CRAN Package Check Results for Package rlibkriging

Last updated on 2025-03-11 12:53:05 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.9-1 269.05 239.11 508.16 OK
r-devel-linux-x86_64-debian-gcc 0.9-1 206.49 164.94 371.43 OK
r-devel-linux-x86_64-fedora-clang 0.9-1 1021.50 ERROR
r-devel-linux-x86_64-fedora-gcc 0.9-1 975.68 ERROR
r-devel-macos-arm64 0.9-1 186.00 OK
r-devel-macos-x86_64 0.9-1 379.00 OK
r-devel-windows-x86_64 0.9-1 370.00 270.00 640.00 OK
r-patched-linux-x86_64 0.9-1 305.39 214.38 519.77 NOTE
r-release-linux-x86_64 0.9-1 301.89 215.40 517.29 NOTE
r-release-macos-arm64 0.9-1 185.00 NOTE
r-release-macos-x86_64 0.9-1 364.00 NOTE
r-release-windows-x86_64 0.9-1 373.00 268.00 641.00 NOTE
r-oldrel-macos-arm64 0.9-1 NOTE
r-oldrel-macos-x86_64 0.9-1 331.00 NOTE
r-oldrel-windows-x86_64 0.9-1 426.00 355.00 781.00 NOTE

Check Details

Version: 0.9-1
Check: tests
Result: ERROR Running ‘test-AllKrigingConcistency.R’ [8s/29s] Running ‘test-KrigingCopy.R’ [5s/12s] Running ‘test-KrigingFit.R’ [7s/16s] Running ‘test-KrigingLeaveOneOut.R’ [7s/16s] Running ‘test-KrigingLeaveOneOut_3d.R’ Running ‘test-KrigingLogLik.R’ [9s/13s] Running ‘test-KrigingLogLikGradHess.R’ [26s/43s] Running ‘test-KrigingMethods.R’ [9s/14s] Running ‘test-KrigingPredict.R’ [30s/66s] Running ‘test-KrigingSimulate.R’ [4s/11s] Running ‘test-KrigingUpdate.R’ Running ‘test-KrigingUpdateSimulate.R’ [7s/16s] Running ‘test-LinearAlgebra.R’ [5s/12s] Running ‘test-NoiseKrigingFit.R’ [13s/22s] Running ‘test-NoiseKrigingLogLik.R’ [8s/18s] Running ‘test-NoiseKrigingMethods.R’ [7s/16s] Running ‘test-NoiseKrigingPredict.R’ [19s/48s] Running ‘test-NoiseKrigingSimulate.R’ [11s/25s] Running ‘test-NoiseKrigingUpdate.R’ Running ‘test-NoiseKrigingUpdateSimulate.R’ [8s/16s] Running ‘test-NuggetKrigingFit.R’ [14s/24s] Running ‘test-NuggetKrigingLogLik.R’ [15s/26s] Running ‘test-NuggetKrigingLogMargPost.R’ [23s/42s] Running ‘test-NuggetKrigingMethods.R’ [7s/16s] Running ‘test-NuggetKrigingPredict.R’ [20s/47s] Running ‘test-NuggetKrigingSimulate.R’ [5s/12s] Running ‘test-NuggetKrigingUpdate.R’ Running ‘test-NuggetKrigingUpdateSimulate.R’ [7s/17s] Running ‘test-RobustGaSP-Nugget.R’ [5s/11s] Running ‘test-RobustGaSP.R’ [5s/13s] Running ‘test-RobustGaSPtrendlinear.R’ [5s/13s] Running ‘test-RobustGaSPvsKrigingLMP.R’ [5s/11s] Running ‘test-RobustGaSPvsNuggetKrigingLMP.R’ [5s/15s] Running ‘test-SaveLoad.R’ [5s/11s] Running ‘test-asDiceKriging.R’ [28s/72s] Running ‘test-estimnone.R’ [5s/11s] Running ‘test-normalize.R’ [8s/17s] Running ‘test-rlibkriging-demo.R’ Running ‘test-unstableLL.R’ [4s/11s] Running the tests in ‘tests/test-RobustGaSP.R’ failed. Complete output: > library(testthat) > Sys.setenv('OMP_THREAD_LIMIT'=2) > library(rlibkriging) Attaching package: 'rlibkriging' The following objects are masked from 'package:base': load, save > > ##library(rlibkriging, lib.loc="bindings/R/Rlibs") > ##library(testthat) > > library(RobustGaSP) ######### ## ## Robust Gaussian Stochastic Process, RobustGaSP Package ## Copyright (C) 2016-2025 Mengyang Gu, Jesus Palomo and James