters.Rd’, ‘vaeac_check_which_vaeac_model.Rd’, ‘vaeac_check_x_colnames.Rd’, ‘vaeac_compute_normalization.Rd’, ‘vaeac_dataset.Rd’, ‘vaeac_extend_batch.Rd’, ‘vaeac_get_current_save_state.Rd’, ‘vaeac_get_data_objects.Rd’, ‘vaeac_get_evaluation_criteria.Rd’, ‘vaeac_get_extra_para_default.Rd’, ‘vaeac_get_full_state_list.Rd’, ‘vaeac_get_mask_generator_name.Rd’, ‘vaeac_get_model_from_checkp.Rd’, ‘vaeac_get_n_decimals.Rd’, ‘vaeac_get_optimizer.Rd’, ‘vaeac_get_save_file_names.Rd’, ‘vaeac_get_val_iwae.Rd’, ‘vaeac_get_x_explain_extended.Rd’, ‘vaeac_impute_missing_entries.Rd’, ‘vaeac_kl_normal_normal.Rd’, ‘vaeac_normal_parse_params.Rd’, ‘vaeac_normalize_data.Rd’, ‘vaeac_postprocess_data.Rd’, ‘vaeac_preprocess_data.Rd’, ‘vaeac_print_train_summary.Rd’, ‘vaeac_save_state.Rd’, ‘vaeac_train_model.Rd’, ‘vaeac_train_model_auxiliary.Rd’, ‘vaeac_train_model_continue.Rd’, ‘vaeac_update_para_locations.Rd’, ‘vaeac_update_pretrained_model.Rd’, ‘weight_matrix.Rd’, ‘weight_matrix_cpp.Rd’
Flavor: r-release-macos-x86_64
Version: 1.0.5
Check: installed package size
Result: NOTE
installed size is 8.6Mb
sub-directories of 1Mb or more:
doc 3.3Mb
libs 4.1Mb
Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64
Version: 1.0.5
Check: tests
Result: ERROR
Running 'testthat.R' [178s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # CRAN OMP THREAD LIMIT
> Sys.setenv("OMP_THREAD_LIMIT" = 1)
>
> library(testthat)
> library(shapr)
Attaching package: 'shapr'
The following object is masked from 'package:testthat':
setup
>
> test_check("shapr")
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 5
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 5
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 128`, and is therefore set to `2^n_features = 128`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 7
* Number of observations to explain: 2
-- Main computation started --
i Using 128 of 128 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 64`, and is therefore set to `2^n_features = 64`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 6
* Number of observations to explain: 2
-- Main computation started --
i Using 64 of 64 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 2
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 10 of 32 coalitions, 2 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 2 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 14 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 2 new.
-- Iteration 7 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 8 -----------------------------------------------------------------
i Using 20 of 32 coalitions, 2 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 4 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 4 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 22 of 32 coalitions, 4 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 5
* Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
{"Month"}; Day: {"Day"}
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 4 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 4 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 22 of 32 coalitions, 4 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 10 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 3
* Feature groups: A: {"Solar.R", "Wind"}; B: {"Temp", "Month_factor"}; C:
{"Day"}
* Number of observations to explain: 3
-- Main computation started --
i Using 6 of 8 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` at 2025-08-27 02:10:23 --------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
* Computations (temporary) saved at:
'D:\temp\2025_08_27_01_50_00_27070\RtmpIzVbf9\shapr_obj_2c8942a9149ed.rds'
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian, gaussian, gaussian, and gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, independence, and empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, independence, and empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: vaeac
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 10
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Flavor: r-oldrel-windows-x86_64
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.