CRAN Package Check Results for Package GAPR

Last updated on 2025-06-01 19:49:03 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.0 35.25 129.17 164.42 OK
r-devel-linux-x86_64-debian-gcc 0.1.0 23.48 89.60 113.08 OK
r-devel-linux-x86_64-fedora-clang 0.1.0 263.39 OK
r-devel-linux-x86_64-fedora-gcc 0.1.0 255.48 OK
r-devel-windows-x86_64 0.1.0 39.00 158.00 197.00 ERROR
r-patched-linux-x86_64 0.1.0 34.80 119.87 154.67 OK
r-release-linux-x86_64 0.1.0 32.08 121.88 153.96 OK
r-release-macos-arm64 0.1.0 70.00 OK
r-release-macos-x86_64 0.1.0 136.00 OK
r-release-windows-x86_64 0.1.0 35.00 143.00 178.00 OK
r-oldrel-macos-arm64 0.1.0 76.00 OK
r-oldrel-macos-x86_64 0.1.0 132.00 OK
r-oldrel-windows-x86_64 0.1.0 49.00 184.00 233.00 OK

Additional issues

clang-ASAN gcc-ASAN valgrind

Check Details

Version: 0.1.0
Check: examples
Result: ERROR Running examples in 'GAPR-Ex.R' failed The error most likely occurred in: > ### Name: computeProximity > ### Title: Compute Proximity Matrix > ### Aliases: computeProximity > > ### ** Examples > > # ======================= > # Example 1: Crabs dataset with distance method (Euclidean distance) > # ======================= > # Step 1: Compute proximity matrix > if (requireNamespace("MASS", quietly = TRUE)) { + df_crabs <- as.matrix(MASS::crabs[, -c(1:3)]) # Use continuous variables only + row_prox_crabs <- computeProximity( + data = df_crabs, + proxType = 0, # 0 = Euclidean distance + side = 0, # 0 = row-wise proximity + isContainMissingValue = 0 + ) + + # Step 2: Obtain R2E ordering + r2e_order_crabs <- ellipse_sort(row_prox_crabs) # R2E ordering + + # Step 3: Apply AVG-R2E ordering + hctree_result_crabs <- hctree_sort( + row_prox_crabs, # use distance matrix directly + externalOrder = r2e_order_crabs, # apply r2e order + orderType = 2, # 2 = Average-linkage + flipType = 1 # 1 = Flip based on externalOrder + ) + + avg_r2e_order_crabs <- hctree_result_crabs$order + 1 + + # Inspect results + avg_r2e_order_crabs + } [1] 150 149 50 200 148 145 144 147 146 143 142 199 198 197 195 45 46 49 [19] 48 47 44 100 196 193 192 188 194 189 190 191 187 186 141 140 139 138 [37] 134 135 133 42 43 41 40 37 35 99 98 180 179 185 184 176 183 97 [55] 136 137 132 131 127 130 36 38 39 34 32 31 33 28 177 178 182 181 [73] 172 171 175 174 95 92 96 94 29 30 128 129 126 88 91 83 89 93 [91] 90 87 173 170 169 26 25 24 27 23 22 21 84 86 85 82 168 167 [109] 166 163 164 165 162 125 123 124 161 121 122 120 81 80 79 160 159 78 [127] 118 20 158 157 113 115 112 114 119 117 111 77 76 73 19 75 18 17 [145] 14 13 16 71 74 12 15 11 72 70 116 110 108 156 109 155 107 65 [163] 69 67 68 64 66 10 63 154 9 8 106 153 105 7 62 60 6 51 [181] 1 101 151 152 104 61 59 58 57 56 103 102 5 4 55 54 3 52 [199] 53 2 > > # ======================= > # Example 2: Crabs dataset with distance method (Pearson correlation) > # ======================= > if (requireNamespace("MASS", quietly = TRUE)) { + df_crabs <- as.matrix(MASS::crabs[, -c(1:3)]) # Use continuous variables only + row_prox_pearson <- computeProximity( + data = df_crabs, + proxType = 1, # 1 = Pearson correlation (internally 1 - cor) + side = 0, # 0 = row-wise proximity + isContainMissingValue = 0 + ) + + # Step 2: Obtain R2E ordering + r2e_order_pearson <- ellipse_sort(row_prox_pearson) # R2E ordering + + # Step 3: Inspect results + dist_pearson <- as.dist(1 - row_prox_pearson) # convert correlation matrix to distance matrix + dist_pearson_MT <- as.matrix(dist_pearson) + + hctree_result_pearson <- hctree_sort( + dist_pearson_MT, # use distance matrix directly + externalOrder = r2e_order_pearson, # apply r2e order + orderType = 2, # 2 = Average-linkage + flipType = 1 # 1 = Flip based on externalOrder + ) + + avg_r2e_order_pearson <- hctree_result_pearson$order + 1 + + # Inspect results + avg_r2e_order_pearson + } [1] 145 144 142 146 150 137 130 143 149 131 139 129 135 148 138 112 114 126 [19] 140 120 121 115 113 127 136 124 133 117 147 134 132 45 125 128 141 122 [37] 106 119 116 109 105 123 103 110 102 104 107 42 111 161 195 108 28 193 [55] 190 186 31 40 34 50 49 48 39 22 46 199 23 30 38 197 198 118 [73] 191 153 182 174 43 27 24 180 37 41 33 29 26 172 25 13 36 47 [91] 8 181 101 194 152 44 32 192 6 100 96 176 90 14 1 156 162 185 [109] 35 21 200 155 187 189 184 171 175 20 173 9 196 170 5 178 18 158 [127] 17 166 4 165 160 167 19 169 177 15 80 179 16 89 159 163 164 151 [145] 154 157 7 66 11 84 93 168 2 55 188 10 74 91 77 76 86 54 [163] 58 3 78 75 68 62 51 53 60 88 56 85 71 69 12 79 82 97 [181] 73 83 67 92 64 87 94 99 98 70 183 81 95 72 52 63 57 65 [199] 59 61 > > > > ### * <FOOTER> > ### > cleanEx() Error in gc() : GC encountered a node (000001FE5D6F4620) with an unknown SEXP type: 27 at memory.c:1840 Calls: cleanEx -> showConnections -> gc Execution halted Flavor: r-devel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.