O. Berger ######### Attaching package: 'RobustGaSP' The following object is masked from 'package:rlibkriging': simulate The following object is masked from 'package:stats': simulate > > context("RobustGaSP / Fit: 1D") > > f = function(x) 1-1/2*(sin(12*x)/(1+x)+2*cos(7*x)*x^5+0.7) > #plot(f) > n <- 5 > set.seed(123) > X <- as.matrix(runif(n)) > y = f(X) > #points(X,y) > k = RobustGaSP::rgasp(design=X,response=y) The upper bounds of the range parameters are 184.9743 The initial values of range parameters are 3.699485 Start of the optimization 1 : The number of iterations is 30 The value of the marginal posterior function is 2.497978 Optimized range parameters are 0.1921691 Optimized nugget parameter is 0 Convergence: TRUE The initial values of range parameters are 0.05223118 Start of the optimization 2 : The number of iterations is 30 The value of the marginal posterior function is 1.035387 Optimized range parameters are 0.05296527 Optimized nugget parameter is 0 Convergence: TRUE > #library(rlibkriging) > r <- Kriging(y, X, + kernel="matern5_2", + regmodel = "constant", normalize = FALSE, + optim = "BFGS", + objective = "LMP") OMP: Warning #96: Cannot form a team with 24 threads, using 2 instead. OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set). > # m = as.list(r) > > # Check lmp function > > lmp_rgasp = function(X, model=k) {if (!is.matrix(X)) X = matrix(X,ncol=1); + # print(dim(X)); + apply(X,1, + function(x) { + #y=-logMargPostFun(r,matrix(unlist(x),ncol=2))$logMargPost + y=RobustGaSP:::neg_log_marginal_post_approx_ref(param=(x),nugget=0, nugget.est=model@nugget.est, + R0=model@R0,X=model@X, zero_mean=model@zero_mean,output=model@output, + CL=model@CL, + a=0.2, + b=1/(length(model@output))^{1/dim(as.matrix(model@input))[2]}*(0.2+dim(as.matrix(model@input))[2]), + kernel_type=rep(as.integer(3),ncol(X)),alpha=model@alpha + ) + y})} > lmp_rgasp(1) [1] -1.901254 > > plot(lmp_rgasp,xlim=c(0.01,6)) > abline(v=(log(k@beta_hat))) > > lmp_lk = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=1); + # print(dim(X)); + apply(X,1, + function(x) { + y=-logMargPostFun(r,matrix(unlist(exp(-(x))),ncol=1))$logMargPost + y})} > lmp_lk(1) [1] -1.901254 > > lines(seq(0.1,6,,5),lmp_lk(seq(0.1,6,,5)),col='red') > abline(v=(log(1/as.list(r)$theta)),col='red') > > precision <- 1e-3 > test_that(desc=paste0("RobustGaSP / Fit: 1D / rgasp/lmp is the same that lk/lmp one"), + expect_equal(lmp_rgasp(1),lmp_lk(1),tol = precision)) Test passed 🥳 > test_that(desc=paste0("RobustGaSP / Fit: 1D / fitted theta is the same that RobustGaSP one"), + expect_equal(as.list(r)$theta[1],1/k@beta_hat,tol = precision)) Test passed 🥳 > > > > dlmp_rgasp = function(X, model=k) {if (!is.matrix(X)) X = matrix(X,ncol=1); + # print(dim(X)); + apply(X,1, + function(x) { + + # print(RobustGaSP:::log_marginal_lik_deriv(param=(x),nugget=0,nugget_est=model@nugget.est, + # R0=model@R0,X=model@X, zero_mean=model@zero_mean, + # output=model@output, + # kernel_type=rep(as.integer(3),ncol(X)),alpha=model@alpha)) + # + # print(RobustGaSP:::log_approx_ref_prior_deriv(param=(x),nugget=0, nugget_est=model@nugget.est, + # CL=model@CL, + # a=0.2, + # b=1/(length(model@output))^{1/dim(as.matrix(model@input))[2]}*(0.2+dim(as.matrix(model@input))[2]))) + + + #y=-logMargPostFun(r,matrix(unlist(x),ncol=2))$logMargPost + y=RobustGaSP:::neg_log_marginal_post_approx_ref_deriv(param=(x),nugget=0, nugget.est=model@nugget.est, + R0=model@R0,X=model@X, zero_mean=model@zero_mean,output=model@output, + CL=model@CL, + a=0.2, + b=1/(length(model@output))^{1/dim(as.matrix(model@input))[2]}*(0.2+dim(as.matrix(model@input))[2]), + kernel_type=rep(as.integer(3),ncol(X)),alpha=model@alpha + ) + y})} > dlmp_rgasp(1) [1] -1.703845 > > dlmp_lk = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=1); + apply(X,1, + function(x) { + y=-logMargPostFun(r,matrix(unlist(exp(-(x))),ncol=1),TRUE)$logMargPostGrad + y})} > -exp(-1)*dlmp_lk(1) [1] -1.703845 > > precision <- 1e-3 > test_that(desc=paste0("RobustGaSP / Fit: 1D / rgasp/lmp deriv is the same that lk/lmp deriv"), + expect_equal(dlmp_rgasp(1),-exp(-1)*dlmp_lk(1),tol = precision)) Test passed 🎉 > > > # Check predict > > ntest <- 10 > Xtest <- seq(0,1,,ntest) > Ytest_rgasp <- predict(k,matrix(Xtest,ncol=1)) > Ytest_libK <- predict(r,Xtest) > > plot(f) > points(X,y) > lines(Xtest,Ytest_rgasp$mean,col='blue') > polygon(c(Xtest,rev(Xtest)), + c(Ytest_rgasp$mean+2*Ytest_rgasp$sd,rev(Ytest_rgasp$mean-2*Ytest_rgasp$sd)), + col=rgb(0,0,1,0.1), border=NA) > > lines(Xtest,Ytest_libK$mean,col='red') > polygon(c(Xtest,rev(Xtest)), + c(Ytest_libK$mean+2*Ytest_libK$stdev,rev(Ytest_libK$mean-2*Ytest_libK$stdev)), + col=rgb(1,0,0,0.1), border=NA) > > precision <- 1e-3 > test_that(desc=paste0("pred mean is the same that RobustGaSP one"), + expect_equal(predict(r,0.7)$mean[1],predict(k,matrix(0.7))$mean,tol = precision)) Test passed 😸 > test_that(desc=paste0("pred sd is the same that RobustGaSP one"), + expect_equal(predict(r,0.7)$stdev[1],predict(k,matrix(0.7))$sd,tol = precision)) Test passed 🥇 > > > ## RobustGaSP examples > > #--------------------------------------- > # a 1 dimensional example > #--------------------------------------- > context("RobustGaSP / 1 dimensional example") > > > input=10*seq(0,1,1/14) > output<-higdon.1.data(input) > #the following code fit a GaSP with zero mean by setting zero.mean="Yes" > model<- rgasp(design = input, response = output, zero.mean="No") The upper bounds of the range parameters are 670.0756 The initial values of range parameters are 13.40151 Start of the optimization 1 : The number of iterations is 30 The value of the marginal posterior function is -10.48964 Optimized range parameters are 13.2106 Optimized nugget parameter is 0 Convergence: TRUE The initial values of range parameters are 0.08888889 Start of the optimization 2 : The number of iterations is 30 The value of the marginal posterior function is -15.24592 Optimized range parameters are 0.1706386 Optimized nugget parameter is 0 Convergence: TRUE > model Call: rgasp(design = input, response = output, zero.mean = "No") Mean parameters: 2.174187e-10 Variance parameter: 