CRAN Package Check Results for Maintainer ‘Charles Driver <charles.driver2 at uzh.ch>’

Last updated on 2025-12-28 09:51:03 CET.

Package ERROR NOTE OK
ctsem 1 2 8
ctsemOMX 4 9

Package ctsem

Current CRAN status: ERROR: 1, NOTE: 2, OK: 8

Additional issues

donttest M1mac

Version: 3.10.4
Flags: --no-vignettes
Check: examples
Result: ERROR Running examples in 'ctsem-Ex.R' failed The error most likely occurred in: > ### Name: ctACF > ### Title: Continuous Time Autocorrelation Function (ctACF) > ### Aliases: ctACF > > ### ** Examples > > data.table::setDTthreads(1) #ignore this line > # Example usage: > head(ctstantestdat) id time Y1 Y2 TD1 TI1 TI2 TI3 4 1 0.000000 8.628419 13.55213 0 -0.05380504 -1.366299 -0.2074973 5 1 0.123705 NA 11.34075 NA -0.05380504 -1.366299 -0.2074973 6 1 0.594186 7.500058 12.33738 0 -0.05380504 -1.366299 -0.2074973 7 1 0.888842 6.834832 12.63265 1 -0.05380504 -1.366299 -0.2074973 8 1 1.186905 7.010044 11.90834 0 -0.05380504 -1.366299 -0.2074973 9 1 1.624510 6.791367 10.21116 0 -0.05380504 -1.366299 -0.2074973 > ctACF(ctstantestdat,varnames=c('Y1'),idcol='id',timecol='time',nboot=5) Loading required namespace: collapse Error in `[.data.table`(dat, , `:=`(.timediff, c(NA, diff(get(timecol)))), : attempt access index 8/8 in VECTOR_ELT Calls: ctACF -> quantile -> [ -> [.data.table Execution halted Flavor: r-devel-windows-x86_64

