Last updated on 2025-12-04 07:50:52 CET.
| Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
|---|---|---|---|---|---|---|
| r-devel-linux-x86_64-debian-clang | 0.1.0 | 14.40 | 396.92 | 411.32 | OK | |
| r-devel-linux-x86_64-debian-gcc | 0.1.0 | 11.11 | 331.43 | 342.54 | OK | |
| r-devel-linux-x86_64-fedora-clang | 0.1.0 | 85.00 | 427.18 | 512.18 | ERROR | |
| r-devel-linux-x86_64-fedora-gcc | 0.1.0 | 108.00 | 1029.38 | 1137.38 | ERROR | |
| r-devel-windows-x86_64 | 0.1.0 | 16.00 | 214.00 | 230.00 | OK | |
| r-patched-linux-x86_64 | 0.1.0 | 13.71 | 467.72 | 481.43 | OK | |
| r-release-linux-x86_64 | 0.1.0 | 13.43 | 489.43 | 502.86 | OK | |
| r-release-macos-arm64 | 0.1.0 | OK | ||||
| r-release-macos-x86_64 | 0.1.0 | 15.00 | 190.00 | 205.00 | OK | |
| r-release-windows-x86_64 | 0.1.0 | 17.00 | 210.00 | 227.00 | OK | |
| r-oldrel-macos-arm64 | 0.1.0 | OK | ||||
| r-oldrel-macos-x86_64 | 0.1.0 | 16.00 | 204.00 | 220.00 | OK | |
| r-oldrel-windows-x86_64 | 0.1.0 | 21.00 | 282.00 | 303.00 | OK |
Version: 0.1.0
Check: tests
Result: ERROR
Running ‘testthat.R’ [270s/571s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(BioMoR)
>
> test_check("BioMoR")
Loading required namespace: randomForest
Loading required package: ggplot2
Loading required package: lattice
Loading required package: dplyr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Attaching package: 'recipes'
The following object is masked from 'package:stats':
step
randomForest 4.7-1.2
Type rfNews() to see new features/changes/bug fixes.
Attaching package: 'randomForest'
The following object is masked from 'package:dplyr':
combine
The following object is masked from 'package:ggplot2':
margin
Setting direction: controls > cases
note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
------------------------------------------------------------------------------
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
------------------------------------------------------------------------------
Attaching package: 'plyr'
The following objects are masked from 'package:dplyr':
arrange, count, desc, failwith, id, mutate, rename, summarise,
summarize
Saving _problems/test_models-35.R
[ FAIL 1 | WARN 600 | SKIP 0 | PASS 5 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test_models.R:35:3'): XGB model trains and predicts ─────────────────
Error in `{ if (!(length(ctrl$seeds) == 1L && is.na(ctrl$seeds))) set.seed(ctrl$seeds[[iter]][parm]) loadNamespace("caret") loadNamespace("recipes") if (ctrl$verboseIter) progress(printed[parm, , drop = FALSE], names(resampleIndex), iter) if (names(resampleIndex)[iter] != "AllData") { modelIndex <- resampleIndex[[iter]] holdoutIndex <- ctrl$indexOut[[iter]] } else { modelIndex <- 1:nrow(dat) holdoutIndex <- modelIndex } if (testing) cat("pre-model\n") if (!is.null(info$submodels[[parm]]) && nrow(info$submodels[[parm]]) > 0) { submod <- info$submodels[[parm]] } else submod <- NULL mod_rec <- try(rec_model(rec, subset_x(dat, modelIndex), method = method, tuneValue = info$loop[parm, , drop = FALSE], obsLevels = lev, classProbs = ctrl$classProbs, sampling = ctrl$sampling, ...), silent = TRUE) if (testing) print(mod_rec) if (!model_failed(mod_rec)) { predicted <- try(rec_pred(method = method, object = mod_rec, newdata = subset_x(dat, holdoutIndex), param = submod), silent = TRUE) if (pred_failed(predicted)) { fail_warning(settings = printed[parm, , drop = FALSE], msg = predicted, where = "predictions", iter = names(resampleIndex)[iter], verb = ctrl$verboseIter) predicted <- fill_failed_pred(index = holdoutIndex, lev = lev, submod) } } else { fail_warning(settings = printed[parm, , drop = FALSE], msg = mod_rec, iter = names(resampleIndex)[iter], verb = ctrl$verboseIter) predicted <- fill_failed_pred(index = holdoutIndex, lev = lev, submod) } if (testing) print(head(predicted)) if (ctrl$classProbs) { if (!model_failed(mod_rec)) { probValues <- rec_prob(method = method, object = mod_rec, newdata = subset_x(dat, holdoutIndex), param = submod) } else { probValues <- fill_failed_prob(holdoutIndex, lev, submod) } if (testing) print(head(probValues)) } predicted <- trim_values(predicted, ctrl, is.null(lev)) ho_data <- holdout_rec(mod_rec, dat, holdoutIndex) if (!is.null(submod)) { allParam <- expandParameters(info$loop[parm, , drop = FALSE], submod) allParam <- allParam[complete.cases(allParam), , drop = FALSE] predicted <- lapply(predicted, function(x, lv, dat) { x <- outcome_conversion(x, lv = lev) dat$pred <- x dat }, lv = lev, dat = ho_data) if (testing) print(head(predicted)) if (ctrl$classProbs) predicted <- mapply(cbind, predicted, probValues, SIMPLIFY = FALSE) if (keep_pred) { tmpPred <- predicted for (modIndex in seq(along.with = tmpPred)) { tmpPred[[modIndex]] <- merge(tmpPred[[modIndex]], allParam[modIndex, , drop = FALSE], all = TRUE) } tmpPred <- rbind.fill(tmpPred) tmpPred$Resample <- names(resampleIndex)[iter] } else tmpPred <- NULL thisResample <- lapply(predicted, ctrl$summaryFunction, lev = lev, model = method) if (testing) print(head(thisResample)) if (length(lev) > 1 && length(lev) <= 50) { cells <- lapply(predicted, function(x) flatTable(x$pred, x$obs)) for (ind in seq(along.with = cells)) thisResample[[ind]] <- c(thisResample[[ind]], cells[[ind]]) } thisResample <- do.call("rbind", thisResample) thisResample <- cbind(allParam, thisResample) } else { pred_val <- outcome_conversion(predicted, lv = lev) tmp <- ho_data tmp$pred <- pred_val if (ctrl$classProbs) tmp <- cbind(tmp, probValues) if (keep_pred) { tmpPred <- tmp tmpPred$rowIndex <- holdoutIndex tmpPred <- merge(tmpPred, info$loop[parm, , drop = FALSE], all = TRUE) tmpPred$Resample <- names(resampleIndex)[iter] } else tmpPred <- NULL thisResample <- ctrl$summaryFunction(tmp, lev = lev, model = method) if (length(lev) > 1 && length(lev) <= 50) thisResample <- c(thisResample, flatTable(tmp$pred, tmp$obs)) thisResample <- as.data.frame(t(thisResample), stringsAsFactors = FALSE) thisResample <- cbind(thisResample, info$loop[parm, , drop = FALSE]) } thisResample$Resample <- names(resampleIndex)[iter] thisResampleExtra <- optimism_rec(ctrl, dat, iter, lev, method, mod_rec, predicted, submod, info$loop[parm, , drop = FALSE]) if (ctrl$verboseIter) progress(printed[parm, , drop = FALSE], names(resampleIndex), iter, FALSE) if (testing) print(thisResample) list(resamples = thisResample, pred = tmpPred, resamplesExtra = thisResampleExtra) }`: task 1 failed - "$ operator is invalid for atomic vectors"
Backtrace:
▆
1. └─BioMoR::train_xgb_caret(df, "Label", ctrl) at test_models.R:35:3
2. ├─caret::train(...)
3. └─caret:::train.recipe(...)
4. └─caret:::train_rec(...)
5. └─... %op% ...
6. └─e$fun(obj, substitute(ex), parent.frame(), e$data)
[ FAIL 1 | WARN 600 | SKIP 0 | PASS 5 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.1.0
Check: tests
Result: ERROR
Running ‘testthat.R’ [15m/36m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(BioMoR)
>
> test_check("BioMoR")
Loading required namespace: randomForest
Loading required package: ggplot2
Loading required package: lattice
Loading required package: dplyr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Attaching package: 'recipes'
The following object is masked from 'package:stats':
step
randomForest 4.7-1.2
Type rfNews() to see new features/changes/bug fixes.
