Last updated on 2024-12-22 08:49:59 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 3.6.2 | 56.93 | 149.64 | 206.57 | OK | |
r-devel-linux-x86_64-debian-gcc | 3.6.2 | 44.85 | 94.92 | 139.77 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 3.6.2 | 354.15 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 3.6.2 | 374.96 | OK | |||
r-devel-windows-x86_64 | 3.6.2 | 68.00 | 191.00 | 259.00 | OK | |
r-patched-linux-x86_64 | 3.6.2 | 62.80 | 139.75 | 202.55 | OK | |
r-release-linux-x86_64 | 3.6.2 | 61.67 | 140.76 | 202.43 | OK | |
r-release-macos-arm64 | 3.6.2 | 153.00 | OK | |||
r-release-macos-x86_64 | 3.6.2 | 197.00 | OK | |||
r-release-windows-x86_64 | 3.6.2 | 65.00 | 193.00 | 258.00 | OK | |
r-oldrel-macos-arm64 | 3.6.2 | 204.00 | OK | |||
r-oldrel-macos-x86_64 | 3.6.2 | 215.00 | OK | |||
r-oldrel-windows-x86_64 | 3.6.2 | 77.00 | 224.00 | 301.00 | OK |
Version: 3.6.2
Check: examples
Result: ERROR
Running examples in ‘cna-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: randomConds
> ### Title: Generate random solution formulas
> ### Aliases: randomConds randomAsf randomCsf
>
> ### ** Examples
> # randomAsf
> # ---------
> # Asf generated from explicitly specified binary factors.
> randomAsf(full.ct("H*I*T*R*K"))
[1] "r*T+R*i*k+T*K<->H"
> randomAsf(full.ct("Johnny*Debby*Aurora*Mars*James*Sonja"))
[1] "james*sonja<->DEBBY"
>
> # Asf generated from a specified number of binary factors.
> randomAsf(full.ct(7))
[1] "F*B+b*f*a*E<->G"
> # In shorthand form.
> randomAsf(7)
[1] "d*A*e*F+G*e*d*A+E*G*F<->C"
>
> # Randomly choose positive or negative outcome values.
> replicate(10, randomAsf(7, positive = FALSE))
[1] "c*b+b*D*F<->g" "C*F*e+b*f*c+E*B<->A"
[3] "D*g*e*b+G*B*C*D+E*B*g<->A" "E*b+D*G<->c"
[5] "B*F*D+e*G*c*D+b*G<->a" "g*d*a+b*A+f*b+g*f<->E"
[7] "E*g+E*A*F*c<->d" "A*g+e*c*g+e*b+a*D<->f"
[9] "E*g*A+F*e+A*b<->d" "c*b*D*A+C*B*d*g+a*d*C*G<->e"
>
> # Asf generated from an existing data frame.
> randomAsf(d.educate)
[1] "U*d+U*G<->L"
>
> # Specify the outcome.
> randomAsf(d.educate, outcome = "G")
[1] "u*l*D+U*e<->G"
>
> # Specify the complexity.
> # Initial complexity of 2 conjunctions and 2 disjunctions.
> randomAsf(full.ct(7), compl = 2)
[1] "F*c<->A"
> # Initial complexity of 3:4 conjunctions and 3:4 disjunctions.
> randomAsf(full.ct(7), compl = 3:4)
[1] "A*g*e*F+D*g*f*E+e*f*G*a+F*C*E*D<->B"
> # Initial complexity of 2 conjunctions and 3:4 disjunctions.
> randomAsf(full.ct(7), compl = list(2,3:4))
[1] "d*g+a*G+e*B<->C"
>
> # Redundancy-freeness relative to x instead of full.ct(x).
> randomAsf(d.educate, outcome = "G", how = "minimal")
[1] "L*d<->G"
>
> # Asf with multi-value factors.
> randomAsf(allCombs(c(3,4,3,5,3,4)))
[1] "B=2*E=1*F=1+A=2*F=1+F=1*B=1*E=1<->C=3"
> # Set the outcome value.
> randomAsf(allCombs(c(3,4,3,5,3,4)), outcome = "B=4")
[1] "E=3*F=1*D=2+A=2*E=1*F=1+F=4*A=2+D=4*C=1*A=2<->B=4"
> # Choose a random value of factor B.
> randomAsf(allCombs(c(3,4,3,5,3,4)), outcome = "B")
[1] "E=2*F=2*A=3*D=5+E=1*D=5*A=3*C=2<->B=1"
>
> # Asf from fuzzy-set data.
> randomAsf(d.jobsecurity)
[1] "l*JSR*S*R+s*V*l*r<->C"
> randomAsf(d.jobsecurity, outcome = "JSR")
[1] "s*r*v+R*V+v*l*r<->JSR"
>
> # Generate 20 asf for outcome "e".
> replicate(20, randomAsf(7, compl = list(2:3, 3:4), outcome = "e"))
[1] "G*b*A+f*B+f*d*G<->e" "b*F*C+B*D+g*c*d<->e"
[3] "F*G*a+a*d+A*c<->e" "G*B+D*a*C+A*b<->e"
[5] "C*g*a+g*a*f+A*B+F*c*B<->e" "F*D+A*g*b+c*a<->e"
[7] "A*F+a*f*g+d*f*b<->e" "d*B*f+b*F*d+g*F<->e"
[9] "f*A*b+g*D+B*A*C<->e" "A*D+D*B+B*G+a*G*d<->e"
[11] "d*g*b+c*a*D+b*a<->e" "A*B+A*C+G*d*B<->e"
[13] "b*F+d*B+f*a<->e" "G*D+G*C+C*D+F*G<->e"
[15] "F*b+g<->e" "a*f+B*D+g*A*F+d*C<->e"
[17] "D*f*C+g*F*A+b*d*g<->e" "C*f*a+g*A*f+B*G+B*F<->e"
[19] "D*A+f*c*A+a*B*C<->e" "B*c+c*D*F+d*f+C*b*a<->e"
>
>
> # randomCsf
> # ---------
> # Csf generated from explicitly specified binary factors.
