
New dialogs interface in AlphaTcl

Lars Hellstr̈om and Vince Darley

April 13, 2004

Abstract

This document describes the programmer’s interface to the generic dialog proce-
dures available in AlphaTcl. This is quite independent of the numerous, but rather
special,Alpha preference dialogs, which are instead based entirely on information
given in the preference declarations.

Besides describing the interface, this document also contains the (highly docu-
mented) master source for the implementation of this interface.

Contents

1 Usage 2
1.1 Dialog item types. 4
1.2 Dialog command options. 8
1.3 Button scripts. .10
1.4 Preferences and dialogs. 11
1.5 The width of dialog text. 12

2 Implementation 13
2.1 Thedialog command . 13

2.1.1 Basicdialog options . 14
2.1.2 Newdialog options . 17
2.1.3 The drag-and-drop solution/muddle. 19

2.2 Measuring text . 22
2.3 Storing and updating values in dialogs. 28
2.4 Building and handling dialog material. 30

2.4.1 Construction and post-processing scripts. 39
2.4.2 TextEdit item types. 41
2.4.3 Uneditable item types. 43
2.4.4 Elementary control item types. 45
2.4.5 Menu item types. 46
2.4.6 specialSet item types . 48
2.4.7 Listpick item types. 53
2.4.8 Miscellanea. 54

2.5 Groups of flags. 57

1

2.6 Main dialogs interface . 62
2.7 Dialog items and preferences. 74
2.8 To do .75

3 Examples 75
3.1 An elementary example. 76
3.2 A smorgasbord of types. 77
3.3 Button manœuvres. 78
3.4 Editing named configurations. 80
3.5 Playing preferences. 83

Conventions used in this paper

In syntax descriptions, atypewriter font is used for explicit text. A named syntactic
unit is written as〈unit〉. In the special but very common case that the syntactic unit is
precisely a word for Tcl, it is instead written as{word}, i.e., with braces instead of angle
brackets. Optional and repeated elements in syntax descriptions are denoted as in regular
expressions, using question marks, asterisks, and plus signs, e.g.

set {var-name} {value}?

list {item}∗
append {var-name} {string}+

Parentheses can be used to group syntax elements, e.g.

return
(
-code {code}

)? {string}

The same conventions are used for specifying the structure of lists.

1 Usage

The generic dialogs interface provides the two general purpose dialog creatorsdialog:dialog::make (proc)
:make anddialog::make_paged. The basic syntax of the former procedure is

dialog::make 〈option〉∗ {page}+

where each{page} is a list with the structure

{page name} {item}∗

and each{item} in turn is a list with the structure

{type} {name} {value} {help}?

Each{item} gives a logical description (type, name, and initial value, but no metric infor-
mation) of an item in a dialog.dialog::make generates from these the corresponding
dialog material(argument sequence for thedialog command), callsdialog with those
data, and interprets the result. Thendialog::make returns the list of the final edited
values of the dialog items (just a flat list), or returns an error if the dialog was cancelled.

2

An example should serve to clarify this. The command

dialog::make\

{First {var Hey 1} {flag blah 0} {folder hey ""}}\

{Second {var Hey 2}}

will create a dialog with two pages, namedFirst andSecond. The first page contains
three dialog items: a variable (editable text box), a flag (checkbox), and a folder item.
These are namedHey, blah, andhey respectively, and have current values1, 0 (not
checked), and"" (empty string, i.e., not set) respectively. The second page contains a
single variable also namedHey which has the current value2. Immediately clickingOK
(the dialog has oneOK and oneCancel button) will return the list

1 0 {} 2

but if you first type e.g.Hay in the firstHey box, typeshey hey hey in the second, and
checks theblah checkbox before you clickOK then the returned list will instead be

Hay 1 {} {hey hey hey}

Thedialog::make_paged procedure is similar, but the argument structure is slightlydialog::make_paged (proc)
different. The basic syntax is similarly

dialog::make_paged 〈option〉∗ {page}+

but here each{page} is a list with the structure

{page name} {keyval list} {item list}

and the return value is a list with the structure(
{page name} {keyval list}

)∗
The idea here is that the data structure that the values are stored in is the same in both input
and output, so that the caller can almost completely avoid reconstructing large structures.
This is of course given that the item values are normally stored as{keyval list}s, but that
is a very convenient format in Tcl, thanks to thearray get andarray set commands.

In general, a{keyval list} is a list with the structure(
{key} {value}

)∗
i.e., with alternating{key} and{value} elements. The relative order of these pairs is
irrelevant, the only thing that matters is which{key} goes with which{value}. When
such a list is given toarray set it will use the{key}s as indices into an array and set
those entries to the corresponding{value}s. This makes it fairly simple to get the value
corresponding to a given key: after

array set local {keyval list}

3

you can access the value with key$key as$local($key). It is also simple to make
modifications when the data is stored in that format: afterset local($key) $newval,
anarray get local will return a modified{keyval list} (note however that this may
return the pairs in a different order than before). Usingarray get andarray set in
this way is not significantly slower thanlreplace on a list of only the values (it might
even be faster in some cases) but it is much easier to program. The keyval list also has the
important advantage of being a much more flexible data structure, since each item (key–
value pair) is independent of the others (whereas in a list the index of an item depends on
how many other items there are before it), hence items can be added or removed without
requiring much changes to existing code.

Returning to the subject ofdialog::make_paged, the structure of the{item list}
still remains to be explained. Each item in this list corresponds to one dialog item of the
page in question. The items are themselves lists with the structure

{key} {type} {name} {help}?

where the{key} identifies the value in the{keyval list} that should be used for this item.
The same{key} can be used for any number of items as long as they are on different
pages. Thus ifmake_paged is used instead in the above example, the command could be

dialog::make_paged\

{First {a 1 b 0 c ""} {{a var Hey} {b flag blah} {c folder hey}}}\

{Second {c 2} {{c var Hey}}}

and the return value if no item is edited would be

First {a 1 b 0 c {}} Second {c 2}

whereas the same editing as before would produce

First {a Hay b 1 c {}} Second {c {hey hey hey}}

An obvious question now is of course which of thedialog::make anddialog:
:make_paged procedures one should choose for each specific task. The answer is that
this depends mainly on how items on different pages are related to each other. If each
page is a unit of its own thenmake_paged is preferable, but if items on different pages
are no less related than items on the same page thenmake should work just as well. The
editGroup procedure, whose implementation can be found in Subsection3.4, gives thedialog::editGroup (proc)
canonical example of the former situation. For single page dialogs, where the above rule
gives no guidance, one should rather look at what happens to the item values immediately
before and after the call. If they are simply fetched from some variable and then stored
back into it thenmake_paged is probably a more convenient choice, but if you need to
pre- or postprocess the item values thenmake probably has less overhead. Dialogs with
many uneditable items (such as those produced by theGet Info commands in the Mac
Menu) or with only a few values altogether are probably easier to create usingmake.

1.1 Dialog item types

Most {type}s consist simply of a single word; these are calledsimpletypes. All types in
the above example are simple. The currently defined simple types are

4

appspec An application specifier, for use with e.g.exec, launch, or AppleEvent com-
mands (depending on platform). The value is viewed as the file path of the appli-
cation executable, but that is only one of the two forms that the value can take. If
the value is six characters long and the first and last character both are apostrophes,
then the four characters between them are interpreted as the Mac OS ‘sig’ (creator
code) of the application. This latter format is preferred when it can be used. It could
also be that more formats will have to be added if support for the Tk commands
send and/ordde (both of which are very non-Mac OS) is needed.

At the time of writing, there is no direct support for application specifiers in
other parts of AlphaTcl, but the API stuff [2] by Fréd́eric Boulanger will provide
this support. If you do not use that, will have to do some converting before you can
use the value of anappspec.

binding A key binding. It is viewed as plain text, e.g. ‘Cmd-Opt-L’, but the for-
mat is the one used to put key bindings in menus. Usekeys::bindKey and
keys::unbindKey to make non-menu key bindings according to the value of a
binding item.

colour A popup menu from which you can choose amongst the named colours that are
defined (blue, green, etc.).

date A date and time of day. This is viewed and entered in a human-readable ‘short date
format’, but the value of the item is in seconds relative to an “epoch” that depends
on what version ofAlphaor Alphatkyou are using, just as is the case with the value
returned by e.g. thenow command.

It has been suggested that these values should instead be in ISO 8601 format [5],
i.e.,

〈yyyy〉〈mm〉〈dd〉T〈HH〉〈MM〉〈SS〉 〈zone〉?

where

〈yyyy〉 is the year AD (four digits),
〈mm〉 is the month (01–12),
〈dd〉 is the day of month (01–31),
〈HH〉 is the hour (00–23),
〈MM〉 is the minute (00–59),
〈SS〉 is the second (00–59), and

〈zone〉 is the time zone (if omitted, then the local time zone
should be assumed).

This has the important advantage of being decipherable without the assistance of
a Tcl interpreter. It is also independent of which the current epoch is, which could
help avoiding some Y2K-type errors.

file The file path of an existing file.

flag Simple checkbox. Can assume the values0 (not checked) and1 (checked).

folder The path to an existing folder.

5

io-file The file path of a file that does not have to exist yet. If the file you specify when
editing this value does exist then you are asked whether you want to overwrite that
file.

menubinding A key binding that can be used for menu items. Is very much like a
binding item, but does not allow the user to specify a prefix key for the binding.

mode A popup menu from which you can choose amongst the installed modes, with
names given as in the mode menu on the status bar. There is also a<none> item in
the menu.

modeset A list (or set) of modes, with the same name format as for themode type (except
that there isn’t a<none> mode). The value is viewed as a list and edited in a multi-
choice listpick dialog.

password An editable text string, but shown in a box that is too small for anyone to see
what is typed. Meant for passwords and similar material that shouldn’t be shown
on the screen.

Note: As a precaution, the text that is in this box when the dialog is opened is
not the actual value. Thus you cannot edit this value, you can only retype it.

searchpath A list of folders, each of which can be added, removed, or changed inde-
pendently of the others.

static The value is simply shown, but cannot be edited. Useful for informative pur-
poses. There is no result from this kind of item. If the text is very long it will not
be wrapped.

text The name is shown, but the value is ignored. If the name is very long (which is quite
all right) then it will be broken on several lines when shown in the dialog. There is
no result from this kind of item. Possible uses are e.g. to include explanatory text
or to make a subheading in a dialog page.

thepage An item of this type is not shown in the dialog and its initial value is ignored,
but it returns the name of the page that was current when the dialog was closed.
(That is significant in e.g. the standard installation dialog.)

url An universal resource locator (URL). You can type it in explicitly, pick a local file,
or use the frontmost page in your browser.

var Editable text string.

var2 Editable text string, whose box is two lines tall.

In general, a{type} is a list whose first element serves as type identifier (selecting
which code should make the item) whereas the other elements contain additional data
needed to completely specify the type. In addition to the above simple types, there are
also a couple of complex types, as listed below.

multiflag A group of checkboxes. The format of this{type} is

6

multiflag {checkbox title list}
where the{checkbox title list} gives the titles given to the individual checkboxes.
The value of this item is alist, with the same number of items as the{checkbox
title list}, and in which each element is either a0 or a 1. The {help} for a
multiflag item is similarly a list with one help text per checkbox. The{name}
of themultiflag item is put as a heading above the group of checkboxes, which
are placed in two columns.

menu A popup menu. The format of this{type} is

menu {item list}
where the{item list} is the list of items to put in the menu. The value will be one
of the elements in the{item list}.

menuindex A popup menu. The format of this{type} is

menuindex {item list}
where the{item list} is the list of items to put in the menu. The value will be an
indexinto the{item list}.

subset A subset of a given set, which is chosen in a multichoice listpick dialog. The
format of this{type} is

subset {item list}
where the{item list} is the list of items to show in the listpick dialog. The value
will be a sublist (which can be empty) of the{item list}.

There are also three other complex typesdiscretionary, global, andhidden defined,
but those are kind of special. They can not contribute any new type of material to the
dialog or pass along any additional information about it. Instead they exist for the purpose
of simplifying certain programming tasks.

discretionary This is similar to atext item in that it can display a piece of text in
the dialog, doesn’t add any control, and doesn’t return any value, but its primary
function is to provide a position for breaking the page. The format of this{type} is

discretionary {y-limit} {pre-break text}? {post-break text}? {no-break
text}?

where the{y-limit} is a distance in screen pixels to the top of the dialog window.
If the top of the next visible item would be put more than this many pixels from the
top of the dialog window then thediscretionary item will force a page break to
occur. This means that the items that were before thediscretionary item will
visually be on one dialog page and the items that are after it will be on another.
Logically the items are still all on the same page however, hence there is no need
to worry about the effect of adiscretionary item when writing button scripts
or parsing the result fromdialog::make_paged. Notice that adiscretionary
item can force a page break even if there are no visible items which follow it – so
in some cases it may be best only to place adiscretionary item before known
visible items.

7

The three optional elements in the item can be used to insert static text into the
dialog that depends on whether there was a page break at a certaindiscretionary
or not.{pre-break text} is put at the bottom of the page, i.e., immediately before the
page break.{post-break text} is put at the top of the page after the break.{no-break
text} is inserted as was it atext item if the page break is not made. If any of these
elements is omitted or is an empty string then no static text will be put in the dialog
at that position. Normally they’re all left out.

Additional pages created through page breaks do not count with respect to the
-alpha7pagelimit option. The name of adiscretionary item is ignored, as is
its value.

global This type has the structure

global {preference name}
This passes the{preference name} to dialog::prefItemType and then behaves
as an item of the type returned by this procedure. This type is mainly provided for
backward compatibility.

Thehidden type is described below.
Some effort has been put into ensuring that additional types can be defined without

procedure redefinitions. See Subsection2.4for details and examples.

1.2 Dialog command options

What remains to be explained about themake and make_paged procedures is their
〈option〉s. The-defaultpage option has the syntax-defaultpage option

-defaultpage {page name}

It specifies on which page the dialog should open. If the option is omitted then the dialog
opens on the first page. The-title option sets the title of the dialog window; it has the-title option
syntax

-title {dialog title}

This option has no effect inAlpha 7, where the dialog window has no title.1

The -width option sets the width of the dialog window (the height is determined-width option
automatically and depends on the height of the dialog items). The syntax is

-width {dialog width}

where{dialog width} is in screen pixels. The default value is400. The-ok and-cancel-ok option
-cancel option options can be used to set the names on theOK andCancel buttons. The syntaxes are

-ok {name of ok button}
-cancel {name of cancel button}

If the cancel button’s name is the empty string, then no cancel button is provided in the
dialog.

8

The most complex option is the-addbuttons option, which adds buttons other than-addbuttons option
the defaultOK andCancel buttons to the dialog. The value for this option is a “button
list”, which has the structure(

{name} {help} {script}
)+

where each triple{name} {help} {script} describes one additional button.{name} is the
button name, i.e., the text that will be shown on the button. The button will be made wide
enough to contain the whole{name}. {help} is the help text for the button.{script} is
a script that is evaluated when the button is clicked. See below for the basic details on
the context in which button scripts are evaluated. If some button script does not work as
expected then it might help use the-debug option. This has the syntax-debug option

-debug {debug level}

where{debug level} is an integer. The default is to use debug level0. Currently the only
other debug level is1: this causes the actual script, the error, and the$errorInfo to be
printed usingtclLog when a script terminates with an error.

Among the things button scripts can do is adding or removing pages from the dialog
(as it is shown to the user). Inmake the effect is simply that some pages are hidden. Since
this is most often useful if the dialog opens in a state where some pages are hidden, there
is an option-hidepages that hides one or several pages. The syntax is-hidepages option

-hidepages {page list}

where the{page list} is a list of names of pages. It makes no difference to the caller
whether a page is hidden or not, since the code that compiles the return value only looks
at the{page} arguments tomake. The situation is different inmake_paged, since that
has a more “what you see is what you get” approach to pages: a hidden page would not
be included in the return value and thus it effectively would not exist.

Instead,make_paged has two options-changedpages and-changeditems which-changedpages option
-changeditems option can be used by the caller to request information about on which pages some value was

changed and which items had their values changed, respectively. The syntaxes are

-changedpages {var-name}
-changeditems {var-name}

With -changedpages, the{var-name} variable is set to a list of the names of pages on
which some item value was changed. With-changeditems, the{var-name} variable is
set to a list with the structure(

{page name} {key list}
)?

Here, for each page where the value of some item has been changed, the keys for those
items are listed in the{key list}.

In Alpha 7, it occasionally happens that a dialog gets too large (it seems that some
combined “cost” for the items exceeds a limit in the program) and when this happens you
only see the message

1It might be observed that it is often possible to use the page name as a “title” for a dialog; hence the loss is
probably not that significant.

9

Sorry, you encountered a bug in Alpha 7’s ’dialog’ command, which
cannot handle very complex dialogs. If you are trying to edit many
items at once, try to edit them just one at a time.

There is now an option-alpha7pagelimit which provides a workaround for this. If the-alpha7pagelimit option
〈option〉

-alpha7pagelimit {limit}

is used in a call tomake or make_paged (andyou’re currently usingAlpha 7) then these
procedures will not display more than{limit} dialog pages simultaneously. If there are
more dialog pages than the limit value then the dialog will instead be reorganised in two
levels. On one level you can select a dialog page to view, clickOK, or Cancel. On the
other level you can actually see a dialog page and as usual edit the values of the items on
it, but you can only switch page by going back to the first level and selecting another page
there.

1.3 Button scripts

Button scripts are evaluated in the local context of themake or make_paged procedure
(depending on which you called). They do a lot of their work by modifying local variables
in these procedures and hence you should familiarize yourself with the actual implemen-
tations in Subsection2.6if you are going to write anything but the simplest button scripts.
Some of the basic principles can however be outlined.

First of all, the button scripts are not evaluated while the actual dialog window is open.
Instead the dialog window is closed when the button is clicked, the item values are then
stored in an array, the button script is evaluated, and finally the dialog is rebuilt and the
dialog window is reopened, waiting for the user to do something else. This means that
you will not have to worry about any lower level descriptions of the dialog than that used
in the call tomake or make_paged, since there is no such thing at the time a button script
is evaluated. A button script that needs tologically close the dialog, i.e., causemake or
make_paged to return, should do this by setting theretCode variable (this is in fact howretCode (var.)
the OK andCancel buttons are implemented). The value ofretCode will become the
-code argument ofreturn, so0 means normal return and1 means an error. For normal
returns, the return value is constructed as usual, but for other types of returns it is the
responsibility of the button script to construct a return value and store it in theretValretVal (var.)
variable. As an example, theCancel button is handled by a button script that simply does

set retCode 1
set retVal "cancel"

Themake andmake_paged procedures keep most of their data in arrays and most of
these have one entry per item. The indices into these arrays have the form

〈page name〉,〈item name〉

(you should be aware that these indices often contain spaces). Of particular interest is
the array that contains the item values. For technical reasons that is a global array which

10

should only be accessed using special procedures. To get the value of an item you should
use thevalGet procedure and to change it you should use thevalChanged procedure.dialog::valGet (proc)

dialog::valChanged (proc) The syntaxes of these are

dialog::valGet {dialog ref.} {index}
dialog::valChanged {dialog ref.} {index} {value}

The{dialog ref.} is a reference to the current dialog; themake andmake_paged proce-
dures keep their value for this in thedial variable. The{index} is 〈page name〉,〈itemdial (var.)
name〉 as described above. The{value} is the new value for the item andvalGet returns
the current value.

Another thing that button scripts can do is hide or show individual items. Technically
that is done by changing their type to and from the following complex type

hidden An item which isn’t shown and whose value does not change, but which still
returns a value. The format of this{type} is

hidden {anything}+

where the{anything} is completely ignored.

The idea here is that any type of item can be hidden by prepending ahidden to the{type}
of that item, and that removing thehidden will return it to the original type. There are
two procedureshide_item andshow_itemwhich do precisely that. Their basic syntaxesdialog::hide_item (proc)

dialog::show_item (proc) are

dialog::hide_item {page} {name}
dialog::show_item {page} {name}

(They do take an extra optional argument which might be needed if they are not called
from the local context of themake or make_paged procedures.)

Examples of button scripts and how they can be used can be found in Subsection3.3.

1.4 Preferences and dialogs

Historically there is a strong connection between dialogs for editing values and prefer-
ences in AlphaTcl, and most values one might want to edit this way are still preferences.
Hence it is convenient to have a procedure which determines the dialog item type that
corresponds to a preference. This is what thedialog::prefItemType procedure is for.dialog::prefItemType

(proc) It has the call syntax

dialog::prefItemType {preference name}

and returns a valid{type} for the preference.
Note:prefItemType does not yet handle all preference types. Contributions of code

that lets it handle additional types are appreciated.

11

1.5 The width of dialog text

The built-in dialog commands ofAlpha are different from most other commands in
that they require you to know thewidth in screen pixels of most text strings you use.
dialog::make handles most of that internally, but there are some restrictions you should
keep in mind:

• Item names should fit on a single line in the dialog. The names oftext and
multiflag items are exceptions from this, as they will be broken on several lines
if necessary. The names of items that haveSet... buttons should be short enough
to leave adequate room for this button.

• Page names should preferably fit on a half dialog line.

• Button names should fit on a single line, but will probably look ridiculous already
if their width is half that of a dialog line.

You don’t generally need to be concerned about the width of values however, as the
displayed forms of most values are automatically abbreviated to fit on one line. (This
happens especially often to file names.)

Thedialog::text_width procedure is whatdialog::make uses to actually deter-dialog::text_width (proc)
mine the width of a string. It has the syntax

dialog::text_width {string}

and returns (an upper bound on) the width of the{string}. In Alphatk this procedure is
implemented usingfont measure and returns the exact width. InAlpha the procedure
computes the width based on the width table for characters in the Chicago font at 12 pt;
this gives a valid upper bound also if Charcoal is used as system font. No notice is taken
of kerning, but there doesn’t seem to be any in these fonts. Only the width of characters in
the MacRoman encoding is known to theAlphadialog::text_width procedure; this
might become a problem inAlpha 8, but the table of character widths is easily extended.