Attaching package: 'randomForest'
The following object is masked from 'package:dplyr':
combine
The following object is masked from 'package:ggplot2':
margin
Setting direction: controls > cases
note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
------------------------------------------------------------------------------
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
------------------------------------------------------------------------------
Attaching package: 'plyr'
The following objects are masked from 'package:dplyr':
arrange, count, desc, failwith, id, mutate, rename, summarise,
summarize
Saving _problems/test_models-35.R
[ FAIL 1 | WARN 600 | SKIP 0 | PASS 5 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test_models.R:35:3'): XGB model trains and predicts ─────────────────
Error in `{ if (!(length(ctrl$seeds) == 1L && is.na(ctrl$seeds))) set.seed(ctrl$seeds[[iter]][parm]) loadNamespace("caret") loadNamespace("recipes") if (ctrl$verboseIter) progress(printed[parm, , drop = FALSE], names(resampleIndex), iter) if (names(resampleIndex)[iter] != "AllData") { modelIndex <- resampleIndex[[iter]] holdoutIndex <- ctrl$indexOut[[iter]] } else { modelIndex <- 1:nrow(dat) holdoutIndex <- modelIndex } if (testing) cat("pre-model\n") if (!is.null(info$submodels[[parm]]) && nrow(info$submodels[[parm]]) > 0) { submod <- info$submodels[[parm]] } else submod <- NULL mod_rec <- try(rec_model(rec, subset_x(dat, modelIndex), method = method, tuneValue = info$loop[parm, , drop = FALSE], obsLevels = lev, classProbs = ctrl$classProbs, sampling = ctrl$sampling, ...), silent = TRUE) if (testing) print(mod_rec) if (!model_failed(mod_rec)) { predicted <- try(rec_pred(method = method, object = mod_rec, newdata = subset_x(dat, holdoutIndex), param = submod), silent = TRUE) if (pred_failed(predicted)) { fail_warning(settings = printed[parm, , drop = FALSE], msg = predicted, where = "predictions", iter = names(resampleIndex)[iter], verb = ctrl$verboseIter) predicted <- fill_failed_pred(index = holdoutIndex, lev = lev, submod) } } else { fail_warning(settings = printed[parm, , drop = FALSE], msg = mod_rec, iter = names(resampleIndex)[iter], verb = ctrl$verboseIter) predicted <- fill_failed_pred(index = holdoutIndex, lev = lev, submod) } if (testing) print(head(predicted)) if (ctrl$classProbs) { if (!model_failed(mod_rec)) { probValues <- rec_prob(method = method, object = mod_rec, newdata = subset_x(dat, holdoutIndex), param = submod) } else { probValues <- fill_failed_prob(holdoutIndex, lev, submod) } if (testing) print(head(probValues)) } predicted <- trim_values(predicted, ctrl, is.null(lev)) ho_data <- holdout_rec(mod_rec, dat, holdoutIndex) if (!is.null(submod)) { allParam <- expandParameters(info$loop[parm, , drop = FALSE], submod) allParam <- allParam[complete.cases(allParam), , drop = FALSE] predicted <- lapply(predicted, function(x, lv, dat) { x <- outcome_conversion(x, lv = lev) dat$pred <- x dat }, lv = lev, dat = ho_data) if (testing) print(head(predicted)) if (ctrl$classProbs) predicted <- mapply(cbind, predicted, probValues, SIMPLIFY = FALSE) if (keep_pred) { tmpPred <- predicted for (modIndex in seq(along.with = tmpPred)) { tmpPred[[modIndex]] <- merge(tmpPred[[modIndex]], allParam[modIndex, , drop = FALSE], all = TRUE) } tmpPred <- rbind.fill(tmpPred) tmpPred$Resample <- names(resampleIndex)[iter] } else tmpPred <- NULL thisResample <- lapply(predicted, ctrl$summaryFunction, lev = lev, model = method) if (testing) print(head(thisResample)) if (length(lev) > 1 && length(lev) <= 50) { cells <- lapply(predicted, function(x) flatTable(x$pred, x$obs)) for (ind in seq(along.with = cells)) thisResample[[ind]] <- c(thisResample[[ind]], cells[[ind]]) } thisResample <- do.call("rbind", thisResample) thisResample <- cbind(allParam, thisResample) } else { pred_val <- outcome_conversion(predicted, lv = lev) tmp <- ho_data tmp$pred <- pred_val if (ctrl$classProbs) tmp <- cbind(tmp, probValues) if (keep_pred) { tmpPred <- tmp tmpPred$rowIndex <- holdoutIndex tmpPred <- merge(tmpPred, info$loop[parm, , drop = FALSE], all = TRUE) tmpPred$Resample <- names(resampleIndex)[iter] } else tmpPred <- NULL thisResample <- ctrl$summaryFunction(tmp, lev = lev, model = method) if (length(lev) > 1 && length(lev) <= 50) thisResample <- c(thisResample, flatTable(tmp$pred, tmp$obs)) thisResample <- as.data.frame(t(thisResample), stringsAsFactors = FALSE) thisResample <- cbind(thisResample, info$loop[parm, , drop = FALSE]) } thisResample$Resample <- names(resampleIndex)[iter] thisResampleExtra <- optimism_rec(ctrl, dat, iter, lev, method, mod_rec, predicted, submod, info$loop[parm, , drop = FALSE]) if (ctrl$verboseIter) progress(printed[parm, , drop = FALSE], names(resampleIndex), iter, FALSE) if (testing) print(thisResample) list(resamples = thisResample, pred = tmpPred, resamplesExtra = thisResampleExtra) }`: task 1 failed - "$ operator is invalid for atomic vectors"
Backtrace:
▆
1. └─BioMoR::train_xgb_caret(df, "Label", ctrl) at test_models.R:35:3
2. ├─caret::train(...)
3. └─caret:::train.recipe(...)
4. └─caret:::train_rec(...)
5. └─... %op% ...
6. └─e$fun(obj, substitute(ex), parent.frame(), e$data)
[ FAIL 1 | WARN 600 | SKIP 0 | PASS 5 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.