CRAN Package Check Results for Package SFDesign

Last updated on 2025-05-15 13:51:14 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.0 30.96 40.68 71.64 OK
r-devel-linux-x86_64-debian-gcc 0.1.0 24.06 28.78 52.84 OK
r-devel-linux-x86_64-fedora-clang 0.1.0 136.56 OK
r-devel-linux-x86_64-fedora-gcc 0.1.0 142.09 OK
r-devel-windows-x86_64 0.1.0 39.00 91.00 130.00 OK
r-patched-linux-x86_64 0.1.0 30.95 37.68 68.63 OK
r-release-linux-x86_64 0.1.0 32.53 34.94 67.47 ERROR
r-release-macos-arm64 0.1.0 38.00 OK
r-release-macos-x86_64 0.1.0 60.00 OK
r-release-windows-x86_64 0.1.0 38.00 94.00 132.00 OK
r-oldrel-macos-arm64 0.1.0 45.00 OK
r-oldrel-macos-x86_64 0.1.0 63.00 ERROR

Check Details

Version: 0.1.0
Check: examples
Result: ERROR Running examples in ‘SFDesign-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: customLHD > ### Title: Generate a Latin-hypercube design (LHD) based on a custom > ### criterion. > ### Aliases: customLHD > > ### ** Examples > > # Below is an example showing how to create functions needed to generate > # MaxPro LHD manually by customLHD without using the maxproLHD function in > # the package. > compute.distance.matrix <- function(A){ + s = 2 + log_prod_metric = function(x, y) s * sum(log(abs(x-y))) + return (c(proxy::dist(A, log_prod_metric))) + } > compute.criterion <- function(n, p, d) { + s = 2 + dim <- as.integer(n * (n - 1) / 2) + # Find the minimum distance + Dmin <- min(d) + # Compute the exponential summation + avgdist <- sum(exp(Dmin - d)) + # Apply the logarithmic transformation and scaling + avgdist <- log(avgdist) - Dmin + avgdist <- exp((avgdist - log(dim)) * (p * s) ^ (-1)) + return(avgdist) + } > > update.distance.matrix <- function(A, col, selrow1, selrow2, d) { + s = 2 + n = nrow(A) + # transform from c++ idx to r idx + selrow1 = selrow1 + 1 + selrow2 = selrow2 + 1 + col = col + 1 + # A is the updated matrix + row1 <- min(selrow1, selrow2) + row2 <- max(selrow1, selrow2) + + compute_position <- function(row, h, n) { + n * (h-1) - h*(h-1)/2 + row-h + } + + # Update for rows less than row1 + if (row1 > 1) { + for (h in 1:(row1-1)) { + position1 <- compute_position(row1, h, n) + position2 <- compute_position(row2, h, n) + for (c in col){ + d[position1] <- d[position1] + s * log(abs(A[row1, c] - A[h, c])) - + s * log(abs(A[row2, c] - A[h, c])) + d[position2] <- d[position2] + s * log(abs(A[row2, c] - A[h, c])) - + s * log(abs(A[row1, c] - A[h, c])) + } + } + } + + # Update for rows between row1 and row2 + if ((row2-row1) > 1){ + for (h in (row1+1):(row2-1)) { + position1 <- compute_position(h, row1, n) + position2 <- compute_position(row2, h, n) + for (c in col){ + d[position1] <- d[position1] + s * log(abs(A[row1, c] - A[h, c])) - + s * log(abs(A[row2, c] - A[h, c])) + d[position2] <- d[position2] + s * log(abs(A[row2, c] - A[h, c])) - + s * log(abs(A[row1, c] - A[h, c])) + } + } + } + + # Update for rows greater than row2 + if (row2 < n) { + for (h in (row2+1):n) { + position1 <- compute_position(h, row1, n) + position2 <- compute_position(h, row2, n) + for (c in col){ + d[position1] <- d[position1] + s * log(abs(A[row1, c] - A[h, c])) - + s * log(abs(A[row2, c] - A[h, c])) + d[position2] <- d[position2] + s * log(abs(A[row2, c] - A[h, c])) - + s * log(abs(A[row1, c] - A[h, c])) + } + } + } + return (d) + } > > n = 10 > p = 2 > # Find an appropriate initial temperature > crit1 = 1 / (n-1) > crit2 = (1 / ((n-1)^(p-1) * (n-2))) ^ (1/p) > delta = crit2 - crit1 > temp = - delta / log(0.99) > result_custom = customLHD(compute.distance.matrix, + function(d) compute.criterion(n, p, d), + update.distance.matrix, n, p, temp = temp) *** caught segfault *** address 0x360, cause 'memory not mapped' Segmentation fault Examples with CPU (user + system) or elapsed time > 5s user system elapsed clustering.design 4.161 0.014 6.103 Flavor: r-release-linux-x86_64

