
Logistics Specification and Analysis
Tool (Eclipse LSAT™) Design

Documentation
Version v0.1-M1

Table of Contents
1. Introduction. 2

1.1. Scope . 2

1.2. Tools . 2

2. Architecture . 3

2.1. Domain Languages . 3

2.1.1. Machine . 3

2.1.2. Settings . 7

2.1.3. Activities . 9

2.1.4. Logistics. 11

2.2. Analysis Languages . 12

2.2.1. DirectedGraph Metamodel . 12

2.2.2. EditableDirectedGraph Metamodel . 13

2.2.3. Scheduler Metamodel . 14

2.2.4. PetriNet Metamodel . 16

2.2.5. MaxPlus Metamodel. 17

3. Workflows for aspect models . 20

3.1. Scheduling activities including Gantt chart visualization . 20

3.2. Optimal Makespan/Throughput Scheduling . 21

3.2.1. Introduction . 21

3.2.2. Workflow . 22

3.3. Conformance Checking . 23

4. Overview of Plugins. 24

4.1. Machine . 24

4.2. Settings . 24

4.3. Activities . 24

4.4. Logistics . 25

4.5. Directed Graph . 25

4.6. MaxPlus. 25

4.7. Scheduling Activities including Gantt Chart Visualization. 26

4.8. Conformance Checking . 26

4.9. Throughput per Resource. 27

4.10. Documentation . 27

5. Developing . 28

5.1. Development environment setup. 28

5.2. Building with Maven . 30

5.3. License header . 31

5.4. Third party notice. 31

Appendix A: How to implement your own custom motion profile . 32

Create a new motion calculator . 32

Test your new motion calculator . 38

Appendix B: How to implement a custom motion calculator with Json . 41

Terminology . 41

Json Interface . 42

Configuring the shared library . 43

Json Schema for request and response . 45

Examples of Json messages . 49

Supported Profiles. 49

Validate . 49

Calculate Times . 50

Position Info . 51

Error Response. 53

Background Eclipse LSAT™ Internal motion calculator API . 54

This document explains the domain of the Logistics, Specification and Analysis
Tool (Eclipse LSAT™), provides explanation to the underlying architecture of
Eclipse LSAT™, and presents the workflows for different analysis techniques
included in Eclipse LSAT™. This document is intended to assist stakeholders
involved in the software development of Eclipse LSAT™, whether new or old, to
understand the existing architecture of Eclipse LSAT™.

• Section 1 is an introduction to Eclipse LSAT™ and its different performance analysis techniques.

• Section 2 describes the architecture of Eclipse LSAT™.

• Section 3 describes related workflows.

• Section 4 gives an overview about different plugins in Eclipse LSAT™.

• Section 5 provides information on development for Eclipse LSAT™.

• Appendix A provides information on how to add your own custom motion profile to Eclipse
LSAT.

• Appendix B provides information on how to implement a custom motion calculator with Json.

1

Chapter 1. Introduction

1.1. Scope
Eclipse LSAT™ allows convenient modeling mechanism for physical machines. In addition to
modeling of logistics, the following analysis techniques are also included in Eclipse LSAT™.

1. Automatic generation of optimal logistics in terms of makespan/throughput.

2. Visualization of logistics in the form of Gantt charts.

3. Conformance checking of traces against a specification.

Thus, Eclipse LSAT™ offers design-space exploration for the physical machine which enables
engineers to predict performance at a design time.

1.2. Tools
The following tools are used for designing architecture and modeling environment of Eclipse
LSAT™.

• Eclipse Modelling Framework (EMF) (https://www.eclipse.org/modeling/emf/)

• QVTo (https://projects.eclipse.org/projects/modeling.mmt.qvt-oml)

• Xtend (https://www.eclipse.org/xtend/)

• Xtext (https://www.eclipse.org/Xtext/)

• Sirius (https://www.eclipse.org/sirius/)

• Eclipse Layout Kernel (https://www.eclipse.org/elk/)

The following tools are used for performance analysis.

