CRAN Package Check Results for Package mlr3filters

Last updated on 2025-12-28 01:48:44 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.9.0 11.69 190.00 201.69 OK
r-devel-linux-x86_64-debian-gcc 0.9.0 6.76 125.24 132.00 OK
r-devel-linux-x86_64-fedora-clang 0.9.0 18.00 292.83 310.83 OK
r-devel-linux-x86_64-fedora-gcc 0.9.0 18.00 271.96 289.96 OK
r-devel-windows-x86_64 0.9.0 12.00 143.00 155.00 ERROR
r-patched-linux-x86_64 0.9.0 13.06 155.18 168.24 OK
r-release-linux-x86_64 0.9.0 10.38 158.32 168.70 OK
r-release-macos-arm64 0.9.0 OK
r-release-macos-x86_64 0.9.0 7.00 137.00 144.00 OK
r-release-windows-x86_64 0.9.0 11.00 165.00 176.00 OK
r-oldrel-macos-arm64 0.9.0 OK
r-oldrel-macos-x86_64 0.9.0 7.00 138.00 145.00 OK
r-oldrel-windows-x86_64 0.9.0 16.00 216.00 232.00 OK

Check Details

Version: 0.9.0
Check: examples
Result: ERROR Running examples in 'mlr3filters-Ex.R' failed The error most likely occurred in: > ### Name: mlr_filters_performance > ### Title: Predictive Performance Filter > ### Aliases: mlr_filters_performance FilterPerformance > > ### ** Examples > > if (requireNamespace("rpart")) { + task = mlr3::tsk("iris") + learner = mlr3::lrn("classif.rpart") + filter = flt("performance", learner = learner) + filter$calculate(task) + as.data.table(filter) + } INFO [17:10:48.594] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/1) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-windows-x86_64

Version: 0.9.0
Check: tests
Result: ERROR Running 'testthat.R' [48s] Running the tests in 'tests/testthat.R' failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3filters") + test_check("mlr3filters") + } Saving _problems/test_FilterPerformance-8.R Saving _problems/test_FilterPermutation-7.R Saving _problems/test_filter_classif-9.R Saving _problems/test_filter_classif-34.R [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {mlr3proba} is not installed (2): 'test_FilterUnivariateCox.R:1:1', 'test_filter_surv.R:1:1' • {mlr3spatiotempcv} is not installed (1): 'test_mlr3spatiotempcv.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_FilterPerformance.R:8:3'): FilterPerformance ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPerformance.R:8:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_FilterPermutation.R:7:3'): FilterPermutation ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPermutation.R:7:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:9:7'): all classif filters return correct filter values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:9:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:34:7'): filters throw errors on missing values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:34:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.