Version: 3.10.4
Flags: --no-vignettes
Check: tests
Result: ERROR Running 'testthat.R' [91s] Running the tests in 'tests/testthat.R' failed. Complete output: > library(testthat) > library(ctsem) Loading required package: Rcpp ctsem also changes in time, for manual run ctDocs(), for blog see https://cdriver.netlify.app/, for citation info run citation('ctsem'), for original OpenMx functionality install.packages('ctsemOMX'), and for discussion https://github.com/cdriveraus/ctsem/discussions > pdf(NULL) > test_check("ctsem") Saving _problems/test-intervalise-12.R Saving _problems/test-reshaping-30.R [,1] [,2] [1,] "0" "0" [2,] "0" "diff" [,1] [1,] "0" [,1] [1,] "0" [2,] "cint" ctsem also changes in time, for manual run ctDocs(), for blog see https://cdriver.netlify.app/, for citation info run citation('ctsem'), for original OpenMx functionality install.packages('ctsemOMX'), and for discussion https://github.com/cdriveraus/ctsem/discussions ctsem also changes in time, for manual run ctDocs(), for blog see https://cdriver.netlify.app/, for citation info run citation('ctsem'), for original OpenMx functionality install.packages('ctsemOMX'), and for discussion https://github.com/cdriveraus/ctsem/discussions starting worker pid=23108 on localhost:32309 at 01:15:19.839 starting worker pid=42640 on localhost:32309 at 01:15:20.112 Loading required package: data.table Loading required package: data.table Attaching package: 'data.table' The following object is masked from 'package:base': %notin% Attaching package: 'data.table' The following object is masked from 'package:base': %notin% ctsem also changes in time, for manual run ctDocs(), for blog see https://cdriver.netlify.app/, for citation info run citation('ctsem'), for original OpenMx functionality install.packages('ctsemOMX'), and for discussion https://github.com/cdriveraus/ctsem/discussions ctsem also changes in time, for manual run ctDocs(), for blog see https://cdriver.netlify.app/, for citation info run citation('ctsem'), for original OpenMx functionality install.packages('ctsemOMX'), and for discussion https://github.com/cdriveraus/ctsem/discussions starting worker pid=52704 on localhost:33785 at 01:15:39.515 starting worker pid=65808 on localhost:33785 at 01:15:39.879 Loading required package: data.table Loading required package: data.table Attaching package: 'data.table' Attaching package: 'data.table' The following object is masked from 'package:base': %notin% The following object is masked from 'package:base': %notin% starting worker pid=16308 on localhost:11418 at 01:15:43.560 starting worker pid=33432 on localhost:11418 at 01:15:43.802 SAMPLING FOR MODEL 'ctsm' NOW (CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 0.005846 seconds Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 58.46 seconds. Chain 1: Adjust your expectations accordingly! Chain 1: Chain 1: Chain 1: Iteration: 1 / 300 [ 0%] (Warmup) SAMPLING FOR MODEL 'ctsm' NOW (CHAIN 2). Chain 2: Chain 2: Gradient evaluation took 0.0076 seconds Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 76 seconds. Chain 2: Adjust your expectations accordingly! Chain 2: Chain 2: Chain 2: Iteration: 1 / 300 [ 0%] (Warmup) Chain 2: Iteration: 20 / 300 [ 6%] (Warmup) Chain 1: Iteration: 20 / 300 [ 6%] (Warmup) Chain 2: Iteration: 40 / 300 [ 13%] (Warmup) Chain 1: Iteration: 40 / 300 [ 13%] (Warmup) Chain 2: Iteration: 60 / 300 [ 20%] (Warmup) Chain 1: Iteration: 60 / 300 [ 20%] (Warmup) Chain 2: Iteration: 80 / 300 [ 26%] (Warmup) Chain 1: Iteration: 80 / 300 [ 26%] (Warmup) Chain 2: Iteration: 100 / 300 [ 33%] (Warmup) Chain 1: Iteration: 100 / 300 [ 33%] (Warmup) Chain 2: Iteration: 120 / 300 [ 40%] (Warmup) Chain 1: Iteration: 120 / 300 [ 40%] (Warmup) Chain 1: Iteration: 140 / 300 [ 46%] (Warmup) Chain 2: Iteration: 140 / 300 [ 46%] (Warmup) Chain 1: Iteration: 151 / 300 [ 50%] (Sampling) Chain 2: Iteration: 151 / 300 [ 50%] (Sampling) Chain 1: Iteration: 170 / 300 [ 56%] (Sampling) Chain 2: Iteration: 170 / 300 [ 56%] (Sampling) Chain 1: Iteration: 190 / 300 [ 63%] (Sampling) Chain 2: Iteration: 190 / 300 [ 63%] (Sampling) Chain 1: Iteration: 210 / 300 [ 70%] (Sampling) Chain 2: Iteration: 210 / 300 [ 70%] (Sampling) Chain 2: Iteration: 230 / 300 [ 76%] (Sampling) Chain 1: Iteration: 230 / 300 [ 76%] (Sampling) Chain 2: Iteration: 250 / 300 [ 83%] (Sampling) Chain 1: Iteration: 250 / 300 [ 83%] (Sampling) Chain 2: Iteration: 270 / 300 [ 90%] (Sampling) Chain 1: Iteration: 270 / 300 [ 90%] (Sampling) Chain 2: Iteration: 290 / 300 [ 96%] (Sampling) Chain 1: Iteration: 290 / 300 [ 96%] (Sampling) Chain 2: Iteration: 300 / 300 [100%] (Sampling) Chain 2: Chain 2: Elapsed Time: 19.139 seconds (Warm-up) Chain 2: 10.512 seconds (Sampling) Chain 2: 29.651 seconds (Total) Chain 2: Chain 1: Iteration: 300 / 300 [100%] (Sampling) Chain 1: Chain 1: Elapsed Time: 19.344 seconds (Warm-up) Chain 1: 10.955 seconds (Sampling) Chain 1: 30.299 seconds (Total) Chain 1: [ FAIL 2 | WARN 0 | SKIP 16 | PASS 6 ] ══ Skipped tests (16) ══════════════════════════════════════════════════════════ • empty test (16): , , , , , , , , , , , , , , , ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-intervalise.R:10:3'): intervals ──────────────────────────────── Error in ``[.data.table`(data_long, , `:=`(discrete.time.point = 1:.N), by = id)`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─ctsem::ctLongToWide(...) at test-intervalise.R:10:3 2. ├─data_long[, `:=`(discrete.time.point = 1:.N), by = id] 3. └─data.table:::`[.data.table`(...) ── Error ('test-reshaping.R:29:3'): reshaping1 ───────────────────────────────── Error in ``[.data.table`(data_long, , `:=`(discrete.time.point = 1:.N), by = id)`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─ctsem::ctLongToWide(...) at test-reshaping.R:29:3 2. ├─data_long[, `:=`(discrete.time.point = 1:.N), by = id] 3. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 0 | SKIP 16 | PASS 6 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

Version: 3.10.4
Check: installed package size
Result: NOTE installed size is 201.7Mb sub-directories of 1Mb or more: R 2.0Mb data 1.7Mb libs 196.6Mb Flavor: r-oldrel-macos-arm64

Version: 3.10.4
Check: for GNU extensions in Makefiles
Result: NOTE GNU make is a SystemRequirements. Flavor: r-oldrel-macos-arm64