For pieces of text that can be expected to be more than one line long, there is the
width_linebreak procedure. It takes a string and a width (in pixels) limit as arguments,dialog::width_linebreak

(proc) breaks the string into lines in such a way that no line is wider than the specified limit, and
returns the list of lines that the string was broken into. The syntax is

dialog::width_linebreak {string} {width}

The linefeed (\n) and carriage return (\r) characters are given special treatment: a line-
feed forces a line break at that position, whereas a carriage return separates two para-
graphs. A paragraph separator is marked in the return value by a line only containing a
carriage return. Spaces and tabs are discarded around line breaks.

There is also adialog::width_abbrev procedure which, if necessary, replaces partdialog::width_abbrev

(proc) of a string by an ellipsis character ‘...’ so that the width of the resulting string does not
exceed a given bound. The syntax is

dialog::width_abbrev {string} {width} {ratio}?

12

and the returned value is the abbreviated string.{string} is the string to abbreviate,
{width} is the maximal width that the result may have, and{ratio} is a real number
in the interval[0,1] which controls where in the string the abbreviation will take place.

Finally, the actual string used for an ellipsis character by the procedures in this file
is stored in thedialog::ellipsis variable. The initialization of this variable shoulddialog::ellipsis (var.)
be correct both forAlphatkandAlphawith a MacRoman character set, but it might need
to be modified if some other character set is used. This can then be done in theAlpha
prefs.tcl file.

2 Implementation

The code below lives in thedialog namespace.

1 〈∗core〉
2namespace eval dialog {}

There are a fewdocstrip guards2 that distinguishes certain parts of the code below.
Their meanings are as follows:

core Main guard around code for the AlphaTcl core.

examples Surrounds some code examples.

smallflags The titles offlag items used to be set is a “small” font inAlpha 8 and
Alphatk, but that was recently changed. Including this option will however restore
that previous behaviour.

notinstalled This guards things that are useful when testing the code, but shouldn’t
be included in a version that is installed as part of AlphaTcl. Typical contents are
auto_load commands to ensure that definitions here are not overwritten by some
file thatAlphasources automatically, and hacks of procedures defined elsewhere.

The sooner theauto_load is done the better, I suppose, so here it is.

3 〈notinstalled〉auto_load dialog::make

log1 , log2 These guard some code that logs what is happening using theterminal pack-
age. These are mainly useful while debugging. (It is a nice advantage with the
docstrip format that you never really have to remove such code from the sources.
If it’s just in a suitable module thendocstrip won’t include it.)

2.1 Thedialog command

Thedialog command is probably one of the most complicatedAlphacommands theredialog (command)
are (and features are still being added to it!). The basic syntax is a simple

dialog 〈option〉+

2See [4] or [6] for an explanation of this concept.

13

but the number of options is quite large and their natures are rather diverse. Most option
forms add a control (push-button, checkbox, radio button, popup menu, or editable text
box) to the dialog. Some options add some graphic material that is not a control, such as
for example a piece of static text. The graphic elements in a dialog are calledatomsin
this paper.

Thedialog command returns the list of values that the controls had when the dialog
was closed. The values appear in this list in the same order as the corresponding options
did in the argument list ofdialog. Warning: InAlpha 7, there is a bug in howdialog
quotes items. If some value contains an unmatched left or right brace, or ends with a
backslash, then the result ofdialog is probably not a valid Tcl list.

All the atom-generating〈option〉s fordialog end with four arguments{left}, {top},
{right}, and{bottom}: these specify therectangleassociated with the atom. If nothing
further is said then this rectangle can be understood to be the bounding rectangle of the
atom. The coordinates are all integers, the unit is screen pixels,x-coordinates ({left}
and{right}) increase while going to the right, andy-coordinates ({top} and{bottom})
increase while goingdown. The background rectangle of the dialog window has its upper
left corner at the point(−3,−3), but the negative coordinate pixels are technically part of
the window frame anddialog does not draw anything there.

Inside Macintosh[3, p. 6:34] prescribes that atoms in a dialog should be separated
by either 13 or 23 pixels of white space. Examples there suggest using 13 pixels for
separation between atoms, as well as for the top, right, and bottom margins. The left
margin is however 23 pixels. Bold frames (such as that around the default button) should
not be included in these measurements. On the other hand, the 3 pixels wide white boarder
that the dialog manager itself adds on each side of a modal dialog (which is what the
dialog command creates) and should be counted as part of the margin. The dialogs
constructed in Subsection2.4 below actually have vertical separation of only 7 pixels
between the editable items in a dialog, as the 13 pixels prescribed by Inside Macintosh
seems a bit much for the short pieces of text that they constitute. There’s no particular
reason for using exactly 7 pixels, though; it was picked pretty much at random. Full-size
buttons do however get a separation of 13 pixels.

In AlphatkandAlpha 8, some atom-generating options take suboptions which can be
used to further specify the behaviour of the atom. These are then placed immediately
before the{left} argument of the atom.Alpha 7does not understand these, and hence one
should only include them if one has checked what program AlphaTcl is being run on.

2.1.1 Basicdialog options

The-w and-h options set the width and height respectively of the dialog window. Their-w option
-h option syntaxes are

-w {width}
-h {height}

where{width} and{height} are in screen pixels. The Toolbox automatically adds a three
pixels wide white border on all sides around the{width} by {height} rectangle specified
using these options, but that area cannot be drawn in.

The-b option creates a push-button (usually simply called button). It has the syntax-b option

14

-b {title}
(
-set {callback}

)? {left} {top} {right} {bottom}

but the-set suboption is not implemented inAlpha 7. Without the-set suboption, the
button has one value which is either0 (button was not clicked) or1 (button was clicked).
As clicking a button closes the dialog, there can be at most one button in the dialog which
has value1. Conversely, every dialog must contain at least one button, as the only way
to close the dialog is to click a button. The first button to be defined will be thedefault
button: it has a double frame and pressing the Return or Enter key will be equivalent to
clicking this button. If there is a button named ‘Cancel’ then pressing the Escape key
will be equivalent to clicking that button.

The -set suboption is not supported inAlpha 7. Clicking a button with a such a
suboption does not close the dialog, but tellsAlpha to evaluate a script that is part of the
{callback} (more on this below). The button still contributes a value (always0) to the
result ofdialog however.

Inside Macintosh[3] recommends the height 20 pixels for buttons. In AlphaTcl, there
is a tradition of giving “minor” buttons a height of 15 pixels.

The-c option creates a checkbox control. It has the syntax-c option

-c {title} {value}
(
-font {font}

)? {left} {top} {right} {bottom}

The value of the checkbox is either0 (not checked) or1 (checked). The bounding rectan-
gle encloses both the checkbox and its title. If several checkboxes are placed in a column
then not only the{left}, but also the{right}, coordinates of all these buttons should co-
incide. This is due to localization issues.

The-font suboption is not supported inAlpha 7. The syntax for a{font} is unclear,
current examples always use2 for this.

The-t option creates a static text atom in the dialog. This option has the syntax-t option

-t {text}
(
-dnd {dial} {varinfo}

)? {left} {top} {right} {bottom}

The-dnd suboption (see below) gives drag-and-drop functionality to the text atom, but is
not supported byAlpha 7. There is no control result from a-t atom.

If the measured width of the{text} is right− left pixels or more then it is broken on
several lines (note that it needsnot be strictly wider than the rectangle for this to happen)
and set flush left. The height of one line of text is (with standard fonts) 15 pixels, of
which 12 are above the baseline and 3 below. There is a 1 pixel space between two lines.
The top of the first first line coincides with the top of the rectangle. InAlpha, the{text}
may be at most 255 characters (this restriction exists for most options, but it is easiest
encountered for-t items).

The-e option creates an editable text atom (TextEdit box) in the dialog. This option-e option
has the syntax

-e {text} {left} {top} {right} {bottom}

where{text} is the default text to put in the box. The value of this control is the text that
is in the box when the dialog closes.

The bounding rectangle of the box extends 3 pixels further in all directions than the
item rectangle specifies, due to the frame around the box. The item rectangle corresponds

15

instead to the text in the box—changing-e to -t will loose the editability and the frame,
but leave the text in exactly the same position as long as it is not being edited. When the
cursor is positioned in an-e atom box, the text is instead aligned with thebottomof the
rectangle.

The-r option creates a radio button atom. It has the syntax-r option

-r {title} {value} {left} {top} {right} {bottom}

all of which work just as for checkboxes. The difference is that clicking one radio button
sets its value to1 and the values of all other radio buttonsin the entire dialogto 0. Hence
it is impossible to have more than one group of radio buttons in a dialog, and they aren’t
used in any of the standard dialogs.

The-p option has the syntax-p option

-p {left} {top} {right} {bottom}

It used to create a “grey outline” (visual element which does not return any control value),
but current versions ofAlphaandAlphatkseems to ignore it.

The-m option creates a popup menu atom in the dialog. The syntax is-m option

-m {menu items} {left} {top} {right} {bottom}

where{menu items} is a list with the format

{default item} {menu item}+

The{menu item}s are the items shown in the menu. The{default item} is the item that
will be the initial choice, provided that it equals one of the{menu item}s—otherwise the
first {menu item} will be the initial choice. The control value returned is the chosen menu
item. See the-n option for information about the relation between the dialog pages and
popup menus.

The bounding rectangle for the popup menu atom extends one pixel to the left of
{left}, one pixel above{top}, two pixels to the right of{right}, and 18 pixels below
{top}, whereas{bottom} is ignored. Furthermore the bounding rectangle will not extend
all the way to{right} unless there is some menu item which is that wide. Hence it is not
feasible to line up the right edge of a menu with something, one can only prevent that it
extends too far.

The-n option starts a new dialog page, so that all atoms after it (and before the next-n option
-n option, if there is another) will be put on a specific dialog page. The syntax is

-n {page name}

where the{page name} is primarily an internal identifier for the page. The-n option
does not produce any control value. Options that appear before the first-n option will
produce atoms which are visible on all pages of the dialog.

When there is an-n option, the popup menu from the first-m option will work as a
page selector, so that the page for which atoms are currently shown is the one with the
same name as the currently selected item in the first popup menu. Items in this menu that
are not names of pages defined using-n will be treated as if they had been defined but

16

don’t contain any items. The dialog created by thedialog::getAKey procedure (defined
in dialogs.tcl) makes a rather ingenious use of this fact. Pages that do not correspond
to items in the page popup will not be shown, but the items on them still produce control
values.

2.1.2 Newdialog options

Below are described some newdialog options that were first implemented onAlphatk
and whichAlpha 7neither supports nor understands.Alpha 8implements some of these,
and should eventually support them all. The next two options are available both inAlphatk
andAlpha 8.

The-T option sets a title for the dialog window. The syntax is-T option

-T {title}

The-help option can be used to provide help texts for items in the dialog; these are-help option
shown to the user via “balloon help”. The syntax is

-help {help text list}

where the{help text list} is a list of help texts. The elements of this list are associated with
the controls in the dialog, so that the balloon help for thenth control is thenth element
in this list. Empty strings can be used as placeholders for controls that do not have an
associated help text; these will then not get any balloon functionality attached to them.
The vertical bar ‘|’ character has a special meaning in the help texts: it separates several
alternative help texts, one of which is chosen based on the state of the atom, from each
other.Alpha 8currently only parses the-help option correctly if it is the very last option.

There are also a couple of options which are currently only supported byAlphatk,
although anAlpha 8implementation is probably not too far away. Only a few of them are
used anywhere in AlphaTcl and many are “not yet officially supported”.

The-l option creates a listpick atom in the dialog. The syntax is-l option

-l {value} {height}
(
-dnd {dial} {varinfo}

)? {left} {top} {right} {bottom}

where{value} is the list of strings to show in the listpick.{height} is probably the height
of the item, in rows. The-dnd suboption gives drag-and-drop functionality to the atom.

The -i option creates an image atom in the dialog, similarly to e.g. the icons in-i option
standard Mac OS alerts. The syntax is

-i {image} {left} {top} {right} {bottom}

where{image} is the name of a Tk image object to show in the dialog.
The-mt option creates a popup menu with its own title in the dialog. The syntax is-mt option

-mt {title} {menu items} {left} {top} {right} {bottom}

where{title} is the title of the popup menu and the remaining arguments are handled
identically to the-m option. The title is put flush right against the left edge of the item
rectangle.

17

There is an-action suboption which arranges for a script to be evaluated when the-action option
associated dialog item is manipulated (i.e. if it is a button, then when it is pressed; if it
is a checkbox, then when it is ticked/unticked; if it is a popup menu, then when an item
is selected). This option can appear before or after the ‘{left} {top} {right} {bottom}’
coordinates of a dialog item. Note that if a button in a dialog has an associated-action,
pressing the button willnot finish the dialog. However, the button will still feature in the
list of 0’s and 1’s which are eventually returned by the dialog command. There must be
at least one button in each dialog with no associated action (else an error will be thrown
by the dialog command, since the dialog could never be closed). The syntax is

-action { {callback} { ?{atom number}? ...} }

where each{atom number} is a string containing either the number of an atom in the
dialog (counting from zero), or if{atom number} begins with a+ or - then it is relative to
the previous atom in the dialog (so either+0 or -0 would refer to the current dialog item
itself). Finally,{atom number} can also be a string referring to a-tag given elsewhere
in the dialog.

When the dialog item is modified in some way (clicked on for a button, value changed
for a popup menu),{callback} is evaluated by Alpha’s core as follows:

eval{callback} { listOfDialogIds}

Therefore{callback} must take one extra argument, which is a list containing one
dialog id for each of the original indices which were given (it is ok if none are given –
then an empty list is the only argument). These dialog ids can later be used to manipulate
the dialog itself, in place. If the id of the dialog item with the -action itself is required,
then that can, of course, be retrieved with the ’+0’ atom number in the list.

These dialog ids can be used as arguments to these commands (currently only avail-
able in Alphatk):

getControlInfo{id} {attribute}
setControlInfo{id} {attribute} {value}

Where{attribute} is ’state’, ’value’, ’font’, or ’help’. Here ’state’ is used to en-
able/disable the item, ’font’ is used to access the font, and ’help’ is used to adjust the
items tooltip help text.

On Alpha 8/X only these simpler forms are currently available (they are also available
on Alphatk):

getControlValue{id}
setControlValue{id} {value}

The dialog ids are only valid as long as the dialog itself is shown. As soon as the
dialog has been dismissed, these id are useless and will likely throw an error if passed
to get/setControlValue. Therefore these ids should not be stored, except for temporary
usage.

The commands above, of course, only affect the visual appearance in the dialog. It
is up to the original caller of the dialog to take care of any associated storage if that

18

is required (e.g. storing values in Tcl variables). Note that while the ’setControlValue’
command can be used to set the value of dialog items such as checkboxes, text entry
fields whose value will later be returned when the dialog closes, it can also be used to set
the ’value’ of non-editable text labels and the textual label of a button, whose ’value’ is
certainly not returned when the dialog closes.

There is an-tag suboption which allows for easier use of-action, avoiding the-tag option
need to count dialog items precisely (which is otherwise a maintenance problem). The
syntax is:

-tag {tag name}

where{tag name} is an arbitrary string. This option can appear before or after the ‘{left}
{top} {right} {bottom}’ coordinates of a dialog item. The{tag name} can then be used
by any-action option as an{atom number} to refer to this dialog item. The-action
option can refer to{tag names} which occur either earlier or later in the overall dialog
command.

There is an obsolete-copyto suboption arranges for the value of the preceding di--copyto option
alog item to be copied and displayed in another, whenever the first changes. The dialog
handled by theprompt command inAlpha 7hardcodes what can be achieved with this
option. The syntax is

-copyto {atom number}

where{atom number} is a string containing either the number of the atom in the dialog
(counting from zero) into which the value should be copied, or if{atom number} begins
with a+ or - then it is relative to the previous atom in the dialog (so either+0 or -0 would
copy the value onto itself). Note that this option has since been removed fromAlphatk
and the-action option should be used instead.

2.1.3 The drag-and-drop solution/muddle

The-drop suboption activates the ability to drop things onto a dialog item. The general-drop option
format for this suboption is:

-drop {{mimetypes} {dropcheck} {dropset} ?{ {atom number}. . .}?

i.e. a list of three or four items, the last of which is an optional list of dialog{atom
numbers} as in the-action suboption. When this-drop option is present, it has the
effect that the atom we’re currently creating (usually a-t atom) will accept drops.

see dialogModifications.tcl for further information. What follows here is currently
out of date (the new approach is more sensible, I believe!).

The{dial} is simply a unique identifier for this dialog (so that all dialogs code is re-
entrant). It just needs to be passed along to appropriate routines later so you don’t need
to worry about it. The{varname} is the identifier for a specific item that e.g. thevalGet
andvalChanged procedures take as argument along with{dial}. The {type}, finally,
is the type of the entry (folder, searchpath, file, etc.). This is what decides which
piece of code will control how the atom behaves with respect to dropping.

As for dialog controls in general, most of the details in dragging and dropping lies well
outside the scope of what an AlphaTcl programmer needs to be concerned about. There

19

are however two points of every drag-and-drop at which the mechanisms in thedialog
command needs help from AlphaTcl, and for these must be provided two callbacks. The
most obvious point is that of the actual drop—dialog has received a value from the
GUI, but (in the case of a-t atom) has nothing to return it in—and therefore it instead
immediately passes the value on to a callback. This way it is up to AlphaTcl to take care
of the value and it usually does this by storing it in a suitable variable.

A less obvious, but no less important, point of interaction occurs when dragging. In
general the user may be dragging around all sorts of things, but only a few may be suitable
for dropping onto any given item. A piece of data is said to beacceptablefor an item if it
makes sense to drop it onto that item. It is part of the rules for drag-and-drop that the GUI
must signal to the user when a drag passes over an item for which it would be acceptable,
but thedialog command cannot test for acceptability without help. Therefore it relies
on AlphaTcl to provide it with a callback that implements the relevant test.

One might expect3 at this point thatdialog should simply take these callbacks as
arguments to the-dnd suboption and be done with it, but the mechanism actually imple-
mented calls upon a number of AlphaTcl procedures with fixed names toconstructthe
real callbacks! The drop callback is constructed as

dialog::itemSet {update} {〈base〉 {dial} {varinfo}} {data}∗

whereas the acceptability callback is constructed as

dialog::itemAcceptable {varinfo} {data}∗

Here{update} is some information the program uses to identify what atom should be up-
dated (this is simply passed as an argument todialog::setControlValue). The〈base〉
is whatdialog::valGetDropAction returns when called with{varinfo} as argument;dialog::valGetDropAction

(proc) it can be more than one word.{dial} and{varinfo} are taken from the arguments to-dnd,
whereas the{data}s are the values that were dropped or are being dragged respectively.

TheitemAcceptable procedure is fairly simple. The syntax is as shown above. Thedialog::itemAcceptable

(proc) return value is an empty string if the things being dragged are acceptable, or else a string
that explains what is wrong with them (Alphatkshows such strings on the status bar). The
current implementation performs tests if the{type} is searchpath, file, or folder,
and accepts anything for all other types.

The itemSet procedure is much more obscure, but primarily it evaluates the com-
mand

〈base〉 {dial} {varinfo} {data}∗

which (with the currentdialog::valGetDropAction) is

dialog::modifiedAdd {dial} {varinfo} {data}∗

when the{type} is searchpath and

dialog::modifiedAdjust {dial} {varinfo} {data}∗

otherwise. With the exception for an extra round of checking the{data} using
itemAcceptable and some messages, bothmodifiedAdjust andmodifiedAdd boildialog::modifiedAdjust

(proc)
dialog::modifiedAdd

(proc)

down to
3I certainly would, but apparently Vince had other plans. /LH

20

dialog::modified {dial} {varname} {newval} {type}

where{newval} is the{data} in the case ofmodifiedAdjust and the concatenation of
the old value with the{data} in the case ofmodifiedAdd. This simply means “update the
variable in which the value of this dialog item is stored” and thus we’ve finally managed to
accomplish one of the things that the drop should do. What remains is to change the text
that is actually shown in the dialog, so that the user will see that the value has changed.

That too is done in the call tomodified, but only because the interpreter took the
route viaitemSet to get there! Each timeitemSet is called, it first registers a hookdialog::itemSet (proc)
under the namedialog, which thedialog::modified procedure tries to call whenever
the{type} string is nonempty, and as its last actionitemSet deregisters the hook. The
combined effect is that the command

dialog::setControlValue {update} {varname} {newval} {type}

gets evaluated once for each drop. This command updates the value that is shown in the
dialog, but not always correctly. This is mainly due to the distinction between item values
as returned by e.g.dialog::make and item values as shown in a dialog window (this
distinction is most obvious forappspec, binding, andmenuindex items, but currently
none of these have drag and drop functionality). SincesetControlValue is called as a
side-effect of storing the value that will be returned rather than as a conscious act by a
callback selected for the particular type of item that is being updated, it only receives the
former kind of value. The two kinds of values happen to be equal for those{type}s which
currently have drag-and-drop, but not for any of the others.

For the record, it should be remarked that the original idea with thesetControlValuedialog::setControlValue

(command) command was that it should change the value shown in an atom (which in the case of a
-t atom means the text) so that the dialog should become as it would have been if that
value had been used instead in the original call todialog. To do that, it would only need
the{update} and{newval} arguments, and in fact the other arguments are currently not
used!

Related to this is the matter of adapting the value-as-shown to various physical re-
strictions imposed by the dialog itself. In particular file names and URLs are frequently
wider than the dialog window and thus should somehow be compressed so that they will
fit in the designated dialog atom. Since most of these restrictions are due to graphical
properties of text that AlphaTcl only has vague concepts of, the ideal would be that the
dialog command handled this on its own.4 For Alpha 7 one would of course instead
have to explicitly abbreviate the value before it is given todialog, and that is currently
done in the generic dialogs by thedialog::makeStaticValue procedure, but right now
that is done forAlphatkandAlpha 8as well. Automatic adaptation of a value-as-shown
currently only happens inAlphatkto those that are set usingsetControlValue, and this
uses yet another fixed callback (to thedialog::abbreviate procedure).

