CRAN Package Check Results for Package forestPSD

Last updated on 2025-09-12 17:54:28 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.0 1.80 23.89 25.69 ERROR
r-devel-linux-x86_64-debian-gcc 1.0.0 1.62 19.63 21.25 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.0 38.47 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.0 36.28 ERROR
r-devel-windows-x86_64 1.0.0 3.00 43.00 46.00 OK
r-patched-linux-x86_64 1.0.0 2.05 22.30 24.35 OK
r-release-linux-x86_64 1.0.0 1.56 21.97 23.53 OK
r-release-macos-arm64 1.0.0 32.00 OK
r-release-macos-x86_64 1.0.0 27.00 OK
r-release-windows-x86_64 1.0.0 3.00 43.00 46.00 OK
r-oldrel-macos-arm64 1.0.0 18.00 OK
r-oldrel-macos-x86_64 1.0.0 26.00 OK
r-oldrel-windows-x86_64 1.0.0 4.00 48.00 52.00 OK

Check Details

Version: 1.0.0
Check: examples
Result: ERROR Running examples in ‘forestPSD-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: psdfun > ### Title: Regression analysis for survival curves. > ### Aliases: psdfun > > ### ** Examples > > data(Npop) > psd_D1<-psdfun(ax=Npop$ax,index="Deevey1") > psd_D1 $Summary Formula: ax ~ a + b * age Parameters: Estimate Std. Error t value Pr(>|t|) a 5603.9 1062.0 5.277 0.000509 *** b -642.3 156.6 -4.102 0.002669 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 1642 on 9 degrees of freedom Number of iterations to convergence: 2 Achieved convergence tolerance: 1.49e-08 $Goodness MSE RMSE Rsquare adj.Rsquare MAE MAPE RASE AIC 1 2206682 1485.49 0.6515192 0.564399 1234.35 17.69146 0.7053431 197.8937 BIC 1 197.8937 $Data age ageclass ax predict 1 1 I 8283 4961.5455 2 2 II 5238 4319.2364 3 3 III 1921 3676.9273 4 4 IV 1425 3034.6182 5 5 V 926 2392.3091 6 6 VI 659 1750.0000 7 7 VII 479 1107.6909 8 8 VIII 228 465.3818 9 9 IX 57 -176.9273 10 10 X 24 -819.2364 11 11 XI 10 -1461.5455 > psd_D2<-psdfun(ax=Npop$ax,index="Deevey2") > psd_D2 $Summary Formula: ax ~ a * exp(-b * age) Parameters: Estimate Std. Error t value Pr(>|t|) a 1.504e+04 9.717e+02 15.48 8.59e-08 *** b 5.828e-01 3.883e-02 15.01 1.12e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 318.7 on 9 degrees of freedom Number of iterations to convergence: 17 Achieved convergence tolerance: 1.49e-08 $Goodness MSE RMSE Rsquare adj.Rsquare MAE MAPE RASE AIC 1 83111.3 288.2903 0.9869709 0.9837137 188.8823 0.4079135 0.1079327 161.8239 BIC 1 161.8239 $Data age ageclass ax predict 1 1 I 8283 8396.40389 2 2 II 5238 4687.87598 3 3 III 1921 2617.33255 4 4 IV 1425 1461.30779 5 5 V 926 815.87663 6 6 VI 659 455.51983 7 7 VII 479 254.32560 8 8 VIII 228 141.99494 9 9 IX 57 79.27854 10 10 X 24 44.26276 11 11 XI 10 24.71276 > psd_D3<-psdfun(ax=Npop$ax,index="Deevey3") > psd_D3 $Summary Formula: ax ~ a * (age^-b) Parameters: Estimate Std. Error t value Pr(>|t|) a 8691.1232 633.3189 13.723 2.44e-07 *** b 1.2598 0.1326 9.499 5.48e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 649 on 9 degrees of freedom Number of iterations to convergence: 18 Achieved convergence tolerance: 1.49e-08 $Goodness MSE RMSE Rsquare adj.Rsquare MAE MAPE RASE AIC 1 344662.5 587.0797 0.9491095 0.9363869 442.1638 6.578955 0.252665 177.4702 BIC 1 177.4702 $Data age ageclass ax predict 1 1 I 8283 8691.1232 2 2 II 5238 3629.4310 3 3 III 1921 2177.7043 4 4 IV 1425 