• Eclipse ESCET (Supervisory Control Engineering Toolkit) (https://www.eclipse.org/escet)

• Eclipse TRACE4CPS (https://www.eclipse.org/trace4cps)

2

https://www.eclipse.org/modeling/emf/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/sirius/
https://www.eclipse.org/elk/
https://www.eclipse.org/escet
https://www.eclipse.org/trace4cps

Chapter 2. Architecture
This section presents the architecture used to design and analyze logistics in Eclipse LSAT™. In the
first subsection, we explain the domain languages of Eclipse LSAT™. In addition to domain
languages, we also have analysis languages to perform performance analyses which are explained
in the second subsection.

2.1. Domain Languages
Logistics in Eclipse LSAT™ are modeled by separating different concerns in a modular way, as
shown in the following figure. Typically, persistence of each domain language is implemented in
Xtext. For graphical editing, Sirius representation is implemented.

2.1.1. Machine

This module describes the plant in terms of resources and peripherals with their capabilities and
restrictions. For example, machine corresponds to the plant or a part of the plant. Similarly robot
and its clamp correspond to resource and peripheral respectively. Thus, we describe the plant on a
logical level using the machine module.

We express motion in robots by using symbolic coordinates and physical coordinates to decouple
physical implementation from logical specification. For example, for representing symbolic
coordinates, the cylindrical coordinate system is used. Whereas, the angular coordinate system is
used to represent physical coordinates. The cylindrical system is shown in the figure below.

Figure 1. Cylindrical Coordinate System

The cylindrical coordinate system contains origin O, polar axis A, and longitudinal axis L. The dot is

3

a point with radial distance ρ (R), angular coordinate φ (Phi), and height z.

A robot in angular coordinate system is shown in the figure below. In this figure, the robot is
present at the cylindrical coordinate with angular coordinates ϴ1 (Th1) and ϴ2 (Th2) and height z.

Figure 2. Angular Coordinate System

The angular coordinates can be calculated from cylindrical coordinates as follows.

Th1 = Phi - acos((R - E)/2/L)
Th2 = Phi + acos((R - E)/2/L)

Machine Metamodel

The machine metamodel is shown in the figure below. Within industrial context, a machine model
instance typically represents a physical machine.

Figure 3. Machine Metamodel

Machine is the root of a model. It contains resources, peripheralTypes and imports. Resource
corresponds to resources in a machine, e.g., a robot. Each resource contains peripherals, e.g., clamp
of a robot. Each peripheral refers to PeripheralType that corresponds to the type of the peripheral,
e.g., linear motor is of a type motor.

4

Each peripheral type defines the action a peripheral can perform using ActionType. These actions
are typically called 'simple actions', which are defined as actions which are atomically executed and
consumes a particular amount of time.

As mentioned in Machine, motion in robots can be defined in symbolic coordinate system and
physical coordinate system. The physical coordinate system is modeled by setPoints. Similarly, the
symbolic coordinate system is modeled by axes. Axes and setpoints contain units represented by
Unit. If the unit of an axis differs from the unit of its set points, conversion in PeripheralType
converts a symbolic location in the symbolic coordinate system to a physical location in the
physical coordinate system.

The positions a peripheral can take in the symbolic coordinate system is represented by
SymbolicPosition contained in Peripheral. The allowed moves by a peripheral between symbolic
positions are represented by Path. Paths can be of three types as follows.

• UnidirectionalPath corresponds to a path with only one direction.

• BidirectionalPath corresponds to a bidirectional path.

• FullMeshPath corresponds to a path where all moves from a location to another location are
allowed.

For example, if a peripheral have symbolic position pos1 and pos2, and there is a unidirectional
path between them, then the peripheral can only move from pos1 to pos2, but not in the opposite
direction.

The speed profile for the paths is represented by Profile. The source or targets of paths is specified
by PathTargetReference that refers to a symbolic position. settling defines the settling axes on paths.

For all axes of a movable peripheral, we have to define positions. For example, in the following
figure, we can see positions for X and Y axes.

Figure 4. Positions for X axis

5

Figure 5. Positions for Y axis

To define positions for an axis, we define a key-value pair AxisPositionsMapEntry in the machine
metamodel, where key is an axis and values are positions (similar to AxisPositionsMapEntry).