Version: 0.1.0
Check: examples
Result: ERROR Running examples in ‘SFDesign-Ex.R’ failed The error most likely occurred in: > ### Name: customLHD > ### Title: Generate a Latin-hypercube design (LHD) based on a custom > ### criterion. > ### Aliases: customLHD > > ### ** Examples > > # Below is an example showing how to create functions needed to generate > # MaxPro LHD manually by customLHD without using the maxproLHD function in > # the package. > compute.distance.matrix <- function(A){ + s = 2 + log_prod_metric = function(x, y) s * sum(log(abs(x-y))) + return (c(proxy::dist(A, log_prod_metric))) + } > compute.criterion <- function(n, p, d) { + s = 2 + dim <- as.integer(n * (n - 1) / 2) + # Find the minimum distance + Dmin <- min(d) + # Compute the exponential summation + avgdist <- sum(exp(Dmin - d)) + # Apply the logarithmic transformation and scaling + avgdist <- log(avgdist) - Dmin + avgdist <- exp((avgdist - log(dim)) * (p * s) ^ (-1)) + return(avgdist) + } > > update.distance.matrix <- function(A, col, selrow1, selrow2, d) { + s = 2 + n = nrow(A) + # transform from c++ idx to r idx + selrow1 = selrow1 + 1 + selrow2 = selrow2 + 1 + col = col + 1 + # A is the updated matrix + row1 <- min(selrow1, selrow2) + row2 <- max(selrow1, selrow2) + + compute_position <- function(row, h, n) { + n * (h-1) - h*(h-1)/2 + row-h + } + + # Update for rows less than row1 + if (row1 > 1) { + for (h in 1:(row1-1)) { + position1 <- compute_position(row1, h, n) + position2 <- compute_position(row2, h, n) + for (c in col){ + d[position1] <- d[position1] + s * log(abs(A[row1, c] - A[h, c])) - + s * log(abs(A[row2, c] - A[h, c])) + d[position2] <- d[position2] + s * log(abs(A[row2, c] - A[h, c])) - + s * log(abs(A[row1, c] - A[h, c])) + } + } + } + + # Update for rows between row1 and row2 + if ((row2-row1) > 1){ + for (h in (row1+1):(row2-1)) { + position1 <- compute_position(h, row1, n) + position2 <- compute_position(row2, h, n) + for (c in col){ + d[position1] <- d[position1] + s * log(abs(A[row1, c] - A[h, c])) - + s * log(abs(A[row2, c] - A[h, c])) + d[position2] <- d[position2] + s * log(abs(A[row2, c] - A[h, c])) - + s * log(abs(A[row1, c] - A[h, c])) + } + } + } + + # Update for rows greater than row2 + if (row2 < n) { + for (h in (row2+1):n) { + position1 <- compute_position(h, row1, n) + position2 <- compute_position(h, row2, n) + for (c in col){ + d[position1] <- d[position1] + s * log(abs(A[row1, c] - A[h, c])) - + s * log(abs(A[row2, c] - A[h, c])) + d[position2] <- d[position2] + s * log(abs(A[row2, c] - A[h, c])) - + s * log(abs(A[row1, c] - A[h, c])) + } + } + } + return (d) + } > > n = 10 > p = 2 > # Find an appropriate initial temperature > crit1 = 1 / (n-1) > crit2 = (1 / ((n-1)^(p-1) * (n-2))) ^ (1/p) > delta = crit2 - crit1 > temp = - delta / log(0.99) > result_custom = customLHD(compute.distance.matrix, + function(d) compute.criterion(n, p, d), + update.distance.matrix, n, p, temp = temp) *** caught segfault *** address 0x30, cause 'memory not mapped' Flavor: r-oldrel-macos-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.