> randomCsf(full.ct("H*I*T*R*K*Q*P"))
[1] "(t*h*I+r*T*h*K<->P)*(i*t*r*H+P*T*I+h*I*R<->Q)"
>
> # Csf generated from a specified number of binary factors.
> randomCsf(full.ct(7))
[1] "(B*e+C*F+B*F<->A)*(E*B+a*E+d*F*B<->G)"
> # In shorthand form.
> randomCsf(7)
[1] "(b*f*e+F*C*b<->A)*(a*b+b*c+F*E*C<->D)*(C*D+A*c<->G)"
>
> # Randomly choose positive or negative outcome values.
> replicate(5, randomCsf(7, positive = FALSE))
[1] "(g*E*B*d+B*g*e*D+G*d*e*b<->c)*(E*B+g*C*D<->A)*(G*A+c*a+G*E*D<->F)"
[2] "(E*B+B*G<->c)*(G*E+G*B<->A)*(A<->F)"
[3] "(G*C+B*G*a+g*A*B<->D)*(G*B+c*d*A+G*d<->f)*(a*g<->E)"
[4] "(d*b+f*b*C<->A)*(F*d+B*F*C<->e)*(c*a<->g)"
[5] "(F+A*c<->d)*(D*c+F*c<->B)*(B*d<->E)*(D*a+B<->G)"
>
> # Specify the outcomes.
> randomCsf(d.volatile, outcome = c("RB","se"))
[1] "(PG*OD*el+CS*vo2*PG+el*cs*PC<->RB)*(rb*PG+CS*vo2*pg*EL+UP*rb*PC*EL<->se)"
>
> # Specify the complexity.
> randomCsf(d.volatile, outcome = c("RB","se"), compl = 2)
[1] "(PG*EL<->RB)*(vo2*cs<->se)"
> randomCsf(full.ct(7), compl = 3:4)
[1] "(B*c*E+c*b*f+a*c*F<->G)*(c*g*f+b*E*F*a+a*g*E+b*g*a<->D)"
> randomCsf(full.ct(7), compl = list(2,4))
[1] "(G*f+D*G<->B)*(B*D<->A)"
>
> # Specify the maximal number of factors.
> randomCsf(d.highdim, maxVarNum = 10)
[1] "(V48*V36*V46+V38*v48+v48*V24+V6*V38*v36*v44<->V40)*(v38*v40*V46+V44*v6*v46+V15*v48*V46+V6*v15<->V34)*(v40*v46*v34*V15+v24*v15*v34+v15*V34*V36+V24*v48<->V28)"
>
> # Specify the number of asf.
> randomCsf(full.ct(7), n.asf = 3)
[1] "(g*C+f*g*e<->D)*(G*e<->A)*(G<->B)"
>
> # Csf with multi-value factors.
> randomCsf(allCombs(c(3,4,3,5,3,4)))
[1] "(D=3*A=2<->F=2)*(F=4*D=3<->B=2)*(D=4*F=4<->E=3)*(E=1*A=3<->C=1)"
> # Set the outcome values.
> randomCsf(allCombs(c(3,4,3,5,3,4)), outcome = c("A=1","B=4"))
[1] "(E=2*C=3*F=2+C=1*F=1*D=1*E=3+E=2*C=1*D=2*F=2<->A=1)*(E=2*D=1*C=3*F=3+F=4*A=3*C=3*D=2<->B=4)"
>
> # Generate 20 csf.
>
>
> # Inverse searches
> # ----------------
> # === Ideal Data ===
> # Draw the data generating structure. (Every run yields different
> # targets and data.)
> target <- randomCsf(full.ct(5), n.asf = 2)
> target
[1] "(C*A+D*a<->E)*(d*e*A+E*a<->B)"
> # Select the cases compatible with the target.
> x <- selectCases(target)
> # Run CNA without an ordering.
> mycna <- cna(x)
> # Extract the csf.
> csfs <- csf(mycna)
> # Check whether the target is completely returned.
> any(unlist(lapply(csfs$condition, identical.model, target)))
[1] TRUE
>
> # === Data fragmentation (20% missing observations) ===
> # Draw the data generating structure. (Every run yields different
> # targets and data.)
> target <- randomCsf(full.ct(7), n.asf = 2)
> target
[1] "(c*A+d*c*F+G*f*c+g*A<->B)*(f*g*D+A*B*f<->E)"
> # Generate the ideal data.
> x <- ct2df(selectCases(target))
> # Introduce fragmentation.
> x <- x[-sample(1:nrow(x), nrow(x)*0.2), ]
> # Run CNA without an ordering.
> mycna <- cna(x)
> # Extract the csf.
> csfs <- csf(mycna)
> # Check whether (a causal submodel of) the target is returned.
> any(unlist(lapply(csfs$condition, function(x)
+ frscore::causal_submodel(x, target))))
Error in loadNamespace(x) : there is no package called ‘frscore’
Calls: unlist ... loadNamespace -> withRestarts -> withOneRestart -> doWithOneRestart
Execution halted
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
cna 3.711 0.591 5.078
Flavor: r-devel-linux-x86_64-debian-gcc
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.