The machine metamodel contains some operations, as explained in the following.

Name Class Description

getPosition(axis Axis) SymbolicPosition Returns position of the axis for
this specific symbolic position.

getOutgoingPaths() SymbolicPosition Returns the list of outgoing
paths from a symbolic position.

getSources() Path Returns the source of a path.

getTargets() Path Returns the target of a path.

TODO: Explain Distance (i.e. moving over a distance instead of between positions)
and ResourceItem (i.e. a pool of equivalent Resources), also see figure below.

6

Figure 6. Resource items

2.1.2. Settings

This module provides physical settings for the machine. For example, for peripherals, we can
specify the settings for physical locations and speed profiles.

Separating settings specification from machine specification allows us to have design-space
exploration by analyzing the same machine for different physical settings.

Settings Metamodel

The settings metamodel is shown in the figure below. Using the setting metamodel, we can specify
the physical settings for the Twinscan machine.

7

Figure 7. Settings Metamodel

Settings is the root of a model. It contains PhysicalSettings and Import. PhysicalSettings contains
settings associated to a peripheral of a resource, and Import imports machine files containing the
resources. In PhysicalSettings, we can,

1. set timing information for an action,

2. assign movement related parameters, i.e., motion parameters for a motion profile per axis,

3. allocate physical locations to symbolic positions per axis.

4. allocate physical distances to symbolic distances per axis.

For (1), PhysicalSettings contains TimingSettingsMapEntry. It is a key-value pair, where key is a
ActionType, and value is Timing. Thus, we can assign timing for each action.

For (2), (3) and (4), PhysicalSettings contains MotionSettingsMapEntry, which is again a key-value
pair. As (2), (3) and (4) are assigned for each axis, the key is Axis. The value is MotionSettings.

For (2), MotionSettings contains ProfileSettingsMapEntry, which is also a key-value pair. As we
specify the movement related parameters per speed profile, the key is Profile. The value is
MotionProfileSettings that defines the motion profile to use and contains a
MotionArgumentsMapEntry, which is again a key-value pair of which the key is the motion profile
parameter and the value is an Expression that defines the argument value.

For (3), MotionSettings contains LocationSettingsMapEntry, which is also a key-value pair. The key is
Position and the value is an Expression that defines the physical location.

8

For (4), MotionSettings contains DistanceSettingsMapEntry, which is also a key-value pair. The key is
Distance and the value is an Expression that defines the physical distance.

2.1.3. Activities

Activity diagrams are graphical representations of workflows of stepwise activities and actions
with support for choice, iteration and concurrency (see https://en.wikipedia.org/wiki/
Activity_diagram). In the context of Eclipse LSAT™, the Activities module composes high level
actions that a resource can perform into activities. For example, let us assume a robot capable of
performing two actions A1 and A2. The action A1 specifies moving of the robot towards the pre-
aligner (PA) position and the action A2 specifies clamping of a product by the robot. We can
compose these actions into an activity toPAandClamp in which the action A1 is executed before the
action A2.

It is also worth mentioning that Eclipse LSAT™ does not support all Activity diagram functions, e.g.,
iteration and choice.

 TODO: describe expressions and timing metamodels

Figure 8. Expressions Metamodel

9

https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/Activity_diagram

Figure 9. Timing Metamodel

Activity Metamodel

The activity metamodel is shown in the following figure. Using the activity metamodel, we can
model actions that a resource can perform.

Figure 10. Activity Metamodel

10

ActivitySet is the root of a model. It contains Activity and Import. Activity represents the activities
containing the actions a peripheral can perform. As activities have, in essence, a directed graph
structure, Activity is a type of EditableDirectedGraph (see EditableDirectedGraph Metamodel).

EditableDirectedGraph contains Node representing the nodes in a graph. Node has three subtypes,
i.e., SyncBar, Action and Event. Actions represents actions, syncbars are used to specify
synchronization between actions and events can be used to specify synchronization across
activities. Action contains TracePoint that is used for conformance checking of traces (see
Conformance Checking subsection). As action is defined for a resource, Action has an association
with Resource.