Is that all? No, but we’re nearly there. It turns out that most GUIs insist on that all
items that are dragged also have a type and that drop targets similarly must have a type.
To determine the drag-and-drop type for an item,Alphatkcalls the AlphaTcl procedure
valGetMimeType, which has the syntaxdialog::valGetMimeType

(proc)
4For really tough cases, such as a long URL or file name, it might be necessary to omit parts of the value.

This is then best handled by a callback since what part is best to omit depends on the type of the value. Many

21

dialog::valGetMimeType {varinfo}

and returns the wanted type. The currentvalGetMimeType returnstext/uri-list
when the{type} part of the{varinfo} is file, folder, url, or searchpath and an
empty string in all other cases. As it happens, the empty string is not a valid type and
thereforeAlphatkignores the-dnd suboption unless the{type} is one of these four.

Having sorted drag-and-drop out, one might as well do the-set suboption to-b as-set option
well, since that is quite similar. The syntax is

-set {callback}

where the{callback} is a two-element list with the structure

{script} {atom number}

The{script} is a script that is evaluated when the button is clicked. The{atom number}
is as for the-copyto option, and specifies an atom whose value the{script} should be
allowed to change.Alphatkdoes not provide for the{script} to change more than one
atom, and it uses the same indirect method here as for drag-and-drop. The real callback
is

dialog::itemSet {update} {script}

(where{update} is computed from the{atom number}) and the{script} is supposed to
call dialog::modified to update the item value both in memory and as shown in the
dialog window.

This approach of havingdialog::modified doing two things have noticable side-
effects. If, in Alpha 8, a binding or date item is set, then the new value shown in
the dialog will be the internal value rather than the formatted value (which is what the
user would expect). A similar problem occurs in the regular preferences dialogs, since
the value of a . . .Sig preference will inAlpha 8after being changed be displayed as the
actual signature rather than the path of the program it is mapped to.appspec items now
work around that nuisance by calling thedialog hook directly instead of going through
dialog::modified.

2.2 Measuring text

dialog::text_width (proc)
charwidth(character)

Thedialog::text_width procedure computes the width in screen pixels of the string
it gets as argument.

4if {${alpha::platform}=="alpha"} then {

In Alpha, the procedure uses the character widths stored in thecharwidth array:
$charwidth(z) is the width of the characterz. The initial values in this array are for 12
point Chicago. The corresponding table for Charcoal is mostly the same, although some
widths there would be smaller. No character is wider in Charcoal than in Chicago.

5 set code 0

such callbacks could probably bedialog::width abbrev straight off.

22

6 foreach w {0 6 12 12 6 14 11 14 0 4 16 14 14 0 6 6 9 11 11 9 11 6 6\
16 12 9 12 11 13 6 6 6 4 6 7 10 7 11 10 3 5 5 7 7 4 7 4 7 8 8 8 8\
8 8 8 8 8 8 4 4 6 8 6 8 11 8 8 8 8 7 7 8 8 6 7 9 7 12 9 8 8 8 8 7\
6 8 8 12 8 8 8 5 7 5 8 8 6 8 8 7 8 8 6 8 8 4 6 8 4 12 8 8 8 8 6 7\

6 8 8 12 8 8 8 5 5 5 8 6 8 8 8 7 9 8 8 8 8 8 8 8 8 7 8 8 8 8 4 4 4\
4 8 8 8 8 8 8 8 8 8 8 5 6 7 9 7 7 9 8 10 10 11 6 6 9 11 8 14 7 6 6\
8 10 8 9 10 11 6 7 7 10 12 8 8 6 7 12 6 8 9 9 9 14 8 8 8 8 11 12 6\
10 7 7 4 4 7 9 8 8 3 8 6 6 10 10 5 4 4 7 15 8 7 8 7 7 6 6 6 6 8 8\

11 8 8 8 8 4 6 8 6 6 6 6 6 6 6 6} {

15 if {[info tclversion] < 8.1} then {

16 set charwidth([format %c $code]) $w

17 } else {

18 set\
charwidth([encoding convertfrom macRoman [format %c $code]])\

$w

19 }

20 incr code

21 }

22 proc dialog::text_width {str} {

23 global charwidth

24 set w 0

25 foreach ch [split $str ""] {incr w $charwidth($ch)}

26 set w

27 }

28} else {

In Alphatk, the procedure is instead implemented using the Tk commandfont\
measure. I’m not suresystem is the right font in this case, though.

29 proc dialog::text_width {str}\
{screenToDistance [font measure system $str]}

30}

dialog::width_abbrev

(proc)
Thedialog::width_abbrev abbreviates a string (such as for example a file name) until
it fits within a specified width. The syntax is

dialog::width_abbrev {string} {width} {ratio}?

and the result is the abbreviated string.{string} is the string to abbreviate,{width} is the
maximal width of the result, and{ratio} controls how much of the result should be from
before or after the point of abbreviation. The default is0.33, which means twice as much
is kept after the point of abbreviation as after it.

31if {${alpha::platform} == "alpha"} then {

The implementation forAlphauses thecharwidth array.

32 proc dialog::width_abbrev {str width {ratio 0.33}} {

33 global charwidth dialog::ellipsis

34 set w 0

35 set tw [expr {$width - [dialog::text_width ${dialog::ellipsis}]}]

36 set abbr ""

37 set t [expr {$ratio * $tw}]

23

38 foreach ch [split $str ""] {

39 incr w $charwidth($ch)

40 if {$w < $t} then {append abbr $ch}

41 }

42 if {$w <= $width} then {return $str}

43 append abbr ${dialog::ellipsis}

44 set t [expr {(1-$ratio) * $tw}]

45 foreach ch [split $str ""] {

46 if {$w < $t} then {append abbr $ch}

47 incr w -$charwidth($ch)

48 }

49 set abbr

50 }

51} else {

The implementation forAlphatk uses instead thefont measure command and a
binary search.

52 proc dialog::width_abbrev {str width {ratio 0.33}} {

53 global dialog::ellipsis

54 if {[screenToDistance [font measure system $str]] <= $width} then\
{return $str}

55 set tw [expr {$width -\
[screenToDistance [font measure system ${dialog::ellipsis}]]}]

56 set lower -1

57 set upper [expr {[string length $str] - 1}]

58 set t [expr {$ratio * $tw}]

59 while {$upper - $lower > 1} {

60 set middle [expr {($upper + $lower) / 2}]

61 if {[screenToDistance\
[font measure system [string range $str 0 $middle]]] > $t}\

then {set upper $middle} else {set lower $middle}

63 }

64 set abbr [string range $str 0 $lower]

65 append abbr ${dialog::ellipsis}

66 set upper [string length $str]

67 set t [expr {(1 - $ratio) * $tw}]

68 while {$upper - $lower > 1} {

69 set middle [expr {($upper + $lower) / 2}]

70 if {[screenToDistance\
[font measure system [string range $str $middle end]]] > $t}\

then {set lower $middle} else {set upper $middle}

72 }

73 append abbr [string range $str $upper end]

74 }

75}

dialog::ellipsis (var.)
dialog::strlength (var.)

Theellipsis variable stores the ellipsis (“three dots”) character used for showing that
“this leads to another dialog”. Hopefully this might get around some platform-related
problems. If you don’t like the automatic guess, you can set it in your prefs file.

76if {![info exists dialog::ellipsis]} then {

24

77 if {[info tclversion] >= 8.1} then {

78 set dialog::ellipsis \u2026

79 } else {

80 set dialog::ellipsis \xc9

81 }

82}

This is duplicated fromdialogUtils.tcl:
83if {${alpha::platform} == "alpha"} {

84 set dialog::strlength 253

85} else {

86 set dialog::strlength 2000

87}

dialog::width_line break

(proc)
Thewidth_linebreak procedure takes a string and breaks it into lines in such a way
that no line is wider than a specified limit (unless there is a character that is wider than
this limit). Then it returns the list of lines in the broken string. The syntax is

dialog::width_linebreak {string} {width}

where{string} is the string to break and{width} is the width limit for a line (no line may
be that wide or wider).

It is possible that more arguments should be added to allow customisation of what
is considered a permissible breakpoint. Currently a linefeed is interpreted as a forced
breakpoint, a carriage return is interpreted as a paragraph separator, and spaces and tab
characters are considered permissible breakpoints. Whitespace is discarded before and
after a line break. A paragraph separator becomes a line consisting of one carriage return
character.

88proc dialog::width_linebreak {str w} {

89 if {![string length $str]} then {return {}}

90 set res [list]

91 foreach s [split $str \r] {

92 lappend res \r

93 foreach s2 [split $s \n] {

94 eval [list lappend res]\
[dialog::width_linebreak2 [string trim $s2] $w]

96 }

97 }

98 lrange $res 1 end

99}

dialog::width_linebreak2

(proc)
Thewidth_linebreak2 procedure is what does most of the work forwidth_linebreak.
It has the same syntax as that procedure, but linefeeds and carriage returns aren’t allowed
in the input string.
100if {${alpha::platform} == "alpha"} then {

101 proc dialog::width_linebreak2 {str w} {

With Alpha, even determining the width of a string requires a loop over the characters
of that string. Hence the most efficient implementation is to break the string into lines
during such a loop, but then of course one must keep track of much more than the just the

25

line more︷ ︸︸ ︷︷ ︸︸ ︷
. . .

∣∣
↑
0

↑
x0

↑
x

↑
w

Figure 1: Variables indialog::width linebreak2

total width so far. Most of these are explained in Figure1. Apart from these substrings
of the argument stringstr and horizontal positions, the result is collected inres and the
was variable kind of keeps track of the state: it is1 if the last character was a whitespace
character and0 otherwise.

102 global charwidth

103 set res [list]

104 set line ""

105 set more ""

106 set x 0

107 set was 1

108 foreach ch [split $str ""] {

109 set is [expr {$ch==" " || $ch=="\t"}]

110 if {!$is && $was} then {

A new word has begun.

111 if {![string length $line]} then {

112 set more ""

113 set x 0

114 }

115 set x0 $x

116 } elseif {$is && !$was} then {

A word just ended.

117 append line $more

118 set more ""

119 }

120 set was $is

121 incr x $charwidth($ch)

122 if {$x>=$w} then {

Need to break the line before the current character.

123 if {[string length $line]} then {

Normal case: breaking at whitespace.

124 lappend res $line

125 set line ""

126 set more [string trimleft $more]

127 set x [expr {$x-$x0}]

The last set gives rise to a nice exercise: to prove thatx0 must have been set if the program
enters this branch of theif.

128 } else {

26

Abnormal case: the current word is longer than a line. The break is put before the current
character.
129 lappend res $more

130 set more ""

131 set x $charwidth($ch)

132 }

133 set x0 0

134 }

135 append more $ch

136 }

End offoreach loop. Now it only remains to include the last line (if there is one) in the
result.
137 set line [string trim "$line$more"]

138 if {[string length $line]} then {lappend res $line}

139 return $res

140 }

141} else {

TheAlphatkimplementation is instead based on incrementally testing the possible break-
points. It uses some Tcl 8 regexp features.
142 proc dialog::width_linebreak2 {str w} {

143 set res [list]

144 set idx -1

145 while\
{[regexp -indices -start [expr {$idx+1}] -- {\S($|\s)} $str t]}\

{

This loop steps through the ends of words, one by one.
146 if {$w >\

[dialog::text_width [string range $str 0 [lindex $t 0]]]}\
then {

148 set idx [lindex $t 0]

149 } elseif {$idx>=0} then {

When an end of a word position which is too far away to fit on the current line, a break is
taken at the previous end of a word.
150 lappend res [string range $str 0 $idx]

151 set str\
[string trim [string range $str [expr {$idx+1}] end]]

152 set idx -1

153 } else {

Except for the case when a single word is wider than a line. In this case, the maximal
breakpoint is found using an interval search.
154 set upper [lindex $t 0]

155 set lower 0

156 while {$upper-$lower>1} {

157 set middle [expr {($upper+$lower)/2}]

158 if {$w >\
[dialog::text_width [string range $str 0 $middle]]}\

then {set lower $middle} else {set upper $middle}

27

161 }

162 lappend res [string range $str 0 $lower]

163 set str\
[string trim [string range $str [expr {$lower+1}] end]]

164 set idx -1

165 }

166 }

End of loop over the words.

167 if {$idx>=0} then {lappend res [string range $str 0 $idx]}

168 return $res

169 }

170}

2.3 Storing and updating values in dialogs

The procedures in this subsection used to be indialogUtils.tcl, so we need to make
sure that that is sourced before the new definitions are given.

171〈notinstalled〉auto_load dialog::flag

The dialog procedures keep the values of items in a global array, so that they can be
accessed by callback scripts that are evaluated in the global context. (This happens for
example for thebind scripts thatAlphatkuses.) Each dialog managing procedure must
allocate one of these arrays before doing any interaction with the user, and then deallocate
it when it’s done. The reason for this set-up is that (i) the dialog procedures should be
reentrant and (ii) the values would be impossible to access for some pieces of code if they
weren’t kept in the global scope.

dialog::tcldial〈num〉
(array)

dialog:

:changed_tcldial〈num〉
(var.)

dialog::globalCount (var.)

Global arrays nameddialog::tcldial〈num〉, where 〈num〉 is an integer, are allo-
cated for dialogs to store values in. Each such array is accompanied by a list named
dialog::changed_tcldial〈num〉 in which is stored the names of all elements in the
array which have been explicitly changed. Thedialog::globalCount variable stores
the number of the most recently allocateddialog::tcldial〈num〉 array.

172ensureset dialog::globalCount 0

dialog::create (proc)
dialog::cleanup (proc)

Thecreate procedure allocates a new array to store dialog values in. It takes no argu-
ments and return a reference string that should be used to access the array. Thecleanup
procedure takes a reference string as argument and deallocates the corresponding array.

173proc dialog::create {} {

174 global dialog::globalCount

175 incr dialog::globalCount

176 upvar #0 "dialog::changed_tcldial${dialog::globalCount}" chvar

177 set chvar [list]

178 return "tcldial${dialog::globalCount}"

179}

180proc dialog::cleanup {mod} {

181 global dialog::${mod} dialog::changed_${mod}

182 if {[info exists dialog::${mod}]} {

28

183 unset dialog::${mod}

184 }

185 if {[info exists dialog::changed_${mod}]} {

186 unset dialog::changed_${mod}

187 }

188}

The identifier returned bycreate will have to be communicated to all procedures
that access item values.

dialog::valGet (proc)
dialog::valSet (proc)

dialog::valExists (proc)

Basic access to the arrays for storing dialog values should be via thevalGet, valSet,
andvalExists procedures. Their respective syntaxes are

dialog::valGet {dialog} {name}
dialog::valSet {dialog} {name} {value}
dialog::valExists {dialog} {name}

where{dialog} is a reference string returned by thecreate procedure and{name} speci-
fies the item.valGet returns the value of the item.valSet sets the item value to{value}
without marking the item as changed and doesn’t return anything particular.valExists
returns1 if the item has been set and0 otherwise.
189proc dialog::valGet {mod name} {

190 uplevel #0 [list set dialog::${mod}($name)]

191}

192proc dialog::valSet {mod name val} {

193 uplevel #0 [list set dialog::${mod}($name) $val]

194}

195proc dialog::valExists {mod name} {

196 uplevel #0 [list info exists dialog::${mod}($name)]

197}

The{name} is usually formed as〈page〉,〈item title〉 so that items on different pages
can share the same title; there are cases in which each item title is reused on every page
of a dialog.

dialog::valChanged (proc) ThevalChanged procedure has the same syntax asvalSet, but if the new value is dif-
ferent from the old then it additionally includes the item in the list of items whose names
have been changed.
198proc dialog::valChanged {mod name val} {

199 global dialog::${mod} dialog::changed_${mod}

200 if {![info exists dialog::${mod}($name)] || ($val ne\
[set dialog::${mod}($name)])} {

202 set dialog::${mod}($name) $val

203 lunion dialog::changed_${mod} $name

204 }

205}

dialog::modified (proc) Themodified procedure is likevalChanged, but it can also call a hook to make sure var-
ious GUI details are updated accordingly. This is mainly used by thedialog::specialSet::〈type〉
procedures.
206〈∗notinstalled〉

29

207proc dialog::modified {mod name val {type ""}} {

208 dialog::valChanged $mod $name $val

209 if {[string length $type]} {

We have some code registered which would like to know what changed.Alphatkuses
such hooks to update dialog items fromSet... buttons automatically, but it would be
better if the code that calleddialog::modified could do that explicitly.

210 hook::callAll dialog modified $name $val $type

211 }

212}

213〈/notinstalled〉

dialog::changed_items

(proc)
Thechanged_items procedure returns the current list of items whose values have been
changed. The syntax is

dialog::changed_items {dialog}

where{dialog} is a reference string returned bycreate.

214proc dialog::changed_items {mod} {

215 uplevel #0 [list set dialog::changed_${mod}]

216}

2.4 Building and handling dialog material

dialog::handle (proc) The handle procedure provides the glue between the built-indialog command and
the item-oriented interface to the dialog procedures. Its basic job is to open a new sin-
gle/multipage dialog with specified items, handle user modifications of those items, and
then return when the user presses a non-item button. Item definitions are taken from ar-
rays in the caller’s local context. Item values are taken from and then stored in a global
array accessed usingvalGet andvalChanged.

The syntax is

dialog::handle {pages} {type-var} {dialog id} {help-var} {current-page-var}
{option list} {button group}+

and the returned value is a string that depends on which button was pressed to end the
dialog. The{pages} argument is a list with the structure(

{page name} {item name list}
)+

which selects what items to show in the dialog. Each{page name} creates a new page
with that name. The{item name list} contains the names of the items which will be
shown on that page. Note that the page may contain more items than those specified in
this list; those will then be ignored. This is useful in cases where some higher level setting
has rendered some of the items irrelevant.

The{type-var} and{help-var} arguments are the names of arrays in the caller’s local
context, which are expected to contain the types and help texts (if there are any) re-
spectively for the items in the dialog. These indices into these arrays have the form〈page
name〉,〈item name〉. The{dialog id} is an identifier to use withvalGet andvalChanged

30

to access the values of items. The{current-page-var} argument is the name of a variable
in the caller’s local context. If, upon entry, this variable is set to the name of a page in the
dialog then that will be the default page of the dialog. Upon return, this variable is set to
the name of the current page.

The{option list} is a key–value list of extra options for thedialog::handle proce-
dure. Unknown options are ignored and no option is mandatory. Currently the following
options are recognized:

-title Title for the dialog window; by default an empty string. This is ignored in
Alpha 7.

-width Width of the dialog window, in pixels; this defaults to 400.

A {button group}, finally, is a list with the structure

{button list} {option}∗

and the{button list}, in turn, has the structure(
{title} {help} {return}

)+

Each triple in the{button list} describes one button. The{title} is the button title, the
{help} is the button help text, and the{return} is the value thatdialog::handle will
return when this button is pressed. An{option} can be anything; currently the following
are understood:

right Put buttons in this group flush right (default is flush left).

first Put the buttons in this group first in the dialog material. This makes one of them
the default button.

The procedure starts by making various global variables available and parsing some
easy arguments.
217proc dialog::handle {pages typevar dial helpvar pagevar optionL args} {

218 global dialog::indentsame dialog::indentnext dialog::simple_type\
dialog::complex_type alpha::platform

220 variable pager

221 upvar 1 $typevar typeA $helpvar helpA $pagevar currentpage

222 if {![info exists currentpage]} then {

223 set currentpage [lindex $pages 0]

224 }

225 metrics Metrics

226 set opts(-title) ""

227 set opts(-width) 400

228 set opts(-pager) "popupmenu"

229 array set opts $optionL

230 set multipage 0

Next comes a loop which is needed sinceAlpha 7uses post-processing scripts to process
item buttons. The loop will eventually be removed.
231 while {1} {

31

Now the dialog material can be constructed. This makes up most ofdialog::handle.
The dialog material is collected in theres variable, which will be a partial list of argu-
ments to pass to thedialog command. Material is generally collected top to bottom, so
that it is sufficient to know the bottommost position of an item to avoid putting two items
on top of one another. They variable generally says where the next item may be put. The
ymax variable stores the maximaly value reached on any page processed so far.
232 set res [list]

233 set ymax 4

multipage is a flag which is1 if a multipage dialog is being built and0 otherwise. What
appears to be a singlepage dialog can be turned into a multipage dialog if any page con-
tains too many items.pagemenu is a list that will be used for the page menu in a multipage
dialog. helpL is a list of help messages for the dialog items andpostprocL is a list of
post-processingscripts for the dialog items. More on that below. TheleftEdge and
topEdge variables store the leftmost and topmost coordinates which should be used for
actual dialog items (reserving a certain amount of space for whatever paging mechanism
is used: tabs, list, popup, etc). Theleft andright variables store thex-coordinates for
the left and right respectively margin for dialog material.
234 if {!$multipage} {

235 set multipage [expr {[llength $pages] > 2}]

236 }

237 if {$multipage} {

238 eval [lindex $pager($opts(-pager)) 0]

239 } else {

240 set leftEdge 20

241 set topEdge 42

242 }

243 set left $leftEdge

244 set right [expr {$opts(-width) - 10}]

245 set pagemenu [list $currentpage]

246 set helpL [list]

247 set postprocL [list]

The outermost loop when constructing dialog material is over the pages. In multipage
dialogs, an-n {page name} atom appears in the material to start each new page. Another
difference is that there is a popup menu (19 pixels tall) at the top if a multipage dialog, but
only a static text (15 pixels tall) at the top of a single page dialog. Note that if the dialog
contains discretionary items, then the item scripts might convert a single page dialog into
a multipage one. In this case we will have to break out of page construction and start
again, since the offset from the top of the page is wrong. So,y starts at slightly different
values to deal best with the common cases.
248 foreach {page items} $pages {

249〈log1〉 terminal::print_word emptyline "Page: $page" newline

250 if {$multipage} then {

251 lappend res -n $page

252 lappend pagemenu $page

253 if {[info exists singlepage]} { break }

254 set y $topEdge

255 } elseif {$page eq ""} {

32

256 set y 10

257 set singlepage 1

258 } else {

259 set y 38

260 set singlepage 1

261 }

The inner loop in material construction is over the items. Since material construction
is a very diverse activity, and since it should be easy to add definitions of new types,
the actual construction is handled by a legion ofconstruction scriptsthat are selected
according to the type of the item. These scripts access a number ofdialog::handle
variables, which are described in Subsubsection2.4.1below.
262 foreach name $items {

263〈log1〉 terminal::print_block newline { Item: } [list $name]\
newline

264 set type $typeA($page,$name)

265〈log1〉 terminal::print_block newline { Type: } [list $type]\
newline

266 set val [dialog::valGet $dial $page,$name]

267〈log1〉 terminal::print_block newline { Value: } [list $val]\
newline

268 set help {}

269 catch {set help $helpA($page,$name)}

270〈log1〉 terminal::print_block newline { Help: } [list $help]\
newline

271 set script [list dialog::valChanged $dial $page,$name]

272 append script { [lindex $res $count]}

273 set visible 1

The followingwhile loop exists to allow construction scripts to restart the construction
of an item using the construction script for another type. Currently only theglobal type
makes use of this. Normally thebreak is evaluated on the first iteration of the loop.
274 while {1} {

275 if {[llength $type] == 1} then {

276 if {![info exists dialog::simple_type($type)]} then\
{set type var}

278 eval [set dialog::simple_type($type)]

279 } elseif\
{[info exists dialog::complex_type([lindex $type 0])]}\

then {

281 eval [set dialog::complex_type([lindex $type 0])]

282 } else {

283 dialog::cleanup $dial

284 error "Unsupported item type ’$type’"

285 }

286 break

287 }

The bulk of work done by the construction script is to append material tores and incre-
menty by the height of that, but they may also set thescript andhelp variables.
288 if {$visible} then {

33

289 incr y 7

290 if {[info exists help]} {lappend helpL $help}

291 }

292〈∗log1〉
293 terminal::print_word newline { Script:} newline

294 terminal::print_block newline { } [split $script \n]\
newline

295〈/log1〉
296 lappend postprocL $script

297 }

298 if {$y > $ymax} {set ymax $y}

299 }

300 if {[info exists singlepage] && $multipage} {

301 unset singlepage

302 continue

303 }

304 incr ymax 6

This ends the loops over items and pages, respectively, and now all item-related material
is in res! The ymax variable incremented to get full separation before the buttons (the
construction of which comes next on the agenda).

