CRAN Package Check Results for Package DoubleML

Last updated on 2025-12-28 03:51:27 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.2 15.45 379.09 394.54 OK
r-devel-linux-x86_64-debian-gcc 1.0.2 9.32 267.93 277.25 OK
r-devel-linux-x86_64-fedora-clang 1.0.2 27.00 622.49 649.49 OK
r-devel-linux-x86_64-fedora-gcc 1.0.2 25.00 611.56 636.56 OK
r-devel-windows-x86_64 1.0.2 15.00 140.00 155.00 ERROR
r-patched-linux-x86_64 1.0.2 14.80 332.03 346.83 OK
r-release-linux-x86_64 1.0.2 14.02 341.37 355.39 OK
r-release-macos-arm64 1.0.2 OK
r-release-macos-x86_64 1.0.2 9.00 358.00 367.00 OK
r-release-windows-x86_64 1.0.2 15.00 352.00 367.00 OK
r-oldrel-macos-arm64 1.0.2 OK
r-oldrel-macos-x86_64 1.0.2 9.00 354.00 363.00 OK
r-oldrel-windows-x86_64 1.0.2 22.00 442.00 464.00 OK

Check Details

Version: 1.0.2
Check: tests
Result: ERROR Running 'testthat_regression_tests.R' [40s] Running the tests in 'tests/testthat_regression_tests.R' failed. Complete output: > library("testthat") > library("patrick") > library("DoubleML") > > testthat::test_check("DoubleML") Saving _problems/test-double_ml_cluster_not_implemented-13.R Saving _problems/test-double_ml_iivm-39.R Saving _problems/test-double_ml_iivm_binary_outcome-40.R Saving _problems/test-double_ml_iivm_parameter_passing-52.R Saving _problems/test-double_ml_iivm_parameter_passing-140.R Saving _problems/test-double_ml_iivm_parameter_passing-227.R Saving _problems/test-double_ml_iivm_parameter_passing-304.R Saving _problems/test-double_ml_iivm_trim-38.R Saving _problems/test-double_ml_iivm_tuning-76.R Saving _problems/test-double_ml_iivm_user_score-55.R Saving _problems/test-double_ml_irm-36.R Saving _problems/test-double_ml_irm_binary_outcome-40.R Saving _problems/test-double_ml_irm_loaded_mlr3learner-73.R Saving _problems/test-double_ml_irm_parameter_passing-50.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-198.R Saving _problems/test-double_ml_irm_parameter_passing-260.R Saving _problems/test-double_ml_irm_trim-37.R Saving _problems/test-double_ml_irm_tuning-76.R Saving _problems/test-double_ml_irm_user_score-54.R Saving _problems/test-double_ml_pliv-36.R Saving _problems/test-double_ml_pliv_exception_handling-47.R Saving _problems/test-double_ml_pliv_one_way_cluster-56.R Saving _problems/test-double_ml_pliv_parameter_passing-54.R Saving _problems/test-double_ml_pliv_parameter_passing-150.R Saving _problems/test-double_ml_pliv_parameter_passing-240.R Saving _problems/test-double_ml_pliv_parameter_passing-321.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-40.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-82.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-121.R Saving _problems/test-double_ml_pliv_partial_functional_initializer_IVtype-41.R Saving _problems/test-double_ml_pliv_tuning-98.R Saving _problems/test-double_ml_pliv_tuning-188.R Saving _problems/test-double_ml_pliv_two_way_cluster-50.R Saving _problems/test-double_ml_pliv_user_score-66.R Saving _problems/test-double_ml_plr-36.R Saving _problems/test-double_ml_plr_classifier-50.R Saving _problems/test-double_ml_plr_classifier-130.R Saving _problems/test-double_ml_plr_classifier-143.R Saving _problems/test-double_ml_plr_exception_handling-116.R Saving _problems/test-double_ml_plr_exception_handling-177.R Saving _problems/test-double_ml_plr_export_preds-49.R Saving _problems/test-double_ml_plr_loaded_mlr3learner-66.R Saving _problems/test-double_ml_plr_multitreat-43.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nonorth-74.R Saving _problems/test-double_ml_plr_p_adjust-69.R Saving _problems/test-double_ml_plr_parameter_passing-57.R Saving _problems/test-double_ml_plr_parameter_passing-160.R Saving _problems/test-double_ml_plr_parameter_passing-264.R Saving _problems/test-double_ml_plr_parameter_passing-353.R Saving _problems/test-double_ml_plr_rep_cross_fit-44.R Saving _problems/test-double_ml_plr_set_samples-53.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_user_score-48.R Saving _problems/test-double_ml_print-12.R Saving _problems/test-double_ml_ssm_mar-36.R Saving _problems/test-double_ml_ssm_nonignorable-36.R Saving _problems/test-double_ml_ssm_tuning-75.R Saving _problems/test-double_ml_ssm_tuning-75.R [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] ══ Skipped tests (7) ═══════════════════════════════════════════════════════════ • On CRAN (7): 'test-double_ml_datasets.R:15:1', 'test-double_ml_pliv_multi_z_parameter_passing.R:7:1', 'test-double_ml_pliv_partial_x.R:5:1', 'test-double_ml_pliv_partial_xz.R:7:1', 'test-double_ml_pliv_partial_xz_parameter_passing.R:5:1', 'test-double_ml_pliv_partial_z.R:5:1', 'test-double_ml_pliv_partial_z_parameter_passing.R:5:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-double_ml_cluster_not_implemented.R:13:3'): Not yet implemented cluster features ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_pliv_cluster$fit() at test-double_ml_cluster_not_implemented.R:13:3 2. └─private$nuisance_est(private$get__smpls()) 3. └─private$nuisance_est_partialX(smpls, ...) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm.R:32:5'): Unit tests for IIVM: rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_binary_outcome.R:32:5'): Unit tests for IIVM: log_reg_dml2_LATE_0.025 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_binary_outcome.