Action has three subtypes, explain as follows.

• Claim represents the claiming of a resource. Typically, claim is the start action in the activity
diagram in which a resource is claimed and rest of the actions take place afterwards. In typical
activity diagram workflows, the start action is shown as a black circle.

• Release represents the releasing of a resource. Typically, release is the final action in the activity
diagram in which a resource is release after rest of the actions have taken place. In typical
activity diagram workflows, the final action is shown as a encircled black circle.

• PeripheralAction represents the actions involving a peripheral. For example, clamping of a
product by the peripheral clamp of a robot. Therefore, PeripheralAction has an association with
Peripheral.

PeripheralAction are of two types, as explained in the following.

• SimpleAction represents simple actions like clamping or unclamping of a robot hand.

• Move represents the actions involving movements between symbolic positions or over distances.
Move has a boolean attribute stopAtTarget. If this attribute is true, then the peripheral does not
perform any further movement and the current movement ends in stand-still. If this attribute is
false, then another movement follows the current movement.

Activity also contains LocationPrerequisite that represents the initial location for all peripherals that
move between positions for an activity.

2.1.4. Logistics

This module schedules activities specified in the activity module. For example, if we have two
activities toPAandClamp and Measure, we can schedule these activities in such a way that the
activity toPAandClamp is executed before the activity Measure.

Thus, we use the logistics module to specify the timing and throughput requirements.

Logistics Metamodel

The logistics metamodel is shown in the following figure. This metamodel is used to schedule
activities modeled using Activity Metamodel.

11

Figure 11. Logistics Metamodel

ActivityDispatching is the root of a model. It contains DispatchGroup, ResourceIterationsMapEntry
and Import.

DispatchGroup represents a group of activity dispatches. DispatchGroup has an attribute offset that
represents the offset time before the activities to start. DispatchGroup contains Dispatch that
represents dispatching of an activity. Therefore, Dispatch has an association with Activity.

ResourceIterationsMapEntry is used to identify where the specification can be optimized for
throughput performance of the system. ResourceIterationsMapEntry is also used to show an
overview of the throughput per resource and the throughput of the total activity dispatching
sequence. Thus, ResourceIterationsMapEntry is a key-value pair, where key is Resource
representing the resource for which the throughput is calculated, and value is EIntegerObject
representing the number of iterations.

 TODO: explain new concepts, i.e. Repeat, ResourceItem and Attributes.

2.2. Analysis Languages

2.2.1. DirectedGraph Metamodel

The DirectedGraph metamodel is shown in the following figure.

12

Figure 12. DirectedGraph Metamodel

DirectedGraph is the root of a model. It contains Node and Edge. Node represents nodes in a graph
and Edge represents edges in a graph. Each node has outgoingEdges and incomingEdges. Similarly,
each edge has one sourceNode and targetNode.

For stochastic analysis in Eclipse LSAT™, various stochastic annotations have to be assigned to
nodes and edges. This is done using Aspect. Directed graphs can also contain subgraphs represented
by subGraphs.

The DirectedGraph metamodel contains an operation, as explained in the following.

Name Class Description

allNodesInTopologicalOrder():N
ode

EditableDirectedGraph Returns all nodes in a directed
graph in a topological order.

2.2.2. EditableDirectedGraph Metamodel

Activity flow in activity specifications are represented in a textual representation as follows.

A1 → A2 → A3

where A1, A2 and A3 represent activities and arrows represent the flow between activities. We can
also see this example in the form of a directed graph where activities are represented by nodes and
arrows between activities represent edges. Thus, we can represent this example using
DirectedGraph Metamodel.

13

However, Xtext is based on LL(k) (see https://en.wikipedia.org/wiki/LL_parser), which does not
allow left recursive grammar. Thus, we cannot concatenate edges using DirectedGraph Metamodel.
It means that if want to use DirectedGraph Metamodel to represent the aforementioned activity
flow, we have to write two edges, where the first edge is between A1 and A2, and the second edge is
between A2 and A3.