Since the buttons should appear on every page of the dialog, their atoms must appear
before all the material currently inres. Therefore dialog material for buttons is collected
in a separate variablebutton which will then be concatenated withres. The button-
building routines also make use of thebutton_help andbutton_press variables, in
which the help texts and return values (when the button has been pressed) respectively
are stored. Thel andr variables contain the minimal and maximalx-coordinate that is
available for button placement without increasingymax; these are managed completely
by dialog::makeSomeButtons.

305 set buttons [list]

306 set button_help [list]

307 set button_press [list]

308 set l $left

309 set r $right

310 foreach group $args {

311 set b_names [list]

312 set b_help [list]

313 set b_press [list]

314 foreach {name help val} [lindex $group 0] {

315 lappend b_names $name

316 lappend b_help $help

317 lappend b_press $val

318 }

319 set group [lrange $group 1 end]

320〈∗log1〉
321 terminal::print_word emptyline "Button group: $group" newline

322 terminal::print_word newline " Names:" newline

323 terminal::print_block newline { } $b_names newline

324 terminal::print_word newline " Helps:" newline

34

325 terminal::print_block newline { } $b_help newline

326 terminal::print_word newline " Values:" newline

327 terminal::print_block newline { } $b_press emptyline

328〈/log1〉
329 set b_names [dialog::makeSomeButtons $b_names\

[expr {[lsearch -exact $group "right"] >= 0}] $left l r\
$right ymax]

332 if {[lsearch -exact $group "first"] < 0} then {

333 eval [list lappend buttons] $b_names

334 eval [list lappend button_help] $b_help

335 eval [list lappend button_press] $b_press

336 } else {

337 set buttons [concat $b_names $buttons]

338 set button_help [concat $b_help $button_help]

339 set button_press [concat $b_press $button_press]

340 }

341 }

342 if {![llength $button_press]} then {

343 dialog::cleanup $dial

344 error "No buttons in dialog."

345 }

346 incr ymax 33

If no buttons had been specified then the user would be unable to close the dialog, so that
is an error. ymax is incremented from the top of the bottommost row of buttons to 13
pixels below the bottom of that row of buttons.

The final atom to make for the dialog material is the page title or paging mechanism.
In a single page dialog this is just a piece of static text, but in a multi-page dialog it may
be a popup menu, a listbox or a series of tabs. As a title should, the title will not only
appear topmost but also first in the dialog material.
347 if {$multipage} then {

348 set help {}

349 eval [lindex $pager($opts(-pager)) 1]

350 set res [concat $pageitem $buttons $res]

351 set helpL [concat [list $help] $button_help $helpL]

352 } else {

353 set title_width [dialog::text_width $currentpage]

354 if {$title_width > 200} {

355 set border [expr {($opts(-width) - $title_width)/2}]

356 if {$border < 0} { set border 0 }

357 set l $border

358 set r [expr {$opts(-width) - $border}]

359 } else {

360 set l 100

361 set r 300

362 }

363 if {[llength $pages]} then {

364 set currentpage [lindex $pages 0]

365 set res\
[concat [list -t $currentpage $l 10 $r 25] $buttons $res]

35

367 } else {

368 set res [concat $buttons $res]

369 }

370 set helpL [concat $button_help $helpL]

371 }

Then it is time for the climax of this procedure: the call todialog!

372〈∗log2〉
373 terminal::print_word emptyline "All the dialog material:" newline

374 terminal::print_block newline { } $res emptyline

375〈/log2〉
376 if {[info tclversion] >= 8.0} then {

377 set res [eval\
[list dialog -w $opts(-width) -h $ymax -T $opts(-title)]\

$res [list -help $helpL]]

379 } else {

380 if {[catch\
[concat [list dialog -w $opts(-width) -h $ymax] $res] res]}\

then {

Unlike some of the built-in dialog commands inAlpha, dialog doesn’t raise an error
when e.g.Cancel is pressed, but theAlpha 7dialog command does raise an error if it
is overstrained. That it can be overstrained is a bug. The-alpha7pagelimit option can
be used to work around this bug.

383 dialog::cleanup $dial

384 alertnote "Sorry, you encountered a bug in Alpha 7’s\
’dialog’ command, which cannot handle very complex\

dialogs. If you are trying to edit many items at once,\
try to edit them just one at a time."

388 error "Internal bug in ’dialog’."

389 }

390 }

Now the result ofdialog must be parsed. In a multipage dialog the first item is the
name of the current page, but in a single page dialog that item is missing. The following
updatescurrentpage if necessary and ensures thatres has the multipage structure.

391 if {$multipage} then {

392 set currentpage [lindex $res 0]

393 } else {

394 set res [linsert $res 0 $currentpage]

395 }

396〈log1〉 terminal::print_word emptyline "Result: $res" newline

The next[llength $button_press] elements inres are the control values of the
buttons, but those are parsed last. Remaining results come from the various dialog items;
these are parsed by the post-processing scripts found in thepostprocL variable. During
that, thecount variable is the index of the first unparsed value inres. It is normally
incremented by1 after each item, but e.g. items which don’t have a control value can
issue acontinue command in their post-processing scripts to skip that.

397 set count [expr {[llength $button_press] + 1}]

36

398 foreach script $postprocL {

399 eval $script

400 incr count

401 }

Finally the button results are parsed. This employs the fact that at most one of them can
be1 (and all others must be0).

402 set count\
[lsearch -exact [lrange $res 1 [llength $button_press]] 1]

404 if {$count>=0} then {return [lindex $button_press $count]}

405 }

406}

End ofwhile {1} loop, and end of procedure.

dialog::pager(popupmenu)

dialog::pager(listbox)

dialog::pager(tabs)

Three different kinds of paging mechanisms are supported. Each of these is defined by an
array entry in thedialog::pager array, where each entry must be a list of two scripts.
The first script specifies theleftEdge andtopEdge which are available for use, and the
second script constucts the paging dialog atom inpageitem and optionally specifies its
help text in thehelp variable.

407if {$alpha::platform eq "tk"} {

408 set dialog::pager(popupmenu) {

409 {

410 set leftEdge 20

411 set topEdge 42

412 }

413 {

414 set pageitem [list -pager -m $pagemenu 100 10 300\
[expr {$Metrics(PopupButtonHeight) + 15}]]

416 set help "Use this popup menu or the cursor keys to go to a\
different page of the dialog."

418 }

419 }

420 set dialog::pager(listbox) {

421 {

422 set leftEdge 200

423 set topEdge 14

424 }

425 {

426 set pageitem [list -pager -listitem $pagemenu {} 10 10 180\
[expr {$ymax - 10}]]

428 set help "Use this list or the cursor keys to go to a\
different page of the dialog."

430 }

431 }

432 set dialog::pager(tabs) {

433 {

434 set leftEdge 20

435 set topEdge 42

436 }

37

437 {

438 set pageitem [list -pager -tab $pagemenu \
20 10 [expr {$opts(-width) - 20}] \

[expr {$Metrics(PopupButtonHeight) + 15}]]

441 set help "Use these tabs or the cursor keys to go to a\
different page of the dialog."

443 }

444 }

445} else {

446 set dialog::pager(popupmenu) {

447 {

448 set leftEdge 20

449 set topEdge 42

450 }

451 {

452 set pageitem [list -m $pagemenu 100 10 300\
[expr {$Metrics(PopupButtonHeight) + 15}]]

454 set help "Use this popup menu or the cursor keys to go to a\
different page of the dialog."

456 }

457 }

458}

dialog::makeSomeButtons

(proc)
Thedialog::makeSomeButtons procedure builds dialog material for a list of full-size
buttons, while trying to keep them on the same line. The dialog material is returned and
some variables are updated. The syntax is

dialog::makeSomeButtons {title list} {justification} {xmin} {left-var}
{right-var} {xmax} {y-var} {minwidth}?

where the ‘-var’ arguments are names of variables in the caller’s local context, whereas
the other arguments are direct data.{justification} is 0 if the buttons should be put flush
left and1 if they should be put flush right.{title list} is the list of button titles.

The procedure tries to put (the top of) the buttons at they-coordinate given by{y-var}
and thex-coordinates between those given by{left-var} and{right-var}. If that doesn’t
work then it increases the{y-var} to the next line and resets the{left-var} and{right-var}
to {xmin} and{xmax} respectively. Depending on{justification}, either the{left-var} or
the{right-var} is incremented after a button has been added.

Buttons are made 20 pixels high and at least 17 pixels wider than the title.{minwidth}
is the minimal width of a button; it defaults to 58. Buttons are put 13 pixels from each
other.

459proc dialog::makeSomeButtons\
{titleL justification xmin leftvar rightvar xmax yvar {minwidth 58}} {

461 upvar 1 $leftvar left $rightvar right $yvar y

462 set widthL [list]

463 foreach title $titleL {

464 set w [expr {[dialog::text_width $title] + 17}]

465 if {$w < $minwidth} then {set w $minwidth}

466 lappend widthL $w

38

467 }

468 if {[expr [join $widthL "+13+"]] > $right - $left && ($xmin<$left ||\
$right<$xmax)} then {

470 incr y 33

471 set left $xmin

472 set right $xmax

473 }

474 set n 0

475 foreach title $titleL {

476 set w [lindex $widthL $n]

477 incr n

478 if {$w > $right - $left && ($xmin<$left || $right<$xmax)} then {

479 incr y 33

480 set left $xmin

481 set right $xmax

482 }

483 lappend res -b $title

484 if {$justification} then {

485 lappend res [expr {$right-$w}] $y $right [expr {$y+20}]

486 set right [expr {$right - $w - 13}]

487 } else {

488 lappend res $left $y [incr left $w] [expr {$y+20}]

489 incr left 13

490 }

491 }

492 set res

493}

2.4.1 Construction and post-processing scripts

dialog::simple_type

(array)
dialog::complex_type

(array)

The dialog::simple_type anddialog::complex_type arrays are where the code
defining the various item types is stored. The indices into these arrays are the type names
(first item in the actual type, when seen as a list) and each entry contains theconstruction
script for that item type; this script is responsible for inserting an item of the type in
question into the dialog.

The following local variables are available when the scripts are evaluated:

res The list to which the dialog material for the item should be
appended.

dial The identifier for accessing values in the current dialog.
type The item type.
page The item page.
name The item name.
help The user-supplied help text for the item, or an empty string if

there was none.
script The post-processing scriptfor the item. This is initialised to

code which makes the next control value the new value of this
item, but items withSet... buttons will have to redefine it.

39

val The default value for the item.
left Thex-coordinate of the left margin for the items: this is where

the left edge of the item name should be put.
right Thex-coordinate of the right margin for the items. The dialog

material that is generated should be between thex-coordinates
$left and$right.

y The y-coordinate of the top side of the item. After insert-
ing the item, this variable should be incremented to equal the
y-coordinate of the bottom of the bounding rectangle of the
item’s material.

visible A boolean for whether this item produces any visible material.
It defaults to1, but if it is set to0 then they variable will not
be incremented after the item and the help text will be ignored.
The item can still have a post-processing script, but that should
end withcontinue since there isn’t a control value result for
the item.

In addition, the following local variables must be left alone:items, pages, typeA,
helpA, currentpage, opts, ymax, multipage, pagemenu, helpL, andpostprocL.
This list may change in the future, but variable names at most three characters long should
be safe.

The following global variables have been made accessible via theglobal command:

dialog::indentsame The recommended minimal indentation (fromx-
coordinate$left) for item values that are printed on
the same “line” as their names.

dialog::indentnext The recommended minimal indentation (fromx-
coordinate$left) for item values that are not printed
on the same “line” as their names.

dialog::simple_type Obvious?
dialog::complex_type Obvious?
alpha::platform The platform that AlphaTcl is being run on, either

alpha or tk.

Other global or local variables may be used in any way the script pleases, but don’t expect
local variables to be the same as the last time the script was evaluated.

The advantage with keeping construction scripts in arrays like this in comparison with
having a procedure with a largeswitch command is that it is much easier to add defi-
nitions of new types. The advantage in comparison with keeping several procedures in a
designated namespace is that you don’t have to spend a lot of code on passing information
between the caller and the callee.

Post-processing scripts, on the other hand, are usually built on the fly by the construc-
tion scripts. In some cases they are the same for all items of the same type, but it is often
necessary to embed the page and item names into the script. This is fairly straightforward
if the script simply is a single procedure call, since the script can then be built as the list
of words in that command. This might look like

40

set script [list myPostprocProc $dial $page $name]

which puts inscript a command with the structure

myPostprocProc {dial} {page} {name}

where{dial}, {page}, and{name} are the values these variables had when the script
was built—thelist command even takes care of quoting the arguments when necessary.
The default post-processing script and theAlpha 7post-processing scripts for items with
Set... buttons are both constructed in this way (with a slight extra twist).

For more complex post-processing scripts this might be unfeasible. In that case, the
following construction is useful:

set script [list set T $page,$name]
append script {

〈bulk of the script〉
}

The script will then begin with aset command into which the〈page〉,〈name〉 construc-
tion has been embedded, and thus the〈bulk of the script〉, which is a fixed string, may
refer to this string as$T. Note however that the newline before the〈bulk of the script〉 is
necessary: it separates theset command returned bylist from the first command in the
〈bulk of the script〉.

There are however a couple of variables which a post-processing script do, and usually
need to, have access to. These are:

res The list of control values returned bydialog.

count The index intores of the first value not yet parsed. Unless a post-processing
script does acontinue, this variable will be incremented by1 after the script has
been evaluated. An item for which there are several control values returned by
dialog must itself modifycount accordingly.

dial The identifier of the current dialog, for value access.

The variables that construction scripts should avoid should also be avoided by post-
processing scripts.

dialog::indentsame (var.)
dialog::indentnext (var.)

Thedialog::indentsame anddialog::indentnext variables are lower bounds for
how much the value of a dialog item is indented relative to the name.indentsame is
used for values on the same line as the item name, whereasindentnext is used for
values whose names are on the next line. The unit is screen pixels.

494set dialog::indentsame 80

495set dialog::indentnext 40

2.4.2 TextEdit item types

dialog::makeEditItem

(proc)
Thedialog::makeEditItem procedure generates the dialog material for an item whose
value is edited as explicit text, in a box. The syntax is

41

dialog::makeEditItem {mat-var} {script-var} {left} {right} {y-var}
{name} {value} {lines}? {minwidth}? {maxwidth}?

where{mat-var}, {script-var}, and{y-var} are names of variables in the caller’s local
context, whereas the other arguments are direct data.{mat-var} collects the dialog mate-
rial and{script-var} the post-processing commands that should be applied for this item.5

{left}, {right}, and{y-var} is the coordinates of the left, right, and top sides of a rect-
angle by which the material of the item should be bounded.{y-var} is incremented to
equal the bottom of this rectangle.{name} and{value} are the name and the initial value
of the item, respectively.{lines} is the height of the edit box in lines and defaults to1.
{minwidth} is the minimal width in pixels of the box and defaults to110. {maxwidth} is
the maximal width of the box in pixels and defaults to$right-$left.

The 19 below are 13 for the standard item separation and 3+3 for the frame around
a TextEdit item. The defaultminwidth is arbitrarily chosen.
496proc dialog::makeEditItem {mvar svar left right yvar name val {lines 1}\

{minwidth 110} {maxwidth {}}} {

498 upvar 1 $mvar M $yvar y

499 global dialog::indentsame dialog::indentnext

500 if {$maxwidth==""} then {set maxwidth [expr {$right-$left}]}

501 set nw [expr {[dialog::text_width $name] + 1}]

502 if {$nw<${dialog::indentsame}-13} then {

503 set nw [expr {${dialog::indentsame}-13}]

504 }

505 if {$lines == 1 && $nw+19+$minwidth < $right-$left ||\
$nw+19+$maxwidth <= $right-$left} then {

507 incr y 3

508 lappend M -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

509 set ew [expr {$right - $left - $nw - 19}]

510 if {$ew>$maxwidth} then {set $ew $maxwidth}

511 lappend M -e $val [expr {$left+$nw+16}] $y\
[expr {$left+$nw+$ew+16}] [expr {$y + 16*$lines - 1}]

513 } else {

514 lappend M -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

515 incr y 20

516 set ew [expr {$right - $left - ${dialog::indentnext} - 6}]

517 if {$ew>$maxwidth} then {set $ew $maxwidth}

518 lappend M -e $val [expr {$right - 3 - $ew}] $y\
[expr {$right - 3}] [expr {$y + 16*$lines - 1}]

520 }

521 set y [expr {$y + 16*$lines + 2}]

522}

dialog::simple_type(var)

dialog:

:simple_type(var2)

The var item type provides a box in which the item value can be edited as a string; it
could be removed as this is also the default for undefined simple types. Thevar2 type is
similar, but the text box is two lines high, instead of one as for thevar type.
523array set dialog::simple_type\

{var {dialog::makeEditItem res script $left $right y $name $val}}

5Currently this variable is neither changed nor inspected. I’m not sure why I added the argument in the first
place. /LH

42

525array set dialog::simple_type\
{var2 {dialog::makeEditItem res script $left $right y $name $val 2}}

dialog::simple_type

(password)

Thepassword item type is almost the same asvar; the only difference is that the editable
text box is deliberately so small that the text written in it cannot be read.

At least in some cases, the Mac OS Toolbox routines for TextEdit boxes draw the ini-
tial text in them, even when the that means drawing outside the corresponding rectangle.
This can result in passwords being clearly written on the screen. To avoid this, the initial
text in the TextEdit atom of apassword item consists entirely of spaces. Passwords that
are not edited not changed by the post-processing script.

527array set dialog::simple_type {password {

528 set nw [expr {[dialog::text_width $name] + 1}]

529 lappend res -t $name $left $y [expr {$left + $nw}] [expr {$y + 15}]

530 incr nw 13

531 if {$nw<${dialog::indentsame}} then {set nw ${dialog::indentsame}}

532 regsub -all {.} $val { } vv

533 lappend res -e $vv [expr {$left + $nw + 3}] [expr {$y + 6}]\
[expr {$right - 3}] [expr {$y + 7}]

535 incr y 15

536 set script [list set T $page,$name]

537 append script {

538 regsub -all {.} [dialog::valGet $dial $T] { } vv

539 if {[string compare $vv [lindex $res $count]]} then {

540 dialog::valChanged $dial $T [lindex $res $count]

541 }

542 }

543}}

2.4.3 Uneditable item types

dialog::lines_to_text

(proc)
Thelines_to_text procedure takes a list of lines, as returned by e.g. thewidth_linebreak
procedure, and returns dialog material for showing those lines as static text. The two im-
portant non-trivialities there is are that (i) there is a limit on how long a string in a dialog
atom can be and (ii) there is more vertical space between two paragraphs than between
two lines in the same paragraph.

The syntax is

dialog::lines_to_text {line list} {left} {right} {y-var}

{line list} is the list of lines.{left} and{right} are thex-coordinates of the respective left
and right edges of the text items that are created. It is assumed that each line of text fits
between those two positions. The{y-var} is the name of a variable in the caller’s local
context giving the top edge of the first text line. The procedure increments it to give the
bottom edge of the last line in the paragraph.

544proc dialog::lines_to_text {lineL left right yvar} {

545 upvar 1 $yvar y

546 global dialog::strlength

547 set res [list]

43

548 set item_lines [list]

549 set item_length -1

550 foreach line $lineL {

551 if {$line!="\r"} then {

552 incr item_length [expr {1 + [string length $line]}]

553 if {${dialog::strlength}<$item_length} then {

554 lappend res -t [join $item_lines \r] $left $y $right\
[incr y [expr {[llength $item_lines] * 16}]]

556 set item_lines [list $line]

557 set item_length [string length $line]

558 } else {

559 lappend item_lines $line

560 }

561 } else {

562 if {[llength $item_lines]} then {

563 lappend res -t [join $item_lines \r] $left $y $right\
[incr y [expr {[llength $item_lines] * 16}]]

565 }

566 incr y 6

567 set item_lines [list]

568 set item_length -1

569 }

570 }

571 if {[llength $item_lines]} then {

572 lappend res -t [join $item_lines \r] $left $y $right\
[incr y [expr {[llength $item_lines] * 16}]]

574 }

575 if {[llength $res]} then {incr y -1}

576 return $res

577}

dialog:

:simple_type(text)

A text item has no value; it merely prints the{name} in the dialog as a static text item.
This might for example be used to make subheadings in a dialog.