Version: 3.10.4
Flags: --no-vignettes
Check: installed package size
Result: NOTE installed size is 11.6Mb sub-directories of 1Mb or more: R 1.2Mb data 1.7Mb libs 7.3Mb Flavor: r-oldrel-windows-x86_64

Package ctsemOMX

Current CRAN status: ERROR: 4, OK: 9

Version: 1.0.7
Flags: --no-vignettes
Check: examples
Result: ERROR Running examples in 'ctsemOMX-Ex.R' failed The error most likely occurred in: > ### Name: ctGenerateFromFit > ### Title: Generates data according to the model estimated in a ctsemFit > ### object. > ### Aliases: ctGenerateFromFit > > ### ** Examples > > > data(AnomAuth) > AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2), + Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2)) Type "omx" is still supported but requires ctsemOMX package installation. "ct" or "dt" are recommended types. CINT specified via single value -- filling 2 * 1 matrix: [,1] [1,] "0" [2,] "0" > AnomAuthfit <- ctFit(AnomAuth, AnomAuthmodel) wide format data detected Running ctsemCarefulFit with 14 parameters Running ctsem with 14 parameters Beginning initial fit attempt Running ctsem with 14 parameters Lowest minimum so far: 23415.9290488409 Solution found Solution found! Final fit=23415.929 (started at 85069.46) (1 attempt(s): 1 valid, 0 errors) > > dwide <- ctGenerateFromFit(AnomAuthfit,timestep=1,n.subjects=5,wide=TRUE) Error in `[.data.table`(data_long, , `:=`(discrete.time.point = 1:.N), : attempt access index 4/4 in VECTOR_ELT Calls: ctGenerateFromFit ... withCallingHandlers -> ctGenerate -> ctLongToWide -> [ -> [.data.table Execution halted Flavor: r-devel-windows-x86_64

Version: 1.0.7
Flags: --no-vignettes
Check: tests
Result: ERROR Running 'testthat.R' [14s] Running the tests in 'tests/testthat.R' failed. Complete output: > library(testthat) > library(ctsemOMX) Loading required package: ctsem Loading required package: Rcpp ctsem also changes in time, for manual run ctDocs(), for blog see https://cdriver.netlify.app/, for citation info run citation('ctsem'), for original OpenMx functionality install.packages('ctsemOMX'), and for discussion https://github.com/cdriveraus/ctsem/discussions Loading required package: OpenMx Attaching package: 'ctsemOMX' The following objects are masked from 'package:ctsem': ctFit, ctIndplot > pdf(NULL) > test_check("ctsemOMX") Saving _problems/test-intervalise-12.R Saving _problems/test-kalmanVram-35.R Saving _problems/test-reshaping-30.R [ FAIL 3 | WARN 0 | SKIP 3 | PASS 0 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • empty test (3): , , ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-intervalise.R:10:3'): intervals ──────────────────────────────── Error in ``[.data.table`(data_long, , `:=`(discrete.time.point = 1:.N), by = id)`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─ctsem::ctLongToWide(...) at test-intervalise.R:10:3 2. ├─data_long[, `:=`(discrete.time.point = 1:.N), by = id] 3. └─data.table:::`[.data.table`(...) ── Error ('test-kalmanVram.R:35:1'): time calc ───────────────────────────────── Error in ``[.data.table`(data_long, , `:=`(discrete.time.point = 1:.N), by = id)`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. └─ctsemOMX::ctRefineTo(...) at test-kalmanVram.R:35:1 2. └─ctsemOMX::ctFit(datawide, m, nofit = TRUE, ...) 3. └─ctsem::ctLongToWide(...) 4. ├─data_long[, `:=`(discrete.time.point = 1:.N), by = id] 5. └─data.table:::`[.data.table`(...) ── Error ('test-reshaping.R:29:3'): reshaping1 ───────────────────────────────── Error in ``[.data.table`(data_long, , `:=`(discrete.time.point = 1:.N), by = id)`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─ctsem::ctLongToWide(...) at test-reshaping.R:29:3 2. ├─data_long[, `:=`(discrete.time.point = 1:.N), by = id] 3. └─data.table:::`[.data.table`(...) [ FAIL 3 | WARN 0 | SKIP 3 | PASS 0 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

Version: 1.0.7
Check: package dependencies
Result: ERROR Package required but not available: ‘ctsem’ See section ‘The DESCRIPTION file’ in the ‘Writing R Extensions’ manual. Flavors: r-release-macos-x86_64, r-oldrel-macos-x86_64

Version: 1.0.7
Flags: --no-vignettes
Check: package dependencies
Result: ERROR Package required but not available: 'OpenMx' See section 'The DESCRIPTION file' in the 'Writing R Extensions' manual. Flavor: r-oldrel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.