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:41:5'): Unit tests for parameter passing of IIVM (oop vs fun): rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:129:5'): Unit tests for parameter passing of IIVM (no cross-fitting) rpart_dml1_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:129:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:227:5'): Unit tests for parameter passing of IIVM (fold-wise vs global) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_obj$fit() at test-double_ml_iivm_parameter_passing.R:227:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:304:5'): Unit tests for parameter passing of IIVM (default vs explicit) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_default$fit() at test-double_ml_iivm_parameter_passing.R:304:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_trim.R:31:5'): Unit tests for IIVM: rpart_dml2_LATE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_tuning.R:76:5'): Unit tests for tuning of IIVM: rpart_dml2_LATE_TRUE_TRUE_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj_tuned$tune(...) at test-double_ml_iivm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 19. └─inst$eval_batch(design$data) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_user_score.R:55:5'): Unit tests for IIVM, callable score: regr.rpart_classif.rpart_dml2_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj$fit() at test-double_ml_iivm_user_score.R:55:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm.R:32:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm.R:32:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_binary_outcome.R:35:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_binary_outcome.R:35:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_loaded_mlr3learner.R:73:5'): Unit tests for IRM: dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm$fit() at test-double_ml_irm_loaded_mlr3learner.R:73:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:41:5'): Unit tests for parameter passing of IRM (oop vs fun): rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATTE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:198:5'): Unit tests for parameter passing of IRM (fold-wise vs global) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_parameter_passing.R:198:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:260:5'): Unit tests for parameter passing of IRM (default vs explicit) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_irm_default$fit() at test-double_ml_irm_parameter_passing.R:260:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_trim.R:31:5'): Unit tests for IRM: rpart_dml2_ATTE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_tuning.R:76:5'): Unit tests for tuning of PLR: rpart_dml2_ATE_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj_tuned$tune(...) at test-double_ml_irm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 19. └─inst$eval_batch(g$data[inds]) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_user_score.R:54:5'): Unit tests for IRM, callable score: regr.rpart_classif.rpart_dml2_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_user_score.R:54:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv.R:29:5'): Unit tests for PLIV: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv.R:29:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_exception_handling.R:46:3'): Unit tests for deprecation warnings of PLIV ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_pliv_exception_handling.R:46:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─private$nuisance_tuning_partialX(...) 10. └─DoubleML:::dml_tune(...) 11. └─base::lapply(...) 12. └─DoubleML (local) FUN(X[[i]], ...) 13. └─DoubleML:::tune_instance(tune_settings$tuner, x) 14. └─tuner$optimize(tuning_instance) 15. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 16. └─private$.optimizer$optimize(inst) 17. └─bbotk:::.__OptimizerBatch__optimize(...) 18. └─bbotk::optimize_batch_default(inst, self) 19. ├─base::tryCatch(...) 20. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 21. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 22. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 23. └─get_private(optimizer)$.optimize(instance) 24. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 25. └─inst$eval_batch(g$data[inds]) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_one_way_cluster.R:56:5'): Unit tests for PLIV with one-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_one_way_cluster.R:56:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:43:5'): Unit tests for parameter passing of PLIV (oop vs fun): regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:43:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:138:5'): Unit tests for parameter passing of PLIV (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:138:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:240:5'): Unit tests for parameter passing of PLIV (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_obj$fit() at test-double_ml_pliv_parameter_passing.R:240:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:321:5'): Unit tests for parameter passing of PLIV (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_default$fit() at test-double_ml_pliv_parameter_passing.R:321:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:40:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer.R:40:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:82:5'): Unit tests for PLIV (partialZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:82:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:121:5'): Unit tests for PLIV (partialXZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partXZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:121:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialXZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:98:5'): Unit tests for tuning of PLIV dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:98:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:188:5'): Unit tests for tuning of PLIV (multiple Z) dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:188:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_two_way_cluster.R:50:5'): Unit tests for PLIV with two-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_two_way_cluster.R:50:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_user_score.R:66:5'): Unit tests for PLIV, callable score: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_user_score.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr.R:30:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr.R:30:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_classifier.R:44:7'): Unit tests for PLR with classifier for ml_m: regr.rpart_classif.