578array set dialog::simple_type {text {

579 eval [list lappend res] [dialog::lines_to_text\
[dialog::width_linebreak $name [expr {$right-$left}]] $left\

$right y]

582 unset help

583 set script {continue}

584}}

dialog::simple_type

(static)

A static item looks like avar item where the value for some reason cannot be edited.
It is mainly used for showing information in a dialog.

585array set dialog::simple_type {static {

586 set nw [expr {[dialog::text_width $name] + 1}]

587 if {$nw<${dialog::indentsame}-13} then {

588 set nw [expr {${dialog::indentsame}-13}]

589 }

590 lappend res -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

44

591 set vw [expr {[dialog::text_width $val] + 1}]

592 lappend res -t $val

593 if {$nw + 13 + $vw < $right - $left} then {

594 lappend res [expr {$left + $nw + 13}] $y

595 } else {

596 incr y 16

597 lappend res [expr {$left + ${dialog::indentnext}}] $y

598 }

599 lappend res $right [incr y 15]

600 unset help

601 set script {continue}

602}}

dialog::mute_types (var.) Thedialog::mute_types variable is a list of “mute” item types, i.e., they don’t return
any value.

603set dialog::mute_types [list text static]

2.4.4 Elementary control item types

dialog:

:simple_type(flag)

flag items are simple checkboxes. They could be implemented usingdialog::checkbox,
but that wouldn’t take notice of the margins that are used.

604array set dialog::simple_type {flag {

605 lappend res -c $name $val

606〈smallflags〉 if {[info tclversion]>=8.0} then {lappend res -font 2}

607 lappend res $left $y $right [incr y 15]

608}}

dialog::complex_type

(multiflag)

multiflag items are a group of checkboxes, set in two columns and with the overall
item name as a heading. The format is

multiflag {subitems list}

where each element in the{subitems list} is the text to put next to one of the checkboxes.
The value of the item is the list of values of the individual checkboxes, so it is a list of
zeros and ones.

Vertical separation between atoms in themultiflag item is 3 pixels, whereas hor-
izontal separation is 10 pixels. Both these distances are as in the package installation
dialog.

609array set dialog::complex_type {multiflag {

610 eval [list lappend res] [dialog::lines_to_text\
[dialog::width_linebreak $name [expr {$right-$left}]] $left $right\

y]

613 set flag_list [lindex $type 1]

614 set y2 $y

615 set r [expr {($left+$right)/2 - 5}]

616 set l [expr {($left+$right)/2 + 5}]

617 for {set n 0} "\$n < ([llength $flag_list]+1)/2" {incr n} {

618 lappend res -c [lindex $flag_list $n] [lindex $val $n]

619 if {[info tclversion]>=8.0} then {lappend res -font 2}

45

620 lappend res $left [incr y 3] $r [incr y 15]

621 }

622 for {} "\$n < [llength $flag_list]" {incr n} {

623 lappend res -c [lindex $flag_list $n] [lindex $val $n]

624 if {[info tclversion]>=8.0} then {lappend res -font 2}

625 lappend res $l [incr y2 3] $right [incr y2 15]

626 }

627 while {[llength $help]<[llength $flag_list]} {lappend help ""}

628 eval [list lappend helpL] $help

629 unset help

630 set script [list dialog::valChanged $dial $page,$name]

631 append script { [lrange $res $count [incr count }

632 append script [expr {[llength $flag_list] - 1}] {]]}

633}}

This is also where a type for radio buttons should be defined, if there was one.

2.4.5 Menu item types

dialog::makeMenuItem

(proc)
The dialog::makeMenuItem procedure builds the dialog material corresponding to a
menu item. It has the syntax

dialog::makeMenuItem {mat-var} {script-var} {left} {right} {y-var}
{name} {item list} {value}

where the ‘-var’ arguments are names of variables in the caller’s local context and the
other arguments provide direct data. In the{mat-var} variable the dialog material for
the item is collected. The{script-var} variable stores the post-processing script for the
item, but currently this argument is not used (and it is unclear why it was added in the
first place). {left}, {right}, and the{y-var} variable give three sides of the bounding
rectangle for the item.{name} is the item name,{item list} the list of items for the menu,
and{value} the default value.

If the item name leaves less than 50 pixels for the menu then the menu is put on the
line below the item name. This value was chosen quite arbitrarily.

634proc dialog::makeMenuItem {mvar svar left right yvar name itemL value} {

635 upvar 1 $mvar M $yvar y

636 global dialog::indentsame dialog::indentnext

637 set nw [expr {[dialog::text_width $name]+1}]

638 set itemL [linsert $itemL 0 $value]

639 if {$nw<${dialog::indentsame}} then {set nw ${dialog::indentsame}}

640 if {$right - $left - $nw < 50} then {

641 lappend M -t $name $left $y [expr {$left+$nw}] [incr y 15]

642 incr y 5

643 lappend M -m $itemL [expr {$left+${dialog::indentnext}+1}]

644 } else {

645 incr y

646 lappend M -t $name $left $y [expr {$left+$nw}] [expr {$y+15}]

647 lappend M -m $itemL [expr {$left+$nw+14}]

648 }

46

649 metrics Metrics

650 set menuWidth 30

651 foreach item $itemL {

652 if {([set newWidth [dialog::text_width $item]] > $menuWidth)} {

653 set menuWidth $newWidth

654 }

655 }

656 set menuRight [expr {$menuWidth + $left + $nw + 53}]

657 if {$menuRight > ($right -2)} {

658 set menuRight [expr {$right - 2}]

659 }

660 lappend M $y $menuRight\
[incr y [expr {$Metrics(PopupButtonHeight) + 5}]]

661}

dialog:

:complex_type(menu)

Themenu types provide a popup menu of items to choose from. In this case the{type}
has the form

menu {item list}

where{item list} is the list of items in the menu.
662array set dialog::complex_type {menu {dialog::makeMenuItem res script\

$left $right y $name [lindex $type 1] $val}}

dialog::simple_type

(colour)

dialog:

:simple_type(mode)

Thecolour andmode simple types are variations on themenu type in which the item lists
areAlpha’s lists of colours and modes respectively.
665array set dialog::simple_type {colour {

666 global alpha::colors

667 dialog::makeMenuItem res script $left $right y $name\
${alpha::colors} $val

669} mode {

670 dialog::makeMenuItem res script $left $right y $name\
[linsert [mode::listAll] 0 "<none>"] $val

672}}

dialog::complex_type

(menuindex)

Themenuindex types are visually the same as themenu types, but the value is the index
into the list of the chosen item rather than the actual item. The{type} has the form

menuindex {item list}

Note how the post-processing script is used to convert the control value returned by
dialog to an index.
673array set dialog::complex_type {menuindex {

674 set script [list dialog::valChanged $dial $page,$name]

675 append script { [} [list lsearch -exact [lindex $type 1]]

676 append script { [lindex $res $count]]}

677 catch {lindex [lindex $type 1] $val} val

678 dialog::makeMenuItem res script $left $right y $name\
[lindex $type 1] $val

680}}

47

2.4.6 specialSet item types

For many preference types, thedialog command provides no convenient method of edit-
ing in the dialog, so in order to edit those values, the user is instead taken to an auxiliary
dialog which provide a more convenient presentation of the item value. Everything that
appears in the main dialog is the item name, a pretty-printed representation of the item
value (static text), and a button labelledSet.... The pretty-printed representation is gener-
ated by the proceduredialog::specialView::〈type〉. Clicking theSet... button calls
a procedure nameddialog::specialSet::〈type〉, which puts up a dialog in which the
user can edit the item value. ThesespecialSet procedures retrieve the values to edit
usingdialog::getFlag and store them after editing usingdialog::modified, both
of which are designed specifically to work with preferences.

That is the way things are in the old preferences dialogs. In the new dialogs, things are
handled differently—in particular there is no reason to assume that the values being edited
are preferences in the traditional sense—but as much work has been put into designing
the auxiliary editing dialogs it is desirable to reuse thespecialSet procedures as far
as possible. For that reason, the new dialogs code stores all values being edited in such
a way thatdialog::modified anddialog::getFlag will access them, even though
they are not preferences. This way, thespecialSet procedures will do the right thing
for the new dialogs even though they haven’t been designed for this.

dialog::makeSetItem

(proc)
Thedialog::makeSetItem procedure builds dialog material for an item with aSet...
button; more precisely the material for the item name and button. It does not make any-
thing for the actual item value, but returns the rectangle between the name and button so
that the caller may decide on whether the value should be put there. The syntax is

dialog::makeSetItem {mat-var} {script-var} {left} {right} {y-var} {name}
{button script} {condition}?

where the ‘-var’ arguments are names of variables in the caller’s local context and the
other arguments provide direct data. In the{mat-var} and {script-var} variables the
dialog material and post-processing script respectively for the item are collected.{left},
{right}, and the{y-var} variable give three sides of the bounding rectangle for the item.
{name} is the item name.{button script} is a script that will be evaluated when theSet...
button is pressed.{condition} is an expression used to decide whether the button script
should be handled by a callback fromdialog. It defaults to[info tclversion]>=8.0,
which means the script is handled by a callback unless we’re usingAlpha 7.

A tricky matter is that you have to embed the values ofdial, page, andname in the
{button script}. This not so hard if you build each command as a list; see the definition of
dialog::simple_type(binding) below for an example. See also [1] for a collection
of notes on how to build scripts on-the-fly like this.

The implementation assumes that{name} and the button fits on one a single line. The
extra 17 pixels in the width$bw of the button is to get the same width as used in traditional
dialogs. The rounded corners in the button use 5 of these pixels on each side.

681proc dialog::makeSetItem {Mvar Svar left right yvar name bscript\
{cond {[info tclversion]>=8.0}}} {

683 upvar 1 $Mvar M $Svar S $yvar y

48

684 global dialog::ellipsis dialog::indentsame

685 set nw [expr {[dialog::text_width $name]+1}]

686 set bw [expr {[dialog::text_width "Set${dialog::ellipsis}"] + 17}]

687 lappend M -t $name $left $y [expr {$left + $nw}] [expr {$y + 15}]

688 lappend M -b "Set${dialog::ellipsis}"

689 if $cond then {

690 lappend M -set [list $bscript +1]

691 set S {}

692 } else {

693 set S [list if {[lindex $res $count] == 1} then $bscript]

694 }

695 lappend M [expr {$right - $bw}] $y $right [expr {$y + 15}]

696 set nw [expr {$nw+13}]

697 if {$nw<${dialog::indentsame}} then {set nw ${dialog::indentsame}}

698 list [expr {$left + $nw}] $y [expr {$right - $bw - 13}] [incr y 15]

699}

dialog::makeStaticValue

(proc)
Thedialog::makeStaticValue procedure builds the dialog material for a static value.
The syntax is

dialog::makeStaticValue {left} {right} {y-var} {value} {suboptions}
{abbr-ratio}? {rect}?

and the returned value is the dialog material.{value} is the text to show.{rect} is, if it
is provided, a rectangle (assumed to be one line tall) in which the procedure tries to fit
the{value}. If this doesn’t work then the value is instead put below all previous dialog
material.{left} and{right} are taken as the left and right sides of the bounding rectangle
in which dialog material may be put. The{y-var} variable in the caller’s local context is
assumed to be thebottomof the bounding rectangle of all previous dialog material, and it
is incremented to accommodate for the returned-t item.

The{abbr-ratio} argument controls how a{value} that is to wide to fit on one line
should be abbreviated. The value is a real number that gives the fraction of the abbreviated
text that should be before the point of abbreviation.0 means remove text at the beginning,
1 means remove at the end, and the default0.33 leaves twice as much after the point of
abbreviation as before it.

The {suboptions} argument, finally, is used for supplying extra suboptions (most
likely -dnd) to the-t option. These are currently only inserted forAlphatk.
700proc dialog::makeStaticValue\

{left right yvar value subopt {ratio 0.33} {rect {0 0 0 0}}} {

702 global dialog::indentnext alpha::platform

703 upvar 1 $yvar y

704 set vw [expr {[dialog::text_width $value] + 1}]

705 if {[lindex $rect 2] - [lindex $rect 0] >= $vw} then {

706 set res [list -t $value]

707 if {${alpha::platform} != "alpha"} then {

708 set res [concat $res $subopt]

709 }

710 if {[lindex $rect 3] > $y} then {set y [lindex $rect 3]}

711 concat $res $rect

49

712 } else {

713 set res [list -t]

714 lappend res [dialog::width_abbrev $value\
[expr {$right - $left - ${dialog::indentnext} - 1}] $ratio]

716 if {${alpha::platform} != "alpha"} then {

717 set res [concat $res $subopt]

718 }

719 incr y

720 lappend res [expr {$left + ${dialog::indentnext}}] $y $right\
[incr y 15]

722 }

723}

dialog::simple_type

(binding)

dialog::simple_type

(menubinding)

binding andmenubinding items constitute a straightforward application of thedialog:
:makeSetItem anddialog::makeStaticValue procedures.
724array set dialog::simple_type {binding {

725 set R [dialog::makeSetItem res script $left $right y $name [list\
dialog::specialSet::binding [list $dial "$page,$name" binding]]]

727 set vv [dialog::specialView::binding $val]

728 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $vv {} 0.33 $R]

730} menubinding {

731 set R [dialog::makeSetItem res script $left $right\
y $name [list dialog::specialSet::menubinding\

[list $dial "$page,$name" menubinding]]]

733 set vv [dialog::specialView::menubinding $val]

734 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $vv {} 0.33 $R]

736}}

dialog:

:simple_type(file)

dialog::simple_type

(folder)

dialog::simple_type

(io-file)

dialog::simple_type(url)

Thefile, folder, andurl item types allow the specification of existing files, folders,
and URLs.
737array set dialog::simple_type {file {

738 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::file [list $dial "$page,$name" file]]]

740 eval lappend res [dialog::makeStaticValue $left $right y\
$val [list "-drop" [dialog::makeDropArgList \

[dialog::makeItemInfo $dial "$page,$name" $type]]] 0.33 $R]

744} folder {

745 set R [dialog::makeSetItem res script $left $right y $name [list\
dialog::specialSet::folder [list $dial "$page,$name" folder]]]

747 eval lappend res [dialog::makeStaticValue $left $right y\
$val [list "-drop" [dialog::makeDropArgList \

[dialog::makeItemInfo $dial "$page,$name" folder]]] 0.33 $R]

751} io-file {

752 set R [dialog::makeSetItem res script $left $right y $name [list\
dialog::specialSet::io-file [list $dial "$page,$name" io-file]]]

754 eval lappend res [dialog::makeStaticValue $left $right y\
$val [list "-drop" [dialog::makeDropArgList \

[dialog::makeItemInfo $dial "$page,$name" $type]]] 0.33 $R]

50

758} url {

759 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::url [list $dial "$page,$name" url]]]

761 eval lappend res [dialog::makeStaticValue $left $right y\
$val [list "-drop" [dialog::makeDropArgList \

[dialog::makeItemInfo $dial "$page,$name" $type]]] 0.33 $R]

765}\

[If this had been a.tcl file then I wouldn’t have been able to put a comment here,
since this is technically inside a list. The.dtx format allows you to put a comment
between any two rows of the program, though.]

dialog:

:simple_type(date)

Thedate item type specifies a time (date and time of day). The format is as returned by
clock scan.

766 date {

767 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::date [list $dial "$page,$name" date]]]

769 eval lappend res [dialog::makeStaticValue $left $right y\
[clock format $val] {} 1 $R]

772}}

dialog::simple_type

(appspec)

Theappspec item type stores references to applications, in a manner similar to that used
for preferences whose names end in ‘Sig’. The main difference between appspecs and
sigs is that the former may be file names of applications, so that also applications which
do not have unique sigs can be specified.

773array set dialog::simple_type {appspec {

774 if {${alpha::platform} == "alpha" &&\
[regexp {^’(....)’$} $val "" sig]} then {

776 if {[catch {nameFromAppl $sig} vv]} then {

777 set vv "Unknown application with sig ’$sig’"

778 }

779 } else {

780 set vv $val

781 }

782 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::set_appspec $dial $page $name "Select $name"]]

784 eval lappend res\
[dialog::makeStaticValue $left $right y $vv {} 0.33 $R]

786}}

dialog::set_appspec

(proc)
Thedialog::set_appspec procedure is a modernised version ofdialog::specialSet:
:Sig (or perhaps it is ratherdialog::_findApp, as that does everything that the user
sees). The syntax is

dialog::set_appspec {page} {name} {prompt}

where{page} is the page of the dialog item,{name} is the item name, and{prompt} the
prompt for the dialog. The procedure reads the old value from thevalueA array in the
caller’s local context and stores the new value there as well.

51

The main improvement indialog::set_appspec as compared todialog::_findApp
is that the former doesn’t panic when the desktop database wouldn’t select the same file
as the user did, but instead calmly asks whether it should return the sig or the path.

787proc dialog::set_appspec {dial page name prompt {dialogItemId ""}} {

788 global alpha::platform

789 set val [dialog::valGet $dial $page,$name]

790 if {${alpha::platform} == "alpha" &&\
[regexp {^’(....)’$} $val "" sig]} then {

792 catch {nameFromAppl $sig} val

793 }

794 if {[catch {getfile $prompt $val} val]} then {return ""}

795 if {${alpha::platform} != "alpha"} then {

796 dialog::modified [list $dial $page,$name file] $val $dialogItemId

797 } else {

798 set sig [file::getSig $val]

799 catch {nameFromAppl $sig} app

800 if {![string compare $app $val]} then {

801 dialog::valChanged $dial $page,$name ’$sig’

In Alpha 7 there is nodialog hook registered, but inAlpha 8 there probably is and in
this case the abovehook::callAll has the effect that the value shown in the dialog is
updated.

802 } else {

803 catch {

804 if {[dialog::yesno -y "Path" -n "Sig" -c "Application sig\
’$sig’ is mapped to ’$app’, not ’$val’. Which should I\

use?"]} then {

807 dialog::valChanged $dial $page,$name $val

808 } else {

809 dialog::valChanged $dial $page,$name ’$sig’

810 }

811 }

812 }

813 }

814}

dialog::simple_type

(searchpath)

Thesearchpath type is a list of folders. TheAlpha implementation is as for most other
types withSet... buttons, butAlphatkreplaces that with an in-dialog listpick list to stop
it from growing.

815if {${alpha::platform} == "alpha"} then {

816 array set dialog::simple_type {searchpath {

817 set R [dialog::makeSetItem res script $left $right y\
$name [list dialog::specialSet::searchpath\
[list $dial "$page,$name" searchpath]] 0]

819 if {![llength $val]} then {

820 eval [list lappend res] [dialog::makeStaticValue $left $right\
y "No search paths currently set." {} 1 $R]

823 } else {

824 foreach path $val {

52

825 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $path {}]

827 }

828 }

829 }}

830} else {

831 array set dialog::simple_type {searchpath {

832 set itemInfo [dialog::makeItemInfo $dial "$page,$name" searchpath]

833 dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::searchpath $itemInfo]

835 lappend res "-l" $val 3

836 set script {incr count}

837 lappend res "-drop" [dialog::makeDropArgList $itemInfo]

838 lappend res [expr {$left + ${dialog::indentnext}}] [incr y]\
$right [incr y 51]

840 }}

841}

2.4.7 Listpick item types

dialog::edit_subset

(proc)
Thedialog::edit_subset procedure is mainly a wrapper around thelistpick com-
mand that is somewhat simpler to use in post-processing and button action scripts. The
syntax is

dialog::edit_subset {full set} {page} {name} {prompt}

where{full set} is the list to build the listpick from,{page} is the page of the dialog item,
{name} is the item name, and{prompt} the prompt. The procedure reads the old value
from thevalueA array in the caller’s local context and stores the new value there as well.

842proc dialog::edit_subset {setL dial page name prompt} {

843 if {![catch {

844 listpick -p $prompt -l -L [dialog::valGet $dial $page,$name] $setL

845 } res]} then {

846 set val [list]

847 catch {

848 foreach item $res {lappend val $item}

849 dialog::valChanged $dial $page,$name $val

850 }

851 }

852}

The reason for the somewhat odd way of storing the selected subset is thatlistpick
doesn’t quote its result properly: if some item contains a mismatched brace or backslash
thenres needs not be a proper list. It is furthermore a rather ugly list (with braces around
every item) and hence it is reconstructed to look more like a sequence of words.

dialog::complex_type

(subset)

Thesubset types provide the ability to select a subset of a given set (or technically rather
a sublist of a given list, which is slightly more general) using alistpick dialog. The
type format is

53

subset {set}

where{set} is the list of items in the set. The value is the list of items in the selected
subset.

853array set dialog::complex_type {subset {

854 dialog::makeSetItem res script $left $right y $name\
[list dialog::edit_subset [lindex $type 1] $dial $page $name\

"Edit subset"]

857 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $val {} 1]

859}}

dialog::simple_type

(modeset)

Themodeset item type is a special case of thesubset types where the universe is the
list of modes.

860array set dialog::simple_type {modeset {

861 dialog::makeSetItem res script $left $right y $name\
[list dialog::edit_subset [mode::listAll] $dial $page $name\

"Select modes"]

864 eval [list lappend res]\
[dialog::makeStaticValue $left $right y $val {} 1]

866}}

2.4.8 Miscellanea

dialog::complex_type

(global)

A global type has the structure

global {preference name}

This essentially causes the item to have the same type as the{preference name} prefer-
ence.

867array set dialog::complex_type {prefItemType {

868 set type [dialog::prefItemType [lindex $type 1]]

869 continue

870}}

dialog::simple_type

(thepage)

An thepage item simply reports back the name of the current page. The item is invisible
and the initial value is ignored.