To overcome this challenge, we built another metamodel termed as EditableDirectedGraph
metamodel, where the target of the first edge in the aforementioned example is A2 → A3 instead of
A2. Similarly, A3 is the target of the second edge. In this way, we can concatenate different edges.

The structure of these directed graphs is captured by the EditableDirectedGraph metamodel. In the
following, the EditableDirectedGraph metamodel is described.

Figure 13. EditableDirectedGraph Metamodel

EditableDirectedGraph is the root of a model. It contains Node and Edge. To facilitate concatenation
of edges in the textual syntax, Edge contains a class EdgeTarget that has a subtype TargetReference.
In the textual syntax, target of an edge is represented by target which can refer to edge or node.
Thus, target of an edge can be another edge or a node (if it is the last node in the activity flow). For
example, in the running example, target of the first edge is the next edge A2 → A3. As A3 is the last
node in the activity flow, target of the second edge is A3.

Similarly, outgoingEdges of a node are determined by the association sourceReference.

2.2.3. Scheduler Metamodel

The scheduler metamodel serves as a basis for the scheduling activities workflow (see Scheduling

14

https://en.wikipedia.org/wiki/LL_parser

activities including Gantt chart visualization). In the following, the Scheduler metamodel is
described.

Figure 14. Scheduler Metamodel

It consists of five parts as explained in the following.

Dispatch Graph

Dispatch Graph is used to convert activity dispatching sequence to a directed graph. Therefore,
DispatchGraph is a type of TaskDependencyGraph that refers to DirectedGraph Metamodel.
DispatchGraph has an association to Dispatch that refers to Logistics Metamodel. Dispatch contains
DispatchGroup that also refers to Logistics Metamodel. DispatchGroup has an association with
DispatchGroupTask that is a type of Task.

ActionTask

Task has also another subtype ActionTask that is used to convert actions in Activity Metamodel to a
graph. ActionTask has three subtypes, as explained in the following.

• ClaimTask represents the task of claiming a resource.

• Release represents the task of releasing a resource.

• PeripheralAction represents the actions involving a peripheral.

Resource

In the scheduling activities workflow (see Scheduling activities including Gantt chart visualization),
Gantt charts are generated per resources. Therefore, we need to extract related resources from the
activity dispatching sequence. To achieve this objective, we have Resource in the scheduler
metamodel. Resource has three subtypes, as explained in the following.

• PeripheralResource represents a Resource whose peripheral has performed an action, e.g., a
move or an atomic action.

15

• ClaimReleaseResource represents a Resource that is claimed or released.

• DispatchGroupResource represents a Resource involved in an activity sequence.

ScheduledTask

ScheduledTask represents the scheduled task. It has the following attributes.

• startTime represents the starting time of a task.

• endTime represents the finishing time of a task.

• sequence represents the sequence of scheduled activities to which the task belongs.

ScheduledTask has a subtype ClaimedByScheduledTask that can claim and release a scheduled task.

 TODO: explain EventStatusTask.

Aspect

As mentioned in DirectedGraph Metamodel, aspects are used to annotate various stochastic
features. Therefore, Aspect has a subtype StochasticAnnotation that has an attribute weight
representing the timing distribution.

 TODO: explain EventAnnotation.

2.2.4. PetriNet Metamodel

A Petri net is a directed graph, in which the nodes represent transitions (i.e. events that may occur,
represented by bars) and places (i.e. conditions, represented by circles). The directed arcs describe
which places are pre- and/or postconditions for which transitions (signified by arrows).

The PetriNet metamodel is shown in the following figure.

16

Figure 15. PetriNet Metamodel

As Petri net can be seen as a type of a directed graph, the root of the PetriNet metamodel is
DirectedGraph with a subtype PetriNet. As seen in DirectedGraph Metamodel, DirectedGraph
contains Edge and Node. Each edge must contain one source and target node.

As nodes in Petri net represent places and transitions, Edge has two subtypes, i.e., Place and
Transition. Initial and final places of a Petri net is represented by initial and final respectively.
Places has an attribute token that represents if a place contains a token or not.