1515.6579 5 5 V 926 1144.2318 6 6 VI 659 909.4138 7 7 VII 479 748.8969 8 8 VIII 228 632.9419 9 9 IX 57 545.6597 10 10 X 24 477.8336 11 11 XI 10 423.7700 > library(ggplot2) > psdnls.p<-ggplot()+geom_bar(aes(x=age,y=ax,group=ageclass),data=psd_D2$Data,stat = "identity")+ + geom_line(aes(x=age,y=predict),color="blue",linewidth=1,data=psd_D2$Data)+ + geom_text(aes(x=10,y=7700),label=expression(paste(italic(y),"=aexp(-b",italic(x),")")))+ + geom_text(aes(x=10,y=7300),label=expression(paste(R^2,"=0.987")))+ + scale_x_continuous(breaks=1:11)+ + scale_x_discrete(limits=psd_D2$Data$ageclass)+ + xlab("Age class")+ylab("Number of individuals") Scale for x is already present. Adding another scale for x, which will replace the existing scale. > psdnls.p Error in `geom_text()`: ! Problem while setting up geom aesthetics. ℹ Error occurred in the 3rd layer. Caused by error in `list_sizes()`: ! `x$label` must be a vector, not an expression vector. Backtrace: ▆ 1. ├─base (local) `<fn>`(x) 2. ├─ggplot2 (local) `print.ggplot2::ggplot`(x) 3. │ ├─ggplot2::ggplot_build(x) 4. │ └─ggplot2 (local) `ggplot_build.ggplot2::ggplot`(x) 5. │ └─ggplot2:::by_layer(...) 6. │ ├─rlang::try_fetch(...) 7. │ │ ├─base::tryCatch(...) 8. │ │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ │ └─base::withCallingHandlers(...) 12. │ └─ggplot2 (local) f(l = layers[[i]], d = data[[i]]) 13. │ └─l$compute_geom_2(d, theme = plot@theme) 14. │ └─ggplot2 (local) compute_geom_2(..., self = self) 15. │ └─self$geom$use_defaults(...) 16. │ └─ggplot2 (local) use_defaults(..., self = self) 17. │ └─ggplot2:::check_aesthetics(new_params, nrow(data)) 18. │ └─vctrs::list_sizes(x) 19. └─vctrs:::stop_scalar_type(`<fn>`(`<expression>`), "x$label", `<env>`) 20. └─vctrs:::stop_vctrs(...) 21. └─rlang::abort(message, class = c(class, "vctrs_error"), ..., call = call) Execution halted Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.0.0
Check: dependencies in R code
Result: NOTE Namespaces in Imports field not imported from: ‘ggplot2’ ‘reshape2’ All declared Imports should be used. Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.0.0
Check: examples
Result: ERROR Running examples in ‘forestPSD-Ex.R’ failed The error most likely occurred in: > ### Name: psdfun > ### Title: Regression analysis for survival curves. > ### Aliases: psdfun > > ### ** Examples > > data(Npop) > psd_D1<-psdfun(ax=Npop$ax,index="Deevey1") > psd_D1 $Summary Formula: ax ~ a + b * age Parameters: Estimate Std. Error t value Pr(>|t|) a 5603.9 1062.0 5.277 0.000509 *** b -642.3 156.6 -4.102 0.002669 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 1642 on 9 degrees of freedom Number of iterations to convergence: 2 Achieved convergence tolerance: 1.49e-08 $Goodness MSE RMSE Rsquare adj.Rsquare MAE MAPE RASE AIC 1 2206682 1485.49 0.6515192 0.564399 1234.35 17.69146 0.7053431 197.8937 BIC 1 197.8937 $Data age ageclass ax predict 1 1 I 8283 4961.5455 2 2 II 5238 4319.2364 3 3 III 1921 3676.9273 4 4 IV 1425 3034.6182 5 5 V 926 2392.3091 6 6 VI 659 1750.0000 7 7 VII 479 1107.6909 8 8 VIII 228 465.3818 9 9 IX 57 -176.9273 10 10 X 24 -819.2364 11 11 XI 10 -1461.5455 > psd_D2<-psdfun(ax=Npop$ax,index="Deevey2") > psd_D2 $Summary Formula: ax ~ a * exp(-b * age) Parameters: Estimate Std. Error t value Pr(>|t|) a 1.504e+04 9.717e+02 15.48 8.59e-08 *** b 5.828e-01 3.883e-02 15.01 1.12e-07 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 318.7 on 9 degrees of freedom Number of iterations to convergence: 17 Achieved convergence tolerance: 1.49e-08 $Goodness MSE RMSE Rsquare adj.Rsquare MAE MAPE RASE AIC 1 83111.3 288.2903 0.9869709 0.9837137 188.8823 0.4079135 0.1079327 161.8239 BIC 1 161.8239 $Data age ageclass ax predict 1 1 I 8283 8396.40389 2 2 II 5238 4687.87598 3 3 III 1921 2617.33255 4 4 IV 1425 1461.30779 5 5 V 926 815.87663 6 6 VI 659 455.51983 7 7 VII 479 254.32560 8 8 VIII 228 141.99494 9 9 IX 57 79.27854 10 10 X 24 44.26276 11 11 XI 10 24.71276 > psd_D3<-psdfun(ax=Npop$ax,index="Deevey3") > psd_D3 $Summary Formula: ax ~ a * (age^-b) Parameters: Estimate Std. Error t value Pr(>|t|) a 8691.1232 633.3189 13.723 2.44e-07 *** b 1.2598 0.1326 9.499 5.48e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 649 on 9 degrees of freedom Number of iterations to convergence: 18 Achieved convergence tolerance: 1.49e-08 $Goodness MSE RMSE Rsquare adj.Rsquare MAE MAPE RASE AIC 1 344662.5 587.0797 0.9491095 0.9363869 442.1638 6.578955 0.252665 177.4702 BIC 1 177.4702 $Data age ageclass ax predict 1 1 I 8283 8691.1232 2 2 II 5238 3629.4310 3 3 III 1921 2177.7043 4 4 IV 1425 1515.6579 5 5 V 926 1144.2318 6 6 VI 659 909.4138 7 7 VII 479 748.8969 8 8 VIII 228 632.9419 9 9 IX 57 545.6597 10 10 X 24 477.8336 11 11 XI 10 423.7700 > library(ggplot2) > psdnls.p<-ggplot()+geom_bar(aes(x=age,y=ax,group=ageclass),data=psd_D2$Data,stat = "identity")+ + geom_line(aes(x=age,y=predict),color="blue",linewidth=1,data=psd_D2$Data)+ + geom_text(aes(x=10,y=7700),label=expression(paste(italic(y),"=aexp(-b",italic(x),")")))+ + geom_text(aes(x=10,y=7300),label=expression(paste(R^2,"=0.987")))+ + scale_x_continuous(breaks=1:11)+ + scale_x_discrete(limits=psd_D2$Data$ageclass)+ + xlab("Age class")+ylab("Number of individuals") Scale for x is already present. Adding another scale for x, which will replace the existing scale. > psdnls.p Error in `geom_text()`: ! Problem while setting up geom aesthetics. ℹ Error occurred in the 3rd layer. Caused by error in `list_sizes()`: ! `x$label` must be a vector, not an expression vector. Backtrace: ▆ 1. ├─base (local) `<fn>`(x) 2. ├─ggplot2 (local) `print.ggplot2::ggplot`(x) 3. │ ├─ggplot2::ggplot_build(x) 4. │ └─ggplot2 (local) `ggplot_build.ggplot2::ggplot`(x) 5. │ └─ggplot2:::by_layer(...) 6. │ ├─rlang::try_fetch(...) 7. │ │ ├─base::tryCatch(...) 8. │ │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ │ └─base::withCallingHandlers(...) 12. │ └─ggplot2 (local) f(l = layers[[i]], d = data[[i]]) 13. │ └─l$compute_geom_2(d, theme = plot@theme) 14. │ └─ggplot2 (local) compute_geom_2(..., self = self) 15. │ └─self$geom$use_defaults(...) 16. │ └─ggplot2 (local) use_defaults(..., self = self) 17. │ └─ggplot2:::check_aesthetics(new_params, nrow(data)) 18. │ └─vctrs::list_sizes(x) 19. └─vctrs:::stop_scalar_type(`<fn>`(`<expression>`), "x$label", `<env>`) 20. └─vctrs:::stop_vctrs(...) 21. └─rlang::abort(message, class = c(class, "vctrs_error"), ..., call = call) Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.