871array set dialog::simple_type {thepage {

872 set script [list dialog::valChanged $dial $page,$name]

873 append script { $currentpage

874 continue

875 }

876 set visible 0

877}}

dialog::hide_item (proc)
dialog::show_item (proc)

dialog::complex_type

(hidden)

Sometimes you might not want to show all the items in a dialog, but only show them if
the user clicks an “Advanced settings” (or something) button. This can be accomplished
using thehide_item andshow_item procedures, which have the syntaxes

54

dialog::hide_item {page} {name} {type-arr}?

dialog::show_item {page} {name} {type-arr}?

{page} is the name of the page on which the item can be found and{name} is the name
on that page of the item. The procedures work by modifying the entry〈page〉,〈name〉 of
a variable in the caller’s local context; this entry is assumed to be where the type of the
item is stored. The{type-arr} argument is the name of this array: it defaults totypeA
which is correct whenhide_item andshow_item are called from within themake and
make_paged procedures.

878proc dialog::hide_item {page item {typevar typeA}} {

879 upvar 1 $typevar typeA

880 if {[lindex $typeA($page,$item) 0]!="hidden"} then {

881 set typeA($page,$item) [linsert $typeA($page,$item) 0 hidden]

882 }

883}

884proc dialog::show_item {page item {typevar typeA}} {

885 upvar 1 $typevar typeA

886 if {[lindex $typeA($page,$item) 0]=="hidden"} then {

887 set typeA($page,$item) [lreplace $typeA($page,$item) 0 0]

888 }

889}

To make an item hidden by default, you simply prepend ahidden to the actual type when
you create it. This above works because of how thehidden item type is defined. Items
of this type are essentially ignored when the dialog contents for the user: there is nothing
shown and nothing the user does will change the item value. Furthermore the format of
this type is

hidden 〈type when visible〉

e.g.hidden menu {good better best}. Thus if you remove thehidden, which is
whatshow_item does, the item type will become the〈type when visible〉 and that can be
just about anything.

890array set dialog::complex_type {hidden {

891 set script {continue}

892 set visible 0

893}}

One item type,geometry has a peculiarity in that it can be set after the dialog has fin-
ished. This means it has a second list element which stores information about what actual
underlying preference is being manipulated, so that it can later be set.

894array set dialog::complex_type {geometry {

895 set R [dialog::makeSetItem res script $left $right y $name\
[list dialog::specialSet::asyncGeometry [lindex $type 1] \

[list $dial "$page,$name" geometry]]]

898 set vv [dialog::specialView::geometry $val]

899 eval lappend res\
[dialog::makeStaticValue $left $right y $vv {} 0.33 $R]

901}}

55

dialog::complex_type

(discretionary)

Thediscretionary type is ahackthat modifies “private” variables in thehandle pro-
cedure to achieve its goal, but it is a rather cute hack. The idea is that items of this type
behave as places where one can put a “dialog page break” if the current dialog page is
already pretty full (the installation dialog does this automatically and systematically).

The syntax for adiscretionary item type is

discretionary {y-limit} {pre-break text}? {post-break text}? {no-break
text}?

{y-limit} is an integer which is used to decide whether a page break should be made at
this point or not; if{y-limit} is greater than$y then there will be a break, otherwise it will
not. The{pre-break text}, {post-break text}, and{no-break text} are strings that may
be inserted into the dialog as if they weretext items, but it depends on whether a page
break is taken at this item or not. If there is no break, then the{no-break text} will be put
in the dialog. If there is a break, then the{pre-break text} will be put last on the current
page and then the{post-break text} will be put first on the new page. If any of these
texts is an empty string or is not at all specified then there will never be a corresponding
“text-item”.

Since there is never a control value returned for this item, the post-processing script
is alwayscontinue. Nor is there ever any help text associated with it. Everything else
depends on the results of various tests. The foremost of these is of course that which
decides if there should be a page break at this item.

902array set dialog::complex_type {discretionary {

903 set script {continue}

904 unset help

905 if {$y<=[lindex $type 1]} then {

The simple case is when there isn’t a page break. In this case, adiscretionary item
behaves as atext or hidden item.

906 if {[string length [lindex $type 4]]} then {

907 eval [list lappend res]\
[dialog::lines_to_text [dialog::width_linebreak\

[lindex $type 4] [expr {$right-$left}]] $left $right y]

911 } else {

912 set visible 0

913 }

914 } else {

The tricky case is when there should be a page break. The first step there makes sure that
this is a multipage dialog.

915 if {!$multipage} then {

916 set pagemenu [list $currentpage $page]

917 set res [linsert $res 0 -n $page]

918 set multipage 1

919 }

The second step is to check if there is any{pre-break text} to insert.

920 if {[string length [lindex $type 2]]} then {

56

921 eval [list lappend res]\
[dialog::lines_to_text [dialog::width_linebreak\

[lindex $type 2] [expr {$right-$left}]] $left $right y]

925 incr y 7

926 }

The third step is where the old page is ended and a new one started. The difficult bit here
is the name of the new page, which is formed by looking at the name of the previous page.
If that is equal to$page then the new name will be"$page (2)", otherwise the previous
page should have a name on that form and the new page name if formed by incrementing
the number.

927 if {$y>$ymax} then {set ymax $y}

928 set y $topEdge

929 if {[string compare $page [lindex $pagemenu end]]} then {

930 regexp {\(([0-9]+)\)$} [lindex $pagemenu end] foo T

931 set T "$page ([incr T])"

932 } else {

933 set T "$page (2)"

934 }

935 lappend res -n $T

936 lappend pagemenu $T

The fourth and final step takes care of the{post-break text}.

937 if {[string length [lindex $type 3]]} then {

938 eval [list lappend res]\
[dialog::lines_to_text [dialog::width_linebreak\

[lindex $type 3] [expr {$right-$left}]] $left $right y]

942 } else {

943 set visible 0

944 }

Now it only remains to end the initialif and registerdiscretionary as a mute type.

945 }

946}}

947lappend dialog::mute_types discretionary

2.5 Groups of flags

It has been pointed out that themultiflag dialog item isn’t very satisfactory as a tool
for the many groups of checkboxes that can be found in the old preferences dialogs.
One problem is that the checkboxes do not have an individual identity when changes
are recorded. Another problem is that the facilities for modifying the layout is limited.
Finally the way in which AlphaX truncates overly long checkbox titles generally make
them hard to read, so the entries have to be improved anyway.

dialog::complex_type

(flaggroup)

The flaggroup item type could be described as a ‘metaitem’. The user sees it as a
composite group of checkboxes under a common heading, just as is the case with the
multiflag items. The application programmer instead sees that aflaggroup neither in-
terprets its value nor returns anything. The checkboxes that the user sees are instead con-

57

nected to other items (usually of typehidden flag) and the purpose of theflaggroup
is to coordinate the layout of these other items.

The syntax of aflaggroup type is

flaggroup {subitems}
(
{option} {value}

)∗
where{subitems} is the list of names of the flags to group. These must all be on the same
dialog page as theflaggroup item, so that e.g.dialog::edit_group can make use of
this kind of item. The{option} {value} pairs are used to specify layout parameters for
the item.

Layout There are two basic layouts offered for this item type—columns andparagraph—
the choice between which is controlled by the-style option. The default isparagraph.

In theparagraph style, items are placed line by line, as many as will fit on each. The
space between items may stretch to justify the margins, but the exact manner depends on
the-justification option, which is eitherleft (the default, placing all excess space
after the last item) orfullwidth (distibuting it evenly among the spaces between items).

In thecolumns style, the items are placed in columns: top to bottom of first, then top
to bottom in second, and so on. Items normally take up one “column line”, but if the title
is too long then more than one line can be allocated for them. The width of the columns
depend on how many there are. The number of columns is controlled using the-columns
option, which defaults to 1. If the-columns option is specified, but the-style option is
not, then thecolumns style is inferred.

A -font option (for the checkbox titles) is planned, but awaits a cleanup of font name
syntax. For the time being, the “small system font” is used throughout.

948array set dialog::complex_type {flaggroup {

949 dialog::build_flaggroup res script $dial $type $page $name y $left\
$right helpL helpA

951 unset help

952}}

953lunion dialog::mute_types flaggroup

dialog::build_flaggroup

(proc)
The build_flaggroup procedure is what actually handles setting up a flaggroup; it
seemed a bit too complex to keep as a naked script. The call syntax is

dialog::build_flaggroup {material-var} {script-var} {dialog-id} {type}
{page} {name} {ypos-var} {left} {right} {help-list-var} {help-arr-var}

i.e., it simply imports variables and values from the context provided for a construction
script. The{help-list-var} and{help-arr-var} deserve mentioning; like the other-var
argument, they are names of things in the local context of the caller. More precisely, they
should be the names of a list in which the help texts of controls are collected, and an array
from which the help texts of items are taken respectively. Unlike the other-var arguments,
these variables are currently (2003/10/23) not part of the documented interface, but they
should be.

954proc dialog::build_flaggroup {Mvar scriptvar dial type page name yvar\
left right helpLvar helpAvar} {

58

956 upvar 1 $Mvar M $scriptvar script $yvar y $helpLvar helpL $helpAvar\
helpA

958 array set Opt {-justification left}

959 array set Opt [lrange $type 2 end]

960 if {![info exists Opt(-style)]} then {

961 if {[info exists Opt(-columns)]} then {

962 set Opt(-style) columns

963 } else {

964 set Opt(-style) paragraph

965 }

966 } elseif {![info exists Opt(-columns)]} {

967 set Opt(-columns) 1

968 }

The following establishes the metrics used for these items. ThegetThemeMetrics call
can be used to supply more suitable values than the defaults given here. The spacing
values are (with the exception of TightCheckBoxSpacingY and CheckBoxSeparationX
that haven’t got official counterparts) taken fromAquaMetrics.plist [?], where they
don’t have individual names.

969 dialog::metrics Metrics

970 set measurefont -1

Begin by inserting the overall title.

971 eval [list lappend M] [dialog::lines_to_text\
[dialog::width_linebreak $name [expr {$right-$left}]] $left $right\

y]

974 incr y $Metrics(StaticTextSpacingY)

Then make a list of the subitems, detailing name and default value. There is also an
empty item for use by the code below that sets up the layout; it will contain the rele-
vant size (in pixels) of the item. This loop also constructs the post-processing script for
theflaggroup; that should be just like the concatenation of post-processing scripts for
each flag separately, except that one must explicitly incrementcount to point to the next
checkbox. This implies that the code below may not append the checkboxes toM in an
different order than that used insubitemL. As a consequence, it is safe to also append
the help texts tohelpL at this point.

975 set subitemL [list]

976 set script ""

977 foreach sname [lindex $type 1] {

978 set item [list $sname]

979 lappend item\
[regexp -nocase {1|on|yes} [dialog::valGet $dial $page,$sname]]

981 lappend item {}

982 lappend subitemL $item

983 if {[info exists helpA($page,$sname)]} then {

984 lappend helpL $helpA($page,$sname)

985 } else {

986 lappend helpL {}

987 }

59

988 append script [list dialog::valChanged $dial $page,$sname]\
{ [lindex $res $count]} \n {incr count} \n

990 }

991 append script {continue}

Finally build the dialog material in the selected style. The first case is thecolumns style,
where the size of an item is its height.

992 switch -- $Opt(-style) columns {

993 set colsep [expr\
{$Metrics(StaticTextSpacingX) + $Metrics(CheckBoxSpacingX)}]

995 set colwidth\
[expr {($right-$left+$colsep) / $Opt(-columns) - $colsep}]

997 set linewidth [expr {$colwidth - $Metrics(CheckBoxWidth)}]

998 set sumheight 0

999 for {set n 0} {$n < [llength $subitemL]} {incr n} {

1000 set bounds [getTextDimensions -font $measurefont -width\
$linewidth [lindex $subitemL $n 0]]

1002 set height [expr {-[lindex $bounds 1] + [lindex $bounds 3]}]

1003 if {$height < $Metrics(CheckBoxHeight)} then\
{set height $Metrics(CheckBoxHeight)}

1005 lset subitemL $n 2 $height

1006 incr sumheight $height

1007 incr sumheight $Metrics(TightCheckBoxSpacingY)

1008 }

1009 set goalheight [expr {($sumheight-1)/$Opt(-columns) + 1}]

1010 set sumheight $goalheight

1011 set colno 0

1012 set ymax $y

1013 set coly $y

1014 foreach item $subitemL {

1015 if {$sumheight >= $goalheight && $colno<$Opt(-columns)} then {

1016 if {$coly>$ymax} then {set ymax $coly}

1017 set coly $y

1018 set colleft [expr {$left + round(\
double($right+$colsep-$left)*$colno/$Opt(-columns))}]

1021 incr colno

1022 set colright [expr {$left - $colsep + round(\
double($right+$colsep-$left)*$colno/$Opt(-columns))}]

1025 set sumheight 0

1026 } else {

1027 incr coly $Metrics(TightCheckBoxSpacingY)

1028 }

1029 lappend M -c [lindex $item 0] [lindex $item 1] -font 2\
$colleft $coly $colright [incr coly [lindex $item 2]]

1031 incr sumheight [lindex $item 2]

1032 incr sumheight $Metrics(TightCheckBoxSpacingY)

1033 }

1034 if {$coly>$ymax} then {set y $coly} else {set y $ymax}

1035 } paragraph {

60

The second case is theparagraph style, where the size of an item is its width.

1036 for {set n 0} {$n < [llength $subitemL]} {incr n} {

1037 set bounds [getTextDimensions -font $measurefont\
[lindex $subitemL $n 0]]

1039 lset subitemL $n 2 [expr {[lindex $bounds 2] +\
$Metrics(CheckBoxSeparationX) + $Metrics(CheckBoxWidth)}]

1041 }

1042 lappend subitemL [list {} {} [expr {$right - $left}]]

The extra item that was appended tosubitemL forces the loop below to “eject” (append
to M material for) the last line of checkboxes at the last iteration.

1043 set colsep [expr\
{$Metrics(StaticTextSpacingX) + $Metrics(CheckBoxSpacingX)}]

1045 set avail [expr {$right - $left}]

1046 set lineL [list]

1047 foreach item $subitemL {

This is the loop over items in which lines are constructed. On most iterations, the new
item is just appended tolineL.

1048 if {$avail >= [lindex $item 2]} then {

1049 lappend lineL $item

1050 incr avail [expr {-([lindex $item 2]+$colsep)}]

1051 continue

1052 }

When we get this far, items for one line is inlineL and that line will now be appended
to M. The first item on the next line is initem.

1053 set x $left

1054 set y2 [expr {$y + $Metrics(CheckBoxHeight)}]

1055 set spaces [expr {[llength $lineL] - 1}]

1056 if {$spaces==0} then {

1057 lappend M -c [lindex $lineL 0 0] [lindex $lineL 0 1] -font\
2 $left $y $right $y2

1059 } else {

1060 set avail [expr {double($avail+$colsep) / $spaces}]

1061 for {set n 0} {$n<[llength $lineL]} {incr n} {

1062 lappend M -c [lindex $lineL $n 0] [lindex $lineL $n 1]\
-font 2 $x $y [incr x [lindex $lineL $n 2]] $y2

1064 set x [expr {$x + $colsep + ($Opt(-justification) ne\
"fullwidth" ? 0 :

1066 round($avail*($n+1)) - round($avail*$n))}]

1067 }

1068 }

1069 set y [expr {$y2 + $Metrics(CheckBoxSpacingY)}]

1070 set avail [expr {$right - $left}]

1071 if {$avail >= [lindex $item 2]} then {

1072 set lineL [list $item]

1073 incr avail [expr {-([lindex $item 2]+$colsep)}]

1074 } else {

61

In this case, the current item title was too long to fit on a single line. Hence the height of
its bounding box is adjusted to fit the whole title.

1075 set bounds [getTextDimensions -font $measurefont\
-width [expr {$avail - $Metrics(CheckBoxWidth)}]\

[lindex $item 0]]

1078 set y2 [expr {$y + [lindex $bounds 3] - [lindex $bounds 1]}]

1080 lappend M -c [lindex $item 0] [lindex $item 1] -font 2\
$left $y $right $y2

1082 set y [expr {$y2 + $Metrics(CheckBoxSpacingY)}]

1083 set lineL [list]

1084 }

1085 }

1086 set y $y2

1087 }

1088}

2.6 Main dialogs interface

dialog::make (proc) The most basic procedure for making a generic dialog has the syntax

dialog::make 〈option〉∗ {page}+

where each{page} is a list with the structure

{page name} {item}∗

and each{item} in turn is a list with the structure

{type} {name} {value} {help}?

An 〈option〉 is one of

-ok {OK button title}
-cancel {cancel button title}
-title {dialog window title}
-defaultpage {name of default page}
-hidepages {list of pages to hide}
-addbuttons {button list}
-width {dialog window width}
-alpha7pagelimit {number of pages}
-debug {debug level}

where the{button list} has the structure(
{name} {help} {script}

)+

Here each triple{name} {help} {script} describes one additional button.{name} is the
button name, i.e., the text that will be shown on the button. The button will be made wide
enough to contain the whole{name}. {help} is the help text for the button.{script} is a
script that is evaluated when the button is clicked.

1089proc dialog::make {args} {

62

There are a number of local variables inmake that must be explained, since the button
scripts passed by the caller may need to access these variables. First there are a couple of
arrays in which the page descriptions are stored.

pageA The index into this array is the name of a page. An entry contains the list of names
of items on that page.

typeA The index into this array has the form〈page〉,〈item〉, where〈page〉 is the name
of a page and〈item〉 is the name of an item on that page. An entry contains the type
of that item.

helpA The index has the same form as in thetypeA array. An entry contains the help
text for that entry, but an item needs not have an entry in this array (it can be left
unset).

There are a couple of additional scalar variables that are of interest.

retCode, retVal When theretCode variable is set, the dialog is logically closed and
the procedure returns. If the variable is set to0 thenmake executes a normal return
and the returned value will be the list of item values. If the variable is set to anything
else then that will used for the-code option ofreturn and the returned value will
be taken from theretVal variable, which must then be initialised.

dial This contains the reference string to use withvalGet, valSet, and friends when
accessing the values of items in the dialog.

currentpage This contains the name of the current page in the dialog.

pages This is a list of pages and items to show in the dialog. It is similar to the result
of array get pageA, but the order of pages is as specified in the call and hidden
pages are not included.

opts(-addbuttons) This is {button list} specified by the caller. Button scripts can
modify this list to change the text on their button.

state This is initialized to0 before the first time the dialog is shown and then the pro-
cedure leaves it alone. Button scripts may change it to keep track of what “state”
(mostly: which items/pages are currently hidden) the dialog is in.

splitstate This variable is used to keep track of the state when a dialog is split to avoid
overstressingAlpha 7’s dialog command. It is by defaultoff (dialog splitting is
disabled), but when dialog splitting is enabled (the code is run onAlpha 7and the
option-alpha7pagelimit was passed todialog::make) then it is in one of the
statesbelow (the dialog has too few pages to be split),menu (the pages menu is
shown, but not any page items), andpage (an individual page is shown). One
usually does not need to worry about this variable, but button scripts are allowed to
change it (except to or from theoff value) if that is appropriate.

optionL The list of additional options to pass todialog::handle.

63

The first part of the procedure is all about interpreting the arguments.

1090 set opts(-ok) OK

1091 set opts(-cancel) Cancel

1092 set opts(-title) ""

1093 set opts(-width) 400

1094 set opts(-debug) 0

1095 set opts(-pager) "popupmenu"

1096 set opts(-hidepages) [list]

1097 getOpts {-title -defaultpage -ok -cancel -addbuttons -width -debug\
-hidepages -alpha7pagelimit -pager}

1099 set dial [dialog::create]

1100 set pages [list]

1101 foreach pagearg $args {

1102 set page [lindex $pagearg 0]

1103 set pageA($page) [list]

1104 foreach item [lrange $pagearg 1 end] {

1105 set name [lindex $item 1]

1106 set typeA($page,$name) [lindex $item 0]

1107 dialog::valSet $dial $page,$name [lindex $item 2]

1108 if {[llength $item]>3} then {

1109 set helpA($page,$name) [lindex $item 3]

1110 }

1111 lappend pageA($page) $name

1112 }

1113 if {[lsearch -exact $opts(-hidepages) $page]<0} then {

1114 lappend pages $page $pageA($page)

1115 }

1116 }

1117 if {[info exists opts(-defaultpage)]} then {

1118 set currentpage $opts(-defaultpage)

1119 } else {

1120 set currentpage [lindex $pages 0]

1121 }

The next few commands are for handling splitting of dialogs.

1122 if {![info exists opts(-alpha7pagelimit)] || [info tclversion]>=8.0}\
then {

1124 set splitstate off

1125 } elseif {[llength $pages]/2 <= $opts(-alpha7pagelimit)} then {

1126 set splitstate below

1127 } else {

1128 set splitstate menu

1129 }

1130 set view_button [list [list {View dialog page}\
{Click here to see the items on this page.} {set splitstate page}]]

1133 set back_button\
[list [list "Back" {Click here to go back to the pages menu.}\

{set splitstate menu}] first right]

64

The two last items were mainly for convenience (they reduce the lengths of calls to
dialog::handle), as are the next two.

1136 set optionL [list -width $opts(-width) -title $opts(-title) -pager\
$opts(-pager)]

1138 set main_buttons \
1139 [list $opts(-ok) "Click here to use the current settings."\

{set retCode 0}]

1141 if {$opts(-cancel) ne ""} {

1142 lappend main_buttons $opts(-cancel) "Click here to\
discard any changes you’ve made to the settings."\

{set retCode 1; set retVal "cancel"}

1145 }

1146 set main_buttons [list $main_buttons first right]

The second part is the loop which lets the user edit the settings.

1147 set state 0

1148 while {![info exists retCode]} {

Thisswitch handles the different states that can occur when a dialog is split up.