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_classifier.R:44:7 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:129:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:129:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:142:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:142:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:116:7'): Unit tests for exception handling of PLR: regr.lm_dml1_IV-type_FALSE_4_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_exception_handling.R:116:7 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:176:3'): Unit tests for deprecation warnings of PLR ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_plr_exception_handling.R:176:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─DoubleML:::dml_tune(...) 10. └─base::lapply(...) 11. └─DoubleML (local) FUN(X[[i]], ...) 12. └─DoubleML:::tune_instance(tune_settings$tuner, x) 13. └─tuner$optimize(tuning_instance) 14. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 15. └─private$.optimizer$optimize(inst) 16. └─bbotk:::.__OptimizerBatch__optimize(...) 17. └─bbotk::optimize_batch_default(inst, self) 18. ├─base::tryCatch(...) 19. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 20. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 21. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 22. └─get_private(optimizer)$.optimize(instance) 23. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 24. └─inst$eval_batch(g$data[inds]) 25. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 26. └─self$objective$eval_many(xss_trafoed) 27. └─bbotk:::.__Objective__eval_many(...) 28. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.eval_many(xss = xss, resampling = `<list>`) 33. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 34. └─mlr3::benchmark(...) 35. └─ResultData$new(grid, data_extra, store_backends = store_backends) 36. └─mlr3 (local) initialize(...) 37. └─mlr3:::.__ResultData__initialize(...) 38. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 39. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_export_preds.R:49:5'): Unit tests for for the export of predictions: regr.rpart_regr.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit(store_predictions = TRUE, store_models = TRUE) at test-double_ml_plr_export_preds.R:49:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_loaded_mlr3learner.R:66:5'): Unit tests for PLR: dml1_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr$fit() at test-double_ml_plr_loaded_mlr3learner.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_multitreat.R:37:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_multitreat.R:37:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nonorth.R:74:5'): Unit tests for PLR: regr.lm_dml1_non_orth_score_w_g_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_nonorth.R:74:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_p_adjust.R:69:5'): Unit tests for PLR: regr.rpart_dml1_partialling out_romano-wolf_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_p_adjust.R:69:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:48:5'): Unit tests for parameter passing of PLR (oop vs fun) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:48:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:150:5'): Unit tests for parameter passing of PLR (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:150:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:264:5'): Unit tests for parameter passing of PLR (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_parameter_passing.R:264:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:353:5'): Unit tests for parameter passing of PLR (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_plr_default$fit() at test-double_ml_plr_parameter_passing.R:353:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_rep_cross_fit.R:38:5'): Unit tests for PLR: regr.lm_dml1_partialling out_5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_rep_cross_fit.R:38:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_set_samples.R:53:5'): PLR with external sample provision: regr.rpart_dml2_partialling out_2_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_set_samples.R:53:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_user_score.R:48:5'): Unit tests for PLR, callable score: regr.lm_dml1_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_user_score.R:48:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_print.R:12:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_plr$fit() at test-double_ml_print.R:12:1 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_mar.R:32:5'): Unit tests for SSM, missing-at-random: cv_glmnet_dml1_missing-at-random_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_mar.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(task_pi, ml_pi, resampling_pi, store_models = TRUE) at ./helper-17-dml_ssm.R:147:5 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_nonignorable.R:32:5'): Unit tests for SSM, nonignorable nonresponse: cv_glmnet_dml1_nonignorable_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_nonignorable.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(...) at ./helper-17-dml_ssm.R:239:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_missing-at-random_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_nonignorable_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

Version: 1.0.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'Introduction_to_DoubleML.Rmd' using rmarkdown --- finished re-building 'Introduction_to_DoubleML.Rmd' --- re-building 'getstarted.Rmd' using rmarkdown Quitting from getstarted.Rmd:124-133 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 9/9 in VECTOR_ELT --- Backtrace: ▆ 1. └─obj_dml_plr_bonus$fit() 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'getstarted.Rmd' failed with diagnostics: attempt access index 9/9 in VECTOR_ELT --- failed re-building 'getstarted.Rmd' --- re-building 'install.Rmd' using rmarkdown --- finished re-building 'install.Rmd' SUMMARY: processing the following file failed: 'getstarted.Rmd' Error: Vignette re-building failed. Execution halted Flavor: r-devel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.