The PetriNet metamodel is used for conformance checking of Eclipse LSAT™ activity dispatching
traces containing a recorded list of actions against specification. Thus, Place has an association with
Action.

To relate a trace to a specification in a better way, we add "trace points" to the activity dispatching
specification. In other words, activity dispatching sequence is a set of trace points. Trace points are
represented as transitions in our Petri net model. Thus, Transition has an association with
TracePoint. Furthermore, sync bars in activity specifications are also represented as transitions in
the Petri net model. Therefore, Transition has an association with SyncBar. Lastly, each transition
can contain multiple traceLines that provide more information if the conformance checking fails
such as line number, time stamp etc. This information is contained as attributes inside TraceLine.

2.2.5. MaxPlus Metamodel

The maxplus metamodel is shown in the figure below.

17

Figure 16. MaxPlus Metamodel

The maxplus metamodel consists of the following major components.

1. Matrix representing the max-plus matrices.

2. Graph corresponding to the following subtypes.

1. FSM referring to finite state machine used for representing a CIF automata.

2. MPS referring to max-plus state-space.

3. MPA referring to max-plus automaton.

As mentioned earlier, there exists two techniques for analyzing performance using max-plus, i.e.,
max-plus state-space and max-plus automaton. Thus, MPS and MPA are utilized for these
techniques respectively.

MaxPlusSpecification is the root of a model. It contains Matrix and Graph. To represents values in
matrices conveniently, the maxplus metamodel contains Value that is a data type of double. Matrix
contain row vectors which are a subtype of Vector representing that the values contained in the
row vectors are of type double. Vector has an attribute values of type Value. The initial value of
values is -Infinity.

Graph contains Vertex and Edge. Each vertex can have 0 or more outgoing or incoming edges. Each
edge has precisely one source and one target. As explained earlier, Graph has three subtypes as
follows.

• FSM

• MPS

• MPA

18

Vertex has three subtypes as follows.

• FSMState representing a state in FSM.

• MPSConfiguration representing a configuration state in MPS.

◦ Each MPSConfiguration is associated to exactly one FSMState.

• MPAState representing a state in MPA.

◦ Similar to MPSConfiguration, each MPAState has an exactly one association with FSMState.

As MPS represents data in the form of columns, each MPSConfiguration contains exactly one
ColumnVector. Furthermore, MPAState uses the information in the matrices for performance
optimization. For this purpose, MPAState has an association with Matrix, and has the following
attributes.

• matrixRowIndex representing the row index of the matrix.

• matrixColumnIndex representing the column index of the matrix.

Edge has three subtypes as follows.

• FSMTransition representing a transition between states in FSM. FSM uses the name of the
matrices as labels on the transitions. Thus, FSMTransition has an association with Matrix.

• MPSTransition representing a transition between states in MPS. MPSTransition has an attribute
reward representing the number of products produced by taking this transition. Moreover,
MPATransition has another attribute duration representing time involved in taking this
transition.

• MPATransition representing a transition between states in MPA. MPATransition, similar to
MPSTransition, has an attribute reward representing the number of products produced by
taking this transition. Similarly, MPATransition has also an attribute duration representing time
involved in taking this transition.

The maxplus metamodel contains operations, as explained in the following.

Name Class Description

getValue(row EInt, column
EInt): Value

Matrix Returns the value at the given
row index and column index of
a matrix.

19

Chapter 3. Workflows for aspect models
Now, we have explained all metamodels in Eclipse LSAT™. In this section, we describe different
analysis techniques available in Eclipse LSAT™ and related workflows.

3.1. Scheduling activities including Gantt chart
visualization
This workflow allows us to visualize an activity dispatch sequence in the form of Gantt charts as
shown in the figure below.

Figure 17. Scheduling activities Workflow

In the following, we explain this workflow.