1149 switch -exact -- $splitstate off - below {

1150 if {[info exists opts(-addbuttons)]} then {

1151 set script\
[dialog::handle $pages typeA $dial helpA currentpage\

$optionL [list $opts(-addbuttons)] $main_buttons]

1154 } else {

1155 set script [dialog::handle $pages typeA $dial helpA\
currentpage $optionL $main_buttons]

1157 }

1158 } menu {

1159 set altpages [list]

1160 set n 1

1161 foreach item $pages {

1162 if {$n} then {

1163 lappend altpages $item

1164 set n 0

1165 } else {

1166 lappend altpages {}

1167 set n 1

1168 }

1169 }

1170 set script [dialog::handle $altpages typeA $dial helpA\
currentpage $optionL $view_button $main_buttons]

1172 } page {

1173 set altpages [list $currentpage $pageA($currentpage)]

1174 if {[info exists opts(-addbuttons)]} then {

1175 set script\
[dialog::handle $altpages typeA $dial helpA currentpage\

$optionL [list $opts(-addbuttons)] $back_button]

1178 } else {

65

1179 set script [dialog::handle $altpages typeA $dial helpA\
currentpage $optionL $back_button]

1181 }

1182 }

The rest of this loop is simply for gracefully handling errors that occur when button scripts
are evaluated.

1183 if {[set errcode [catch $script err]]} then {

1184 if {$errcode == 1} {

1185 global errorInfo

1186 set errinfo $errorInfo

1187 } else {

1188 # Not clear how best to handle error-codes for

1189 # break, return, etc., but we don’t want to

1190 # report ’errorInfo’ which is irrelevant.

1191 set errinfo $errcode

1192 }

1193 if {$opts(-debug)} then {

1194 tclLog "Error in button script ’$script’"

1195 tclLog $err

1196〈∗log1〉
1197 terminal::print_word emptyline "Error (in button script):\

$err" newline

1199 terminal::print_word newline "Script:" newline

1200 terminal::print_block newline " " [split $script \n] newline

1202 terminal::print_word newline "Error info:" newline

1203 terminal::print_block newline " " [split $errinfo \n]\
emptyline

1205〈/log1〉
1206 }

1207 dialog::cleanup $dial

1208 return -code 1 -errorinfo $errinfo "Error ’$err’ when\
evaluating button script."

1210 }

1211 }

The third part constructs the result to return (at normal returns). It should be observed
that it usesargs (rather than the contents of e.g.pages) to get the values in the original
order. This ensures that the caller can interpret the flat list returned.

1212 if {$retCode==0} then {

1213 set retVal [list]

1214 global dialog::mute_types

1215 foreach pagearg $args {

1216 set page [lindex $pagearg 0]

1217 foreach item [lrange $pagearg 1 end] {

1218 # Strip off leading ’hidden’ if present

1219 set complete_type [lindex $item 0]

1220 if {[lindex $complete_type 0] == "hidden"} {

1221 set type [lindex $complete_type 1]

1222 } else {

66

1223 set type [lindex $complete_type 0]

1224 }

1225 if {[lsearch -exact ${dialog::mute_types} $type] < 0}\
then {lappend retVal\

[dialog::valGet $dial "$page,[lindex $item 1]"]}

1228 }

1229 }

1230 }

1231 dialog::cleanup $dial

1232 return -code $retCode $retVal

1233}

dialog::make_paged (proc) Themake_paged procedure is similar to themake procedure, but its argument argument
structure is slightly different, its return value is very different, and it does have a couple of
features thatmake doesn’t (such as adding or removing pages or items in a dialog). The
basic syntax is the same

dialog::make_paged 〈option〉∗ {page}+

but here each{page} is a list with the structure

{page name} {key–value list} {item list}

and each{item list} in turn is a list of items, each of with are themselves lists and have
the structure

{key} {type} {name} {help}?

The return value is a list with the structure(
{page name} {key–value list}

)+

and in both cases the{key–value list} has the format of a list returned byarray get,
i.e., (

{key} {value}
)∗

Rather than (as withmake) including the value of an item in its{item} list, that list
contains a{key} which references a value stored in the{key–value list} of that page. The
idea with this is that the input and output formats for values should be the same, so that the
caller has little overhead in converting from one data format to another. The{key–value
list} format is furthermore flexible in that is completely insensitive to changes that add,
remove, or rearrange items within a page. Extra key–value pairs in the input are ignored
and an empty string is substituted as value for pairs that are missing.

The〈option〉s understood bymake_paged are

-ok {OK button title}
-cancel {cancel button title}
-title {dialog window title}
-defaultpage {name of default page}
-addbuttons {button list}

67

-width {dialog window width}
-alpha7pagelimit {maximal number of pages}
-debug {debug level}
-changedpages {var-name}
-changeditems {var-name}

Those that are common withmake work exactly the same. The-changedpages option
specifies that the caller wants to know on which pages something was changed. The
{var-name} is the name of a variable in the caller’s local context which will be set to
the list of (names of) pages where some item value was changed. The-changeditems
option is similar, but here the variable will be set to a list with the structure(

{page name} {key list}
)∗

where the{key list}s are lists of thekeysof items on that page whose values were changed.

1234proc dialog::make_paged {args} {

make_paged largely has the same local variables asmake, but there are some addi-
tions. The major arrays are

pageA The index into this array is the name of a page. An entry contains the list of names
of items on that page.

typeA The index into this array has the form〈page〉,〈item〉, where〈page〉 is the name
of a page and〈item〉 is the name of an item on that page. An entry contains the type
of that item.

keyA The index has the same form as in thetypeA array. An entry contains the{key}
for that item.

helpA The index has the same form as in thetypeA array. An entry contains the help
text for that entry, but an item needs not have an entry in this array (it can be left
unset).

There are a couple of additional scalar variables that are of interest.

retCode, retVal When theretCode variable is set, the dialog is logically closed and
the procedure returns. If the variable is set to0 thenmake executes a normal return
and the returned value will be the list of item values. If the variable is set to anything
else then that will used for the-code option ofreturn and the returned value will
be taken from theretVal variable, which must then be initialised.

dial This contains the reference string to use withvalGet, valSet, and friends when
accessing the values of items in the dialog.

currentpage This contains the name of the current page in the dialog.

delta pages This is the list of all pages which have been added to or deleted from
the dialog since it was called. Theadd_page anddelete_page procedures both
directly access this list. It is needed to get the information for the-changedpages
and-changeditems correct.

68

pages This is a list of pages and items to show in the dialog. It is similar to the result
of array get pageA, but the order of pages is as specified in the call and hidden
pages are not included.

opts(-addbuttons) This is {button list} specified by the caller. Button scripts can
modify this list to change the text on their button.

state This is initialized to0 before the first time the dialog is shown and then the pro-
cedure leaves it alone. Button scripts may change it to keep track of what “state”
(mostly: which items/pages are currently hidden) the dialog is in.

splitstate This is the dialog splitting state and works as fordialog::make.

optionL The list of additional options to pass todialog::handle.

The first part ofdialog::make_paged processes the arguments.

1235 set opts(-ok) OK

1236 set opts(-cancel) Cancel

1237 set opts(-title) ""

1238 set opts(-width) 400

1239 set opts(-debug) 0

1240 set opts(-pager) "popupmenu"

1241 getOpts {-title -defaultpage -ok -cancel -addbuttons -width -debug\
-alpha7pagelimit -changedpages -changeditems -pager}

1243 set dial [dialog::create]

The page arguments are interpreted by theadd_page procedure. Since these pages aren’t
new in the sense that is relevant for thedelta_pages list, that variable is reset afterwards.
Thesplitstate variable is implicitly updated byadd_page.

1244 set pages [list]

1245 set delta_pages [list]

1246 if {[info exists opts(-alpha7pagelimit)] && [info tclversion]<8.0}\
then {

1248 set splitstate below

1249 } else {

1250 set splitstate off

1251 }

1252 foreach pagearg $args {

1253 eval [list dialog::add_page] $pagearg

1254 }

1255 set delta_pages [list]

1256 if {$splitstate=="page"} then {set splitstate menu}

1257 if {[info exists opts(-defaultpage)]} then {

1258 set currentpage $opts(-defaultpage)

1259 } else {

1260 set currentpage [lindex $pages 0]

1261 }

1262 set optionL [list -width $opts(-width) -title $opts(-title) -pager\
$opts(-pager)]

1264 set main_buttons \

69

1265 [list $opts(-ok) "Click here to use the current settings."\
{set retCode 0}]

1267 if {$opts(-cancel) ne ""} {

1268 lappend main_buttons $opts(-cancel) "Click here to\
discard any changes you’ve made to the settings."\

{set retCode 1; set retVal "cancel"}

1271 }

1272 set main_buttons [list $main_buttons first right]

1273 set view_button [list [list {View dialog page}\
{Click here to see the items on this page.} {set splitstate page}]]

1276 set back_button\
[list [list "Back" {Click here to go back to the pages menu.}\

{set splitstate menu}] first right]

The second part is the loop which lets the user edit the settings.

1279 set state 0

1280 while {![info exists retCode]} {

1281 switch -exact -- $splitstate off - below {

1282 if {[info exists opts(-addbuttons)]} then {

1283 set script\
[dialog::handle $pages typeA $dial helpA currentpage\

$optionL [list $opts(-addbuttons)] $main_buttons]

1286 } else {

1287 set script [dialog::handle $pages typeA $dial helpA\
currentpage $optionL $main_buttons]

1289 }

1290 } menu {

1291 set altpages [list]

1292 set n 1

1293 foreach item $pages {

1294 if {$n} then {

1295 lappend altpages $item

1296 set n 0

1297 } else {

1298 lappend altpages {}

1299 set n 1

1300 }

1301 }

1302 set script [dialog::handle $altpages typeA $dial helpA\
currentpage $optionL $view_button $main_buttons]

1304 } page {

This is a small test to make sure that the value ofcurrentpage is valid. If it isn’t then
one should return to themenu state.

1305 if {![info exists pageA($currentpage)]} then {

1306 set splitstate menu

1307 continue

1308 }

1309 set altpages [list $currentpage $pageA($currentpage)]

1310 if {[info exists opts(-addbuttons)]} then {

70

1311 set script\
[dialog::handle $altpages typeA $dial helpA currentpage\

$optionL [list $opts(-addbuttons)] $back_button]

1314 } else {

1315 set script [dialog::handle $altpages typeA $dial helpA\
currentpage $optionL $back_button]

1317 }

1318 }

1319 if {[catch $script err]} then {

The rest of this loop is simply for gracefully handling errors that occur when button scripts
are evaluated.

1320 global errorInfo

1321 set errinfo $errorInfo

1322 if {$opts(-debug)} then {

1323 tclLog "Error in button script ’$script’"

1324 tclLog $err

1325〈∗log1〉
1326 terminal::print_word emptyline "Error (in button script):\

$err" newline

1328 terminal::print_word newline "Script:" newline

1329 terminal::print_block newline " " [split $script \n] newline

1331 terminal::print_word newline "Error info:" newline

1332 terminal::print_block newline " " [split $errinfo \n]\
emptyline

1334〈/log1〉
1335 }

1336 dialog::cleanup $dial

1337 return -code 1 -errorinfo $errinfo "Error ’$err’ when\
evaluating button script."

1339 }

1340 }

The third part is as inmake responsible for constructing the result to return (at normal
returns). Unlike the case withmake, the return value covers only the items currently in
pages. This part is also responsible for constructing the lists of changed pages and items.
Two important variables in this arecS andcA. cS is an array which is used to test whether
a certain item has been changed (viavalChanged), but the only thing that matters is
whether an entry has been set or not.cA is an array indexed by page name, whereas the
entries are lists of keys of items on that page which have been changed.

1341 if {$retCode==0} then {

1342 set retVal [list]

1343 global dialog::mute_types

1344 foreach page $delta_pages {

1345 foreach name $pageA($page) {

1346 lappend cA($page) $keyA($page,$name)

1347 }

1348 }

1349 foreach item [dialog::changed_items $dial] {set cS($item) ""}

1350 foreach {page items} $pages {

71

1351 set res [list]

1352 foreach name $items {

1353 set T "$page,$name"

1354 if {[lsearch -exact ${dialog::mute_types}\
[lindex $typeA($T) 0]] < 0} then {

1356 lappend res $keyA($T) [dialog::valGet $dial $T]

1357 if {[info exists cS($T)]} then {

1358 lunion cA($page) $keyA($T)

1359 }

1360 }

1361 }

1362 lappend retVal $page $res

1363 }

1364 if {[info exists opts(-changedpages)]} then {

1365 upvar 1 $opts(-changedpages) cp

1366 set cp [array names cA]

1367 }

1368 if {[info exists opts(-changeditems)]} then {

1369 upvar 1 $opts(-changeditems) ci

1370 set ci [array get cA]

1371 }

1372 }

1373 dialog::cleanup $dial

1374 return -code $retCode $retVal

1375}

dialog::add_page (proc) Theadd_page procedure can be called from within themake_paged procedure to add a
new page to the dialog. The syntax is

dialog::add_page {page name} {key–value list} {item list} {position}?

Here the{page name}, {key–value list}, and{item list} coincide with those parts of a
{page} argument ofmake_paged.

add_page works by modifying the arraystypeA, keyA, helpA, andpageA, the lists
pages anddelta_pages, and the variablesplitstate in the caller’s local context. It
also uses the value in thedial variable there as an argument tovalSet and theopts
array to access the-alpha7pagelimit value. All of these variables are assumed to
function as they do in themake_paged procedure.

The{position} argument can be used to specify where in thepages list that the new
page should be inserted. It defaults toend, which puts the new page last. Otherwise the
argument should be numeric:0 means put first,1 means put second,2 means put third,
etc.

If splitstate is below and the number of pages equals (or is greater than) the
-alpha7pagelimit then thesplitstate is changed topage. If splitstate is menu
then it is also changed topage.

1376proc dialog::add_page {page keyvalL itemsL {pos end}} {

1377 upvar 1 pageA pageA typeA typeA helpA helpA keyA keyA dial dial\
pages pages delta_pages delta_pages splitstate splitstate opts opts

1380 array set local $keyvalL

72

1381 set pageA($page) [list]

1382 lunion delta_pages $page

1383 foreach item $itemsL {

1384 set key [lindex $item 0]

1385 set name [lindex $item 2]

1386 set keyA($page,$name) $key

1387 if {[info exists local($key)]} then {

1388 dialog::valSet $dial $page,$name $local($key)

1389 } else {

1390 dialog::valSet $dial $page,$name ""

1391 }

1392 set typeA($page,$name) [lindex $item 1]

1393 if {[llength $item]>3} then {

1394 set helpA($page,$name) [lindex $item 3]

1395 }

1396 lappend pageA($page) $name

1397 }

1398 if {$pos!="end"} then {

1399 set pages [linsert $pages [expr {2*$pos}] $page $pageA($page)]

1400 } else {

1401 lappend pages $page $pageA($page)

1402 }

1403 if {$splitstate=="menu" || ($splitstate=="below" &&\
[llength $pages]>2*$opts(-alpha7pagelimit))} then {

1405 set splitstate page

1406 }

1407}

dialog::delete_pages

(proc)
In one sense, this procedure does the opposite ofadd_page, but it can be used to achieve
different effects as well. Basically it takes a list of page names and items, in the format
for the first argument ofhandle, and returns the same list with some pages removed. The
syntax is

dialog::delete_pages {pages} {delete-list} {deleted-var}?

where the{delete-list} is the list of names of pages to remove.{deleted-var} is, if it
is given, the name of a variable in the caller’s local context containing a list of page
names. The deleted pages are then unioned with this list. The most common value for
{deleted-var} is delta_pages.

If there is a{deleted-var} argument then this procedure might also modify the
splitstate variable in the caller’s local context. A value ofpage is changed
to menu or below depending on how many pages are returned and the value of
opts(-alpha7pagelimit) in the caller’s local context. (Both these variables must exist
if delete_pages is called with a{deleted-var} argument.)

1408proc dialog::delete_pages {pages deleteL {deletedvar {}}} {

1409 set res [list]

1410 if {[string length $deletedvar]} then {upvar 1 $deletedvar diffL}

1411 foreach {page items} $pages {

1412 if {[lsearch -exact $deleteL $page] == -1} then {

73

1413 lappend res $page $items

1414 } else {

1415 lunion diffL $page

1416 }

1417 }

1418 if {[string length $deletedvar]} then {

1419 upvar 1 splitstate state opts(-alpha7pagelimit) limit

1420 switch -exact -- $state page - menu {

1421 if {[llength $res]<=2*$limit} then {

1422 set state below

1423 } else {

1424 set state menu

1425 }

1426 }

1427 }

1428 return $res

1429}

2.7 Dialog items and preferences

In the classical preferences dialogs, all items were preferences and it was the preference
data structures that determined the type of the items. As this is not the case with the new
dialogs, there is a need for constructing a dialog item corresponding to a preference.

dialog::prefItemType

(proc)
Thedialog::prefItemType preference returns the dialog item type that corresponds
to the type of a specified preference. The syntax is

dialog::prefItemType {pref. name}

1430proc dialog::prefItemType {prefname} {

1431 global flag::list flag::type

1432 if {[info exists flag::list($prefname)]} {

1433 if {[flag::isIndex $prefname]} {

1434 set res [list menuindex]

1435 } else {

1436 set res [list menu]

1437 }

1438 lappend res [flag::options $prefname]

1439 } elseif {[info exists flag::type($prefname)]} {

1440 return [set flag::type($prefname)]

1441 } else {

1442 switch -regexp -- $prefname {

1443 Colou?r$ {return "colour"}

1444 Mode$ {return "mode"}

1445 SearchPath$ {return "searchpath"}

1446 (Path|Folder)$ {return "folder"}

1447 Sig$ {return "appspec"}

1448 default {return "var"}

1449 }

1450 }

74

1451}

1452〈/core〉

2.8 To do

The generic dialogs code has now seems to have reached a rather mature state. Cer-
tainly the details can be polished, new types can be added, and some procedures (such as
dialog::prefItemType) should be improved, but on the whole they can do everything
that we seem to need.

What needs to be improved is instead theAlphatkinterface for setting up and manag-
ing dialogs. Right now it is both complicated (involving a large number of callbacks) and
highly specialized (making assumptions that are only valid for a few types), which is most
unfortunate. Obviously the interface should rather be simple and general (and how it ever
go to be anything else is a source of quite some amazement for me), but achieving that
requires that the whole thing is thoroughly thought through rather than pieced together.
/LH

A new (september 2002) problem that needs to be dealt with is that different plat-
forms have quite different rules for the size and separation of dialog atom. Jon Guyer has
suggested that AlphaTcl should keep all the necessary metrics in a global array (which is
initialised at startup, mostly using a new core command) and that the building scripts and
so on should look in this array to determine the necessary metrics.

3 Examples

This section contains a couple of examples of how the generic dialogs procedures can be
used. All code in theexamples module can be found in the fileDialogs-Examples.tcl.

test_make (proc) Thetest_make procedure is used in the examples below to facilitate presentation of the
results. The syntax is

test_make {paged} {script}

where{script} is a script that the procedure evaluates and presents the result (or error) of
in a new window with the title ‘dialog make result’. If {paged} is 0 then the result
of the script interpreted as a list and each item is put on a line of its own; this is suitable
when the last command in the script was adialog::make. If {paged} is 1 then the result
is instead formatted so that it looks good if it was generated bydialog::make_paged.

1453〈∗examples〉
1454proc test_make {format script} {

1455 set code [catch $script res]

1456 new -n "dialog make result" -info [if {$code} then {

1457 set t "Error: $res"

1458 global errorInfo

1459 append t \n "errorInfo:\n" $errorInfo

1460 } elseif {$format} then {

1461 set L [list]

1462 foreach {page keyvals} $res {

75

1463 set t \n

1464 foreach {key value} $keyvals {

1465 append t " [list $key $value]\n"

1466 }

1467 lappend L $page $t

1468 }

1469 set L

1470 } else {

1471 join $res \n

1472 }]

1473}

3.1 An elementary example

This example creates a single-page dialog with a selection of TextEdit item types on,
usingdialog::make. The title ‘Example dialog 1’ is only visible inAlphatk.

1474test_make 0 {

1475 dialog::make -title "Example dialog 1" [list "TextEdit types"\
1477 [list var "A ’var’" "Some text"]\
1478 [list var "A ’var’ with a long name" "Again some text"]\
1479 [list var "A ’var’ with a very very very long name" short]\
1480 [list var2 "A ’var2’" "This piece of editable text is rather\

long, two lines come in handy."]\
1482 [list static "A ’static’" "This text cannot be edited."]\
1483 [list password "A ’password’" Swordfish]\
1484 [list password "A ’password’ with a very long title" Swordfish]\
1485]

1486}

Thestatic item is formatted like avar item, but the value is put in a static text atom,
not a TextEdit atom. Neither is it returned by the procedure.

The same example dialog usingdialog::make_paged looks instead as follows.
Note that the order of items in the{key–value list} needs not be the same as that in
the{item list}.

1487test_make 1 {

1488 dialog::make_paged -title "Example dialog 1" [list "TextEdit types"\
1490 [list a "Some text" b "Again some text" c short d "This piece of\

editable text is rather long, two lines come in handy." e\
Swordfish f Swordfish g "This text cannot be edited."]\

1494 [list\
1495 [list a var "A ’var’"]\
1496 [list b var "A ’var’ with a long name"]\
1497 [list c var "A ’var’ with a very very very long name"]\
1498 [list d var2 "A ’var2’"]\
1499 [list g static "A ’static’"]\
1500 [list e password "A ’password’"]\
1501 [list f password "A ’password’ with a very long title"]\
1502]\
1503]

76

1504}

Clearlydialog::make is more suitable for such a small dialog.dialog::make_paged
is most convenient when the{item list} has already been constructed. This is for example
the case in thedialog::editGroup procedure (see below).

3.2 A smorgasbord of types

The generic dialog procedures provide a large variety of item types. The following di-
alog demonstrates all the visible item types currently defined. Note that packages can
define their own types simply by adding elements to thedialog::simple_type or
dialog::complex_type arrays.

1505test_make 0 {

1506 set page1 [list "Text types"]

1507 lappend page1 [list var "A ’var’" "Some text"]

1508 lappend page1 [list var2 "A ’var2’" "This piece of editable text is\
rather long, two lines come in handy."]

1510 lappend page1 [list text "This is a ’text’ item. It can be used for\
including a paragraph or two of text inside the dialog." "This\

value is ignored!"]

