CRAN Package Check Results for Maintainer ‘Rafael de Andrade Moral <rafael_moral at yahoo.com.br>’

Last updated on 2025-04-12 20:52:23 CEST.

Package NOTE OK
hnp 11 3
jointNmix 11 3

Package hnp

Current CRAN status: NOTE: 11, OK: 3

Version: 1.2-6
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: hnp.Rd: glm.nb, multinom Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64

Version: 1.2-6
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘glmmADMB’ Flavors: r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package jointNmix

Current CRAN status: NOTE: 11, OK: 3

Version: 1.0
Check: Rd files
Result: NOTE checkRd: (-1) jointNmix.Rd:30: Lost braces; missing escapes or markup? 30 | The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as \deqn{Y_{1it}|N_{1i} ~ Bin(N_{1i},p_{1it})}\deqn{N_{1i} ~ a count distribution with mean \lambda_{1i}.} The model for species 2 is \deqn{Y_{2it}|N_{1i},N_{2i} ~ Bin(N_{2i},p_{2it})}\deqn{N_{2i}|N_{1i} ~ a count distribution with mean \psi+\lambda_{2i}N_{1i}.} Here, users may define a Poisson or negative binomial distribution for the latent abundances N_{1i} and N_{2i}. | ^ checkRd: (-1) jointNmix.Rd:30: Lost braces; missing escapes or markup? 30 | The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as \deqn{Y_{1it}|N_{1i} ~ Bin(N_{1i},p_{1it})}\deqn{N_{1i} ~ a count distribution with mean \lambda_{1i}.} The model for species 2 is \deqn{Y_{2it}|N_{1i},N_{2i} ~ Bin(N_{2i},p_{2it})}\deqn{N_{2i}|N_{1i} ~ a count distribution with mean \psi+\lambda_{2i}N_{1i}.} Here, users may define a Poisson or negative binomial distribution for the latent abundances N_{1i} and N_{2i}. | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-gcc, r-devel-macos-arm64, r-devel-macos-x86_64, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.