4249.587 Range parameters: 13.2106 Noise parameter: 0 > > testing_input = as.matrix(seq(0,10,1/100)) > model.predict<-predict(model,testing_input) > names(model.predict) [1] "mean" "lower95" "upper95" "sd" > > #########plot predictive distribution > testing_output=higdon.1.data(testing_input) > plot(testing_input,model.predict$mean,type='l',col='blue', + xlab='input',ylab='output') > polygon( c(testing_input,rev(testing_input)),c(model.predict$lower95, + rev(model.predict$upper95)),col = "grey80", border = FALSE) > lines(testing_input, testing_output) > lines(testing_input,model.predict$mean,type='l',col='blue') > lines(input, output,type='p') > > ## mean square erros > mean((model.predict$mean-testing_output)^2) [1] 4.63608e-05 > > model_libK = Kriging(matrix(output,ncol=1), matrix(input,ncol=1), + kernel="matern5_2", + regmodel = "constant", normalize = FALSE, + optim = "BFGS", + objective = "LMP", parameters = NULL) > > lines(testing_input,predict(model_libK,testing_input)$mean,type='l',col='red') > polygon( + c(testing_input,rev(testing_input)), + c( + predict(model_libK,testing_input)$mean+2*predict(model_libK,testing_input)$stdev, + rev(predict(model_libK,testing_input)$mean-2*predict(model_libK,testing_input)$stdev)), + col = rgb(1,0,0,0.1), border = FALSE) > > precision <- 1e-3 > test_that(desc=paste0("RobustGaSP / 1 dimensional example / pred mean is the same that RobustGaSP one"), + expect_equal(predict(model_libK,0.7)$mean[1],predict(model,matrix(0.7))$mean,tol = precision)) ── Failure: RobustGaSP / 1 dimensional example / pred mean is the same that RobustGaSP one ── predict(model_libK, 0.7)$mean[1] not equal to predict(model, matrix(0.7))$mean. 1/1 mismatches [1] 0.621 - 0.623 == -0.00162 Error: ! Test failed Backtrace: ▆ 1. ├─testthat::test_that(...) 2. │ └─withr (local) `<fn>`() 3. └─reporter$stop_if_needed() 4. └─rlang::abort("Test failed", call = NULL) Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.9-1
Check: tests
Result: ERROR Running ‘test-AllKrigingConcistency.R’ [8s/10s] Running ‘test-KrigingCopy.R’ Running ‘test-KrigingFit.R’ Running ‘test-KrigingLeaveOneOut.R’ Running ‘test-KrigingLeaveOneOut_3d.R’ Running ‘test-KrigingLogLik.R’ Running ‘test-KrigingLogLikGradHess.R’ [27s/28s] Running ‘test-KrigingMethods.R’ Running ‘test-KrigingPredict.R’ [25s/29s] Running ‘test-KrigingSimulate.R’ Running ‘test-KrigingUpdate.R’ Running ‘test-KrigingUpdateSimulate.R’ Running ‘test-LinearAlgebra.R’ Running ‘test-NoiseKrigingFit.R’ [12s/14s] Running ‘test-NoiseKrigingLogLik.R’ Running ‘test-NoiseKrigingMethods.R’ Running ‘test-NoiseKrigingPredict.R’ [17s/21s] Running ‘test-NoiseKrigingSimulate.R’ [10s/12s] Running ‘test-NoiseKrigingUpdate.R’ Running ‘test-NoiseKrigingUpdateSimulate.R’ Running ‘test-NuggetKrigingFit.R’ [15s/16s] Running ‘test-NuggetKrigingLogLik.R’ [11s/13s] Running ‘test-NuggetKrigingLogMargPost.R’ [18s/21s] Running ‘test-NuggetKrigingMethods.R’ Running ‘test-NuggetKrigingPredict.R’ [17s/22s] Running ‘test-NuggetKrigingSimulate.R’ Running ‘test-NuggetKrigingUpdate.R’ Running ‘test-NuggetKrigingUpdateSimulate.R’ Running ‘test-RobustGaSP-Nugget.R’ Running ‘test-RobustGaSP.R’ Running ‘test-RobustGaSPtrendlinear.R’ Running ‘test-RobustGaSPvsKrigingLMP.R’ Running ‘test-RobustGaSPvsNuggetKrigingLMP.R’ Running ‘test-SaveLoad.R’ Running ‘test-asDiceKriging.R’ [22s/26s] Running ‘test-estimnone.R’ Running ‘test-normalize.R’ Running ‘test-rlibkriging-demo.R’ Running ‘test-unstableLL.R’ Running the tests in ‘tests/test-RobustGaSP.R’ failed. Complete output: > library(testthat) > Sys.setenv('OMP_THREAD_LIMIT'=2) > library(rlibkriging) Attaching package: 'rlibkriging' The following objects are masked from 'package:base': load, save > > ##library(rlibkriging, lib.loc="bindings/R/Rlibs") > ##library(testthat) > > library(RobustGaSP) ######### ## ## Robust Gaussian Stochastic Process, RobustGaSP Package ## Copyright (C) 2016-2025 Mengyang Gu, Jesus Palomo and James O. Berger ######### Attaching package: 'RobustGaSP' The following object is masked from 'package:rlibkriging': simulate The following object is masked from 'package:stats': simulate > > context("RobustGaSP / Fit: 1D") > > f = function(x) 1-1/2*(sin(12*x)/(1+x)+2*cos(7*x)*x^5+0.7) > #plot(f) > n <- 5 > set.seed(123) > X <- as.matrix(runif(n)) > y = f(X) > #points(X,y) > k = RobustGaSP::rgasp(design=X,response=y) The upper bounds of the range parameters are 184.9743 The initial values of range parameters are 3.699485 Start of the optimization 1 : The number of iterations is 30 The value of the marginal posterior function is 2.497978 Optimized range parameters are 0.1921691 Optimized nugget parameter is 0 Convergence: TRUE The initial values of range parameters are 0.05223118 Start of the optimization 2 : The number of iterations is 30 The value of the marginal posterior function is 1.035387 Optimized range parameters are 0.05296527 Optimized nugget parameter is 0 Convergence: TRUE > #library(rlibkriging) > r <- Kriging(y, X, + kernel="matern5_2", + regmodel = "constant", normalize = FALSE, + optim = "BFGS", + objective = "LMP") > # m = as.list(r) > > # Check lmp function > > lmp_rgasp = function(X, model=k) {if (!is.matrix(X)) X = matrix(X,ncol=1); + # print(dim(X)); + apply(X,1, + function(x) { + #y=-logMargPostFun(r,matrix(unlist(x),ncol=2))$logMargPost + y=RobustGaSP:::neg_log_marginal_post_approx_ref(param=(x),nugget=0, nugget.est=model@nugget.est, + R0=model@R0,X=model@X, zero_mean=model@zero_mean,output=model@output, + CL=model@CL, + a=0.2, + b=1/(length(model@output))^{1/dim(as.matrix(model@input))[2]}*(0.2+dim(as.matrix(model@input))[2]), + kernel_type=rep(as.integer(3),ncol(X)),alpha=model@alpha + ) + y})} > lmp_rgasp(1) [1] -1.901254 > > plot(lmp_rgasp,xlim=c(0.01,6)) > abline(v=(log(k@beta_hat))) > > lmp_lk = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=1); + # print(dim(X)); + apply(X,1, + function(x) { + y=-logMargPostFun(r,matrix(unlist(exp(-(x))),ncol=1))$logMargPost + y})} > lmp_lk(1) [1] -1.901254 > > lines(seq(0.1,6,,5),lmp_lk(seq(0.1,6,,5)),col='red') > abline(v=(log(1/as.list(r)$theta)),col='red') > > precision <- 1e-3 > test_that(desc=paste0("RobustGaSP / Fit: 1D / rgasp/lmp is the same that lk/lmp one"), + expect_equal(lmp_rgasp(1),lmp_lk(1),tol = precision)) Test passed 🥳 > test_that(desc=paste0("RobustGaSP / Fit: 1D / fitted theta is the same that RobustGaSP one"), + expect_equal(as.list(r)$theta[1],1/k@beta_hat,tol = precision)) Test passed 🥳 > > > > dlmp_rgasp = function(X, model=k) {if (!is.matrix(X)) X = matrix(X,ncol=1); + # print(dim(X)); + apply(X,1, + function(x) { + + # print(RobustGaSP:::log_marginal_lik_deriv(param=(x),nugget=0,nugget_est=model@nugget.est, + # R0=model@R0,X=model@X, zero_mean=model@zero_mean, + # output=model@output, + # kernel_type=rep(as.integer(3),ncol(X)),alpha=model@alpha)) + # + # print(RobustGaSP:::log_approx_ref_prior_deriv(param=(x),nugget=0, nugget_est=model@nugget.est, + # CL=model@CL, + # a=0.2, + # b=1/(length(model@output))^{1/dim(as.matrix(model@input))[2]}*(0.2+dim(as.matrix(model@input))[2]))) + + + #y=-logMargPostFun(r,matrix(unlist(x),ncol=2))$logMargPost + y=RobustGaSP:::neg_log_marginal_post_approx_ref_deriv(param=(x),nugget=0, nugget.est=model@nugget.est, + R0=model@R0,X=model@X, zero_mean=model@zero_mean,output=model@output, + CL=model@CL, + a=0.2, + b=1/(length(model@output))^{1/dim(as.matrix(model@input))[2]}*(0.2+dim(as.matrix(model@input))[2]), + kernel_type=rep(as.integer(3),ncol(X)),alpha=model@alpha + ) + y})} > dlmp_rgasp(1) [1] -1.703845 > > dlmp_lk = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=1); + apply(X,1, + function(x) { + y=-logMargPostFun(r,matrix(unlist(exp(-(x))),ncol=1),TRUE)$logMargPostGrad + y})} > -exp(-1)*dlmp_lk(1) [1] -1.703845 > > precision <- 1e-3 > test_that(desc=paste0("RobustGaSP / Fit: 1D / rgasp/lmp deriv is the same that lk/lmp deriv"), + expect_equal(dlmp_rgasp(1),-exp(-1)*dlmp_lk(1),tol = precision)) Test passed 🎉 > > > # Check predict > > ntest <- 10 > Xtest <- seq(0,1,,ntest) > Ytest_rgasp <- predict(k,matrix(Xtest,ncol=1)) > Ytest_libK <- predict(r,Xtest) > > plot(f) > points(X,y) > lines(Xtest,Ytest_rgasp$mean,col='blue') > polygon(c(Xtest,rev(Xtest)), + c(Ytest_rgasp$mean+2*Ytest_rgasp$sd,rev(Ytest_rgasp$mean-2*Ytest_rgasp$sd)), + col=rgb(0,0,1,0.1), border=NA) > > lines(Xtest,Ytest_libK$mean,col='red') > polygon(c(Xtest,rev(Xtest)), + c(Ytest_libK$mean+2*Ytest_libK$stdev,rev(Ytest_libK$mean-2*Ytest_libK$stdev)), + col=rgb(1,0,0,0.1), border=NA) > > precision <- 1e-3 > test_that(desc=paste0("pred mean is the same that RobustGaSP one"), + expect_equal(predict(r,0.7)$mean[1],predict(k,matrix(0.7))$mean,tol = precision)) Test passed 😸 > test_that(desc=paste0("pred sd is the same that RobustGaSP one"), + expect_equal(predict(r,0.7)$stdev[1],predict(k,matrix(0.7))$sd,tol = precision)) Test passed 🥇 > > > ## RobustGaSP examples > > #--------------------------------------- > # a 1 dimensional example > #--------------------------------------- > context("RobustGaSP / 1 dimensional example") > > > input=10*seq(0,1,1/14) > output<-higdon.1.data(input) > #the following code fit a GaSP with zero mean by setting zero.mean="Yes" > model<- rgasp(design = input, response = output, zero.mean="No") The upper bounds of the range parameters are 670.0756 The initial values of range parameters are 13.40151 Start of the optimization 1 : The number of iterations is 30 The value of the marginal posterior function is -10.48964 Optimized range parameters are 13.2106 Optimized nugget parameter is 0 Convergence: TRUE The initial values of range parameters are 0.08888889 Start of the optimization 2 : The number of iterations is 30 The value of the marginal posterior function is -15.24592 Optimized range parameters are 0.1706386 Optimized nugget parameter is 0 Convergence: TRUE > model Call: rgasp(design = input, response = output, zero.mean = "No") Mean parameters: 2.174187e-10 Variance parameter: 4249.587 Range parameters: 13.2106 Noise parameter: 0 > > testing_input = as.matrix(seq(0,10,1/100)) > model.predict<-predict(model,testing_input) > names(model.predict) [1] "mean" "lower95" "upper95" "sd" > > #########plot predictive distribution > testing_output=higdon.1.data(testing_input) > plot(testing_input,model.predict$mean,type='l',col='blue', + xlab='input',ylab='output') > polygon( c(testing_input,rev(testing_input)),c(model.predict$lower95, + rev(model.predict$upper95)),col = "grey80", border = FALSE) > lines(testing_input, testing_output) > lines(testing_input,model.predict$mean,type='l',col='blue') > lines(input, output,type='p') > > ## mean square erros > mean((model.predict$mean-testing_output)^2) [1] 4.63608e-05 > > model_libK = Kriging(matrix(output,ncol=1), matrix(input,ncol=1), + kernel="matern5_2", + regmodel = "constant", normalize = FALSE, + optim = "BFGS", + objective = "LMP", parameters = NULL) > > lines(testing_input,predict(model_libK,testing_input)$mean,type='l',col='red') > polygon( + c(testing_input,rev(testing_input)), + c( + predict(model_libK,testing_input)$mean+2*predict(model_libK,testing_input)$stdev, + rev(predict(model_libK,testing_input)$mean-2*predict(model_libK,testing_input)$stdev)), + col = rgb(1,0,0,0.1), border = FALSE) > > precision <- 1e-3 > test_that(desc=paste0("RobustGaSP / 1 dimensional example / pred mean is the same that RobustGaSP one"), + expect_equal(predict(model_libK,0.7)$mean[1],predict(model,matrix(0.7))$mean,tol = precision)) ── Failure: RobustGaSP / 1 dimensional example / pred mean is the same that RobustGaSP one ── predict(model_libK, 0.7)$mean[1] not equal to predict(model, matrix(0.7))$mean. 1/1 mismatches [1] 0.621 - 0.623 == -0.00162 Error: ! Test failed Backtrace: ▆ 1. ├─testthat::test_that(...) 2. │ └─withr (local) `<fn>`() 3. └─reporter$stop_if_needed() 4. └─rlang::abort("Test failed", call = NULL) Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.9-1
Check: for GNU extensions in Makefiles
Result: NOTE GNU make is a SystemRequirements. Flavors: r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.9-1
Check: installed package size
Result: NOTE installed size is 71.3Mb sub-directories of 1Mb or more: include 7.3Mb lib 37.3Mb libs 26.2Mb Flavors: r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.