1513 lappend page1 [list password "A ’password’" No]

1514 lappend page1 [list static "A ’static’" "This is static text"]

1515 set page2 [list "Files and the like"]

1516 global HOME

1517 lappend page2\
[list file "A ’file’" [file join $HOME Help "Alpha Manual"]]

1519 lappend page2 [list folder "A ’folder’" $HOME]

1520 lappend page2 [list io-file "An ’io-file’" [file join $HOME dump]]

1522 lappend page2\
[list url "An ’url’" "http://alphatcl.sourceforge.net/"]

appspecs are a bit tricky to give examples of since they are quite platform-dependent.

1524 global alpha::platform

1525 if {${alpha::platform}=="alpha"} then {

1526 lappend page2 [list appspec "An ’appspec’" ’ALFA’]

1527 set s ’WIsH’

1528 if {[catch {nameFromAppl $s} t]} then {

1529 set t $s

1530 } elseif {[regexp -nocase wish $t]} then {

1531 set t $s

1532 } else {

1533 set t [glob -nocomplain -dir [file dirname $t] *Wish*]

1534 if {[llength $t]} then {set t [lindex $t 0]} else {set t $s}

1535 }

1536 lappend page2 [list appspec "Another ’appspec’" $t]

1537 } else {

1538 global texSig

1539 lappend page2 [list appspec "An ’appspec’" $texSig]

1540 }

77

1541 lappend page2 [list searchpath "A ’searchpath’"\
[glob -nocomplain -types d -join $HOME {[E-H]*}]]

1543 set page3 [list "Menus and the like"]

1544 lappend page3 [list {menu {One two three}} "A ’menu’" two]

1545 lappend page3 [list {menuindex {nul odin dva tri tjetyre pat sjest}}\
{A ’menuindex’} 2]

1548 lappend page3 [list colour "A ’colour’" green]

1549 lappend page3 [list mode "A ’mode’" TeX]

1550 lappend page3 [list [list subset\
[list "Charlie Chaplin" Saturn toothbrush {"yeah, yeah"} 19]]\

{A ’subset’} [list toothbrush 19]]

1553 lappend page3 [list modeset "A ’modeset’" [list TeX Bib Mf]]

1554 set page4 [list "Miscellaneous types"]

1555 lappend page4 [list flag "A ’flag’" 1]

1556 lappend page4 [list [list multiflag\
[list AlphaPrefs Developer Examples Help Tcl Tools]]\

{This is a ’multiflag’} [list 0 1 1 0 1 0]]

1560 lappend page4 [list menubinding "A ’menubinding’" /Q<O]

1561 lappend page4 [list binding "A ’binding’" /Q<O]

1562 lappend page4 [list date "A ’date’" [now]]

1563 lappend page4\
[list thepage "This item is invisible" "This value is ignored"]

1565 dialog::make $page1 $page2 $page3 $page4

1566}

3.3 Button manœuvres

Another nice feature with the generic dialog interface is the ability to change the name
of theOK andCancel buttons, or to add extra buttons with new functionality. The next
example demonstrates this; it is intended as a log-in dialog for some fancy protocol where
the password depends on the time as well as on the user name.

1567test_make 0 {

1568 set page [list "Login parameters"]

1569 lappend page [list static "Curent time" [join [mtime [now] long]]]

1570 lappend page [list var "User name" ""]

1571 lappend page [list password "Password" ""]

1572 dialog::make -ok Login\
1573 -addbuttons [list "Update time"\

{This button updates the current time shown in the dialog.}\
{dialog::valSet $dial "Login parameters,Curent time"\

[join [mtime [now] long]]}]\
1577 $page

1578}

ThevalSet procedure updates the value of thestatic item.
The next example shows how one can use a button to toggle between a “basic settings”

and “complete settings” state of a dialog. All values are always reported back, but they

78

are not necessarily shown.

1579test_make 0 {

1580 set page [list "Email settings"]

1581 lappend page [list var "Name" "Jane Doe"]

1582 lappend page [list var "Address" "Jane.Doe@nowhere.edu"]

1583 lappend page [list var "Organisation" "University of Nowhere"]

1584 lappend page [list [list hidden var] "POP server" mail.nowhere.edu]

1585 lappend page [list [list hidden var] "SMTP server" smtp.nowhere.edu]

1586 dialog::make -addbuttons\
[list "Full settings" {Toggles between basic and full settings.} {

1588 if {!$state} then {

1589 dialog::show_item "Email settings" "POP server"

1590 dialog::show_item "Email settings" "SMTP server"

1591 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Basic settings"]

1593 set state 1

1594 } else {

1595 dialog::hide_item "Email settings" "POP server"

1596 dialog::hide_item "Email settings" "SMTP server"

1597 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Full settings"]

1599 set state 0

1600 }

1601 }] $page

1603}

Another way of hiding items from the user is to hide the entire page on which they reside.

1604test_make 0 {

1605 set page1 [list "Basic email settings"]

1606 lappend page1 [list var "Name" "Jane Doe"]

1607 lappend page1 [list var "Address" "Jane.Doe@nowhere.edu"]

1608 lappend page1 [list var "Organisation" "University of Nowhere"]

1609 set page2 [list "Advanced email settings"]

1610 lappend page2 [list var "POP server" mail.nowhere.edu]

1611 lappend page2 [list var "SMTP server" smtp.nowhere.edu]

1612 dialog::make -addbuttons\
[list "Full settings" {Toggles between basic and full settings.} {

1614 if {!$state} then {

1615 set currentpage "Advanced email settings"

1616 lappend pages $currentpage $pageA($currentpage)

1617 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Basic settings"]

1619 set state 1

1620 } else {

1621 set currentpage "Basic email settings"

1622 set pages [list $currentpage $pageA($currentpage)]

1623 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Full settings"]

1625 set state 0

1626 }

79

1627 }] -hidepages [list "Advanced email settings"] $page1 $page2

1629}

This is a variant of the above example which exposes the additional complications that
can be wrought on by the-alpha7pagelimit option.

1630test_make 0 {

1631 set page1 [list "Basic email settings"]

1632 lappend page1 [list var "Name" "Jane Doe"]

1633 lappend page1 [list var "Address" "Jane.Doe@nowhere.edu"]

1634 lappend page1 [list var "Organisation" "University of Nowhere"]

1635 set page2 [list "Advanced email settings"]

1636 lappend page2 [list var "POP server" mail.nowhere.edu]

1637 lappend page2 [list var "SMTP server" smtp.nowhere.edu]

1638 dialog::make -alpha7pagelimit 1 -addbuttons\
[list "Full settings" {Toggles between basic and full settings.} {

1640 if {!$state} then {

1641 set currentpage "Advanced email settings"

1642 lappend pages $currentpage $pageA($currentpage)

1643 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Basic settings"]

1645 set state 1

1646 if {$splitstate != "off"} then {set splitstate page}

1647 } else {

1648 set currentpage "Basic email settings"

1649 set pages [list $currentpage $pageA($currentpage)]

1650 set opts(-addbuttons)\
[lreplace $opts(-addbuttons) 0 0 "Full settings"]

1652 set state 0

1653 if {$splitstate != "off"} then {set splitstate below}

1654 }

1655 }] -hidepages [list "Advanced email settings"] $page1 $page2

1657}

1658〈/examples〉

3.4 Editing named configurations

It is not uncommon that the settings for something can be collected in a “configuration”
and that the user can have several such configurations stored simultaneously (even though
only one is used for each operation); the filesets and (more recently) the SourceForge
menu projects are both examples of this. Originally for use for the latter of these, Vince
wrote a generic proceduredialog::editGroup which presents a list of configurations
as a multipage dialog (one page per configuration) in which all pages have the same set
of items, but usually different values. Furthermore the dialog contains two extra buttons:
one for adding a new configuration and one for deleting a configuration.

The original definition used a (sort of) hackeddialog::make, but the new im-
plementation below usesdialog::make_paged instead. Indeed, that there should be
an easy implementation ofeditGroup using the latter was the main design goals for
make_paged.

80

dialog::editGroup (proc) TheeditGroup procedure lets the user edit configurations stored in an array in the local
context of the caller and returns the list of configurations that were changed. The syntax
is

dialog::editGroup 〈option〉+{item}+

The{item}s aremake_paged style item descriptions, i.e., lists with the format

{key} {type} {name} {help}?

The currently supported〈option〉s are

-array {array name}
-current {current configuration name}
-delete {ask first?}
-new {new conf.-cmd}
-alpha7pagelimit {number of pages}
-title {title}

The-array option specifies the name of the array in which the configurations are stored.
Indices into this array are configuration names and the entries contain key–value lists
that give the entries of the array.Note that the-array option isn’t optional at all, but
mandatory.

The-current option can be used to specify at which configuration the dialog should
be opened. The-delete option specifies that the dialog should have aDelete button. If
the{ask first?} is anything butdontask then the user is asked for confirmation before the
current configuration is actually deleted. The-new option specifies that the dialog should
have aNew button. The{new conf.-cmd} is a script that is executed when the user clicks
theNew button. It should return either a list with the structure

{new config. name} {key–value list}

or, if the user decides not to create a new configuration, an empty string. The-title
option specifies a title for the dialog; this defaults toEdit.

1659〈∗core〉
1660〈notinstalled〉auto_load dialog::getAKey

1661proc dialog::editGroup {args} {

1662 global dialog::ellipsis

1663 set opts(-current) ""

1664 set opts(-title) "Edit"

1665 getOpts {-array -title -current -new -delete -alpha7pagelimit}

1666 upvar 1 $opts(-array) local

After processing arguments, the first task is to construct the{page} arguments to
make_paged.

1667 set dialog [list]

1668 foreach item [lsort -dictionary [array names local]] {

1669 lappend dialog [list $item $local($item) $args]

1670 }

81

The the-addbuttons option, if any, tomake_paged are constructed.

1671 set buttons [list]

1672 if {[info exists opts(-delete)]} {

1673 if {$opts(-delete)=="dontask"} then {

1674 lappend buttons "Delete" "Click here to delete this page"\
As there is no need to embed variable data into the script for theDelete button, it is
easiest to give it explicitly.

1675 {set pages [dialog::delete_pages $pages\
[list $currentpage] delta_pages]}

1677 } else {

1678 lappend buttons "Delete${dialog::ellipsis}" "Click here to\
delete this page" {

1680 if {[dialog::yesno "Are you sure you want to delete\
’$currentpage’?"]} {

1682 set pages [dialog::delete_pages $pages\
[list $currentpage] delta_pages]

1684 }

1685 }

1686 }

1687 }

1688 if {[info exists opts(-new)]} {

1689 lappend buttons "New${dialog::ellipsis}" "Click here to add a\
new page" [list dialog::editGroupNewPage $args $opts(-new)]

With the script for theNew button, things are different: both the layout of a page and the
script which generates the contents for new pages have to be embedded into the button
script. It is then easiest to put all processing in a helper procedure and restrict the button
script to call that helper.

1692 }

1693 set call [list dialog::make_paged -changedpages mods]

1694 lappend call -title $opts(-title) -defaultpage $opts(-current)

1695 if {[info exists opts(-alpha7pagelimit)]} then {

1696 lappend call -alpha7pagelimit $opts(-alpha7pagelimit)

1697 }

1698 if {[llength $buttons]} then {lappend call -addbuttons $buttons}

1699 set res [eval $call $dialog]

If the user did notCancel the dialog, the array specified by the-array option is cleared
and the new data returned bymake_paged are stored into it instead. It is necessary to
clear the array if some page has been deleted.

1700 unset local

1701 array set local $res

1702 return $mods

1703}

dialog::editGroupNewPage

(proc)
TheeditGroupNewPage procedure is a helper foreditGroup.

1704proc dialog::editGroupNewPage {layout cmd} {

1705 set T [eval $cmd]

1706 if {![llength $T]} then {return}

82

1707 foreach {page items} [uplevel 1 {set pages}] {

1708 if {$page==[lindex $T 0]} then {

1709 alertnote "That name is already in use!"

1710 return

1711 }

1712 }

1713 uplevel 1 [concat dialog::add_page $T [list $layout]]

1714 uplevel 1 [list set currentpage [lindex $T 0]]

1715}

1716〈/core〉

3.5 Playing preferences

This is mainly intended as a test for thediscretionary type, but it just might be the
starting point for a new implementation of the mode preferences dialogs. I suspect that the
installation dialog is in stronger need of a rewrite than the preferences dialogs, however.

1717〈∗examples〉
1718test_make 1 {

This part is mainly fromdialog::modifyModeFlags.
1719 global TeXmodeVars allFlags

1720 set title "’TeX’ mode prefs"

1721 set mflags {}

1722 set mvars {}

1723 foreach v [lsort -ignore [array names TeXmodeVars]] {

1724 if {[lsearch -exact $allFlags $v] >= 0} {

1725 lappend mflags $v

1726 } else {

1727 lappend mvars $v

1728 }

1729 }

Then the standard call would descend viadialog::flagsAndVars anddialog::onepage
to dialog::flag (which BTW builds the items for non-flag preferences as well as
flag preferences). The call we’re imitating is roughly

dialog::flag {dial} $mflags $mvars 20 10 $title

but we should explicitly fetch item values from theTeXmodeVars array.
1730 global spelling prefshelp

1731 set items [list]

1732 set keyvals [list]

1733 set flagL [list]

1734 set flagHelp [list]

1735 set flagVal [list]

1736 foreach f $mflags {

1737 set fname [quote::Prettify $f]

1738 if {$spelling} {text::british fname}

1739 lappend flagL $fname

1740 lappend flagVal $TeXmodeVars($f)

83

1741 if {[info exists prefshelp(TeX,$f)]} {

1742 lappend flagHelp $prefshelp(TeX,$f)

1743 } else {

1744 lappend flagHelp ""

1745 }

1746 }

1747 lappend items\
[list flags [list multiflag $flagL] {Flags in TeX mode} $flagHelp]

1749 lappend keyvals flags $flagVal

The next stop on this Odyssey isdialog::buildSection, which roughly gets the call

dialog::buildSection {dial} $mvars . . .

A potentially interesting point here is thatdialog::flag tellsdialog::buildSection
to look in thealpha::prefNames array for possible alternative forms of names to show
in the dialog, but there doesn’t seem to be any entries in this array.

1750 global alpha::prefNames alpha::platform

1751 foreach v $mvars {

1752 if {[info exists alpha::prefNames($v)]} {

1753 set vname [set alpha::prefNames($v)]

1754 } else {

1755 set vname [quote::Prettify $v]

1756 }

1757 if {$spelling} then {text::british vname}

1758 set vval $TeXmodeVars($v)

1759 if {[info exists prefshelp(TeX,$v)]} {

1760 set help $prefshelp(TeX,$v)

1761 } else {

1762 set help ""

1763 }

1764 set type [dialog::prefItemType $v]

1765 if {![string compare $type "appspec"] &&\
![string compare ${alpha::platform} "alpha"]} then {

1767 set vval ’$vval’

1768 }

This is the new thingie. Between every two visible items in the dialog, there is a
discretionary item. This has the effect that the dialog is automatically split on several
pages (I get five pages, but it depends on how many packages you’ve got that add TEX
mode prefs).

1769 lappend items [list dummy {discretionary 300} {}]

1770 lappend items [list $v $type $vname $help]

1771 lappend keyvals $v $vval

1772 }

Finally: the call tomake_paged. There is only one{page} argument.

1773 dialog::make_paged -width 480 [list $title $keyvals $items]

1774}

1775〈/examples〉

84

The following is test code forflaggroup items.

1776〈∗examples〉
1777test_make 1 {

1778 dialog::make_paged {"Blue meanies" {one 0 two 1 three 1 four 0 five\
1 six 0 seven 1 eight_nine_ten 0 more 0 love 1} {

1782 {one {hidden flag} One}

1783 {two {hidden flag} Two}

1784 {three {hidden flag} Three}

1785 {four {hidden flag} Four}

1786 {five {hidden flag} Five}

1787 {six {hidden flag} Six}

1788 {seven {hidden flag} Seven}

1789 {eight_nine_ten {hidden flag} Eight-nine-ten}

1790 {more {hidden flag} "Can I have a little more?"}

1791 {love {hidden flag} "I love you!"}

1792 {meta {hidden flag} "Yes, I do recognise the cultural\
reference to the end of the movie \"Yellow Submarine\""}

1794 {whatever {flaggroup {One Two Three Four "Can I have a little\
more?" Five Six Seven Eight-nine-ten "I love you!" "Yes, I\

do recognise the cultural reference to the end of the movie\
\"Yellow Submarine\""}

1798 -justification left}

1799 "Singing!"}

1800 } }

1802}

The following is test code forflaggroup items.

1803test_make 1 {

This part is mainly fromdialog::modifyModeFlags.

1804 global TeXmodeVars allFlags

1805 set title "’TeX’ mode prefs"

1806 set mflags {}

1807 set mvars {}

1808 foreach v [lsort -dictionary [array names TeXmodeVars]] {

1809 if {[lsearch -exact $allFlags $v] >= 0} {

1810 lappend mflags $v

1811 } else {

1812 lappend mvars $v

1813 }

1814 }

Then the standard call would descend viadialog::flagsAndVars anddialog::onepage
to dialog::flag (which BTW builds the items for non-flag preferences as well as
flag preferences). The call we’re imitating is roughly

dialog::flag {dial} $mflags $mvars 20 10 $title

but we should explicitly fetch item values from theTeXmodeVars array.

1815 global spelling prefshelp

1816 set items [list]

85

1817 set keyvals [list]

1818 set flagL [list]

1819 foreach f $mflags {

1820 set fname [string trimright [quote::Prettify $f]]

1821 if {$spelling} {text::british fname}

1822 lappend flagL $fname

1823 set item [list $f {hidden flag} $fname]

1824 if {[info exists prefshelp(TeX,$f)]} then {

1825 lappend item $prefshelp(TeX,$f)

1826 }

1827 lappend items $item

1828 lappend keyvals $f $TeXmodeVars($f)

1829 }

1830 lappend items\
[list "" [list flaggroup [lsort -dictionary $flagL] -columns 3]\

{Flags in TeX mode}]

The next stop on this Odyssey isdialog::buildSection, which roughly gets the call

dialog::buildSection {dial} $mvars . . .

A potentially interesting point here is thatdialog::flag tellsdialog::buildSection
to look in thealpha::prefNames array for possible alternative forms of names to show
in the dialog, but there doesn’t seem to be any entries in this array.

1832 global alpha::prefNames alpha::platform

1833 foreach v $mvars {

1834 if {[info exists alpha::prefNames($v)]} {

1835 set vname [set alpha::prefNames($v)]

1836 } else {

1837 set vname [quote::Prettify $v]

1838 }

1839 if {$spelling} then {text::british vname}

1840 set vval $TeXmodeVars($v)

1841 if {[info exists prefshelp(TeX,$v)]} {

1842 set help $prefshelp(TeX,$v)

1843 } else {

1844 set help ""

1845 }

1846 set type [dialog::prefItemType $v]

1847 if {![string compare $type "appspec"] &&\
![string compare ${alpha::platform} "alpha"]} then {

1849 set vval ’$vval’

1850 }

This is the new thingie. Between every two visible items in the dialog, there is a
discretionary item. This has the effect that the dialog is automatically split on several
pages (I get five pages, but it depends on how many packages you’ve got that add TEX
mode prefs).

1851 lappend items [list dummy {discretionary 400} {}]

1852 lappend items [list $v $type $vname $help]

1853 lappend keyvals $v $vval

86

1854 }

Finally: the call tomake_paged. There is only one{page} argument.

1855 dialog::make_paged -width 480 [list $title $keyvals $items]

1856}

1857〈/examples〉

References

[1] Jesper Blommaskog:Is white space significant in Tcl, The Tcl’ers Wiki page981;
http://mini.net/tcl/981.html.

[2] Fréd́eric Boulangeret al.: Driving external applications from Alpha, discussion
thread on the AlphaTcl developers mailing list, October 2001.

[3] Sharon Everson et al.: Inside Macintosh – Macintosh Toolbox Es-
sentials, Addison–Wesley, 1992; ISBN 0-201-63243-8. Also available
as PDF at http://www.devworld.apple.com/techpubs/mac/pdf/
MacintoshToolboxEssentials.pdf and in HTML athttp://www.devworld.
apple.com/techpubs/mac/Toolbox/Toolbox-2.html.

[4] Lars Hellstr̈om: The tclldoc package and class; CTAN: macros/latex/contrib/
supported/tclldoc/tclldoc.dtx. Note: That is the proper home fortclldoc, but
I’ve been so busy with other things that I haven’t gotten around to uploading it to
CTAN yet. A recent version can alternatively be found inDeveloper/texmf of a
complete AlphaTcl tree.

[5] Markus Kuhn:A Summary of the International Standard Date and Time Notation, at
http://www.cl.cam.ac.uk/∼mgk25/iso-time.html.

[6] Frank Mittelbach, Denys Duchier, Johannes Braams, Marcin Woliński, and Mark
Wooding:TheDocStrip program, The LATEX3 Project;CTAN: macros/latex/base/
docstrip.dtx.

87

http://mini.net/tcl/981.html
http://www.devworld.apple.com/techpubs/mac/pdf/MacintoshToolboxEssentials.pdf
http://www.devworld.apple.com/techpubs/mac/pdf/MacintoshToolboxEssentials.pdf
http://www.devworld.apple.com/techpubs/mac/Toolbox/Toolbox-2.html
http://www.devworld.apple.com/techpubs/mac/Toolbox/Toolbox-2.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
ftp://ftp.tex.ac.uk/pub/tex/macros/latex/base/docstrip.dtx
ftp://ftp.tex.ac.uk/pub/tex/macros/latex/base/docstrip.dtx

	Usage
	Dialog item types
	Dialog command options
	Button scripts
	Preferences and dialogs
	The width of dialog text

	Implementation
	The dialog command
	Basic dialog options
	New dialog options
	The drag-and-drop solution/muddle

	Measuring text
	Storing and updating values in dialogs
	Building and handling dialog material
	Construction and post-processing scripts
	TextEdit item types
	Uneditable item types
	Elementary control item types
	Menu item types
	specialSet item types
	Listpick item types
	Miscellanea

	Groups of flags
	Main dialogs interface
	Dialog items and preferences
	To do

	Examples
	An elementary example
	A smorgasbord of types
	Button manœuvres
	Editing named configurations
	Playing preferences