1. A dispatch model is transformed to a dispatch graph model lsat_graph using a model-to-model
transformation Dispatch2Graph written in QVTo. In the dispatch graph model, a resource might
be used by multiple activities in the sequence. However, the Dispatch2Graph transformation
ensures that only one activity claims a resource at a time. And when the resource is released by
the first activity, only then the next activity can claim that resource. This is done by adding a
dependency from the release action of the first activity to the claim action of the second activity.
The Dispatch graphs are explained in detail in Scheduler Metamodel.

2. The action execution times of activities in the dispatch model are calculated and added to
lsat_graph generated in step 1 using a model-to-model transformation AddExecutionTimes
written in Xtend.

3. The lsat_graph model produced in step 2 is transformed to a ds_schedule model using a model-
to-model transformation Scheduler written in QVTo. The Scheduler transformation projects the
graph on a set of resources in such a way that the the execution times of the nodes are
respected. For this purpose, the graph is topologically ordered and scheduled onto the available
resources in a asap fashion.

20

4. The ds_schedule model generated in step 3 is transformed to Eclipse TRACE4CPS using a model-
to-text transformation to visualize the ds_schedule model in Eclipse TRACE4CPS.

3.2. Optimal Makespan/Throughput Scheduling

3.2.1. Introduction

The workflow given in the subsection Scheduling activities including Gantt chart visualization
explains how we can visualize a activity dispatch sequence. However, if a activity dispatch
sequence is written by hand, we cannot guarantee optimality. To overcome this challenge, a
workflow which can generate an optimal activity dispatch sequence automatically is added to
Eclipse LSAT™.

This workflow is summarized in the figure below.

Figure 18. Optimal Makespan/Throughput Scheduling

In this workflow, in addition to Eclipse LSAT™, we also use the following two extra
formalisms/tools.

1. Compositional Interchange Format (CIF): CIF is an automata-based modeling language for the
specification of discrete event, timed, and hybrid systems. We use CIF to formalize requirements
such as life-cycle of products, and synthesize a supervisory controller.

2. Max-Plus Automata: In modeling timed-based systems, quite frequently only the operations
max (or min) and + are needed. The max-plus algebra is a mathematical framework that has
maximum and addition as the two binary operations. It can be used appropriately to determine

21

marking times within a given Petri net and a vector filled with marking state at the beginning.
The MaxPlus metamodel is explained earlier in MaxPlus Metamodel.

3.2.2. Workflow

The figure below shows the workflow used to derive optimal activity dispatching sequence with
respect to makespan/throughput.

Figure 19. Optimal Makespan/Throughput Scheduling Workflow

1. A activity file is transformed to a editable directed graph model lsat_graph using a model-to-
model transformation Activity2Graph written in QVTo. The EditableDirectedGraph metamodel
is explained earlier in EditableDirectedGraph Metamodel.

2. The action execution times of activities in the dispatch model are calculated and added to
lsat_graph generated in step 1 using a model-to-model transformation AddExecutionTimes
written in Xtend.

3. The lsat_graph model produced in step 2 along with a CIF file is transformed to a MaxPlus
model using a model-to-model transformation Graph2MaxPlus written in QVTo.

4. An algorithm OptimalDispatchGenerator takes as input the MaxPlus model generated in step 3,
performs state-space exploration, and outputs optimal activity dispatch sequence OptMaxPlus
written in Java.

5. The optimal sequence generated in step 4 OptMaxPlus is transformed to a dispatch file using a
model-to-model transformation OptMaxPlus2Dispatch written in Xtend. The model-to-model
transformation OptMaxPlus2Dispatch also takes the activity file as an input to determine for
which activity, the activity dispatching sequence is generated.

22

3.3. Conformance Checking
Eclipse LSAT™ also supports conformance checking of activity dispatching sequence. This is done
by first recording a list of actions termed as traces. Second, an activity dispatching sequence is
transformed to an equivalent Petri net graph. Last, traces and Petri net graph are fed to the
conformance checker, which replays traces on the Petri net to check conformance.

The workflow used to check conformance is shown in the figure below.

Figure 20. Conformance Checking Workflow

1. A dispatching file is transformed to a PetriNets model using a model-to-model transformation
dispatch2PetriNets. The PetriNets metamodel is already explained in PetriNet Metamodel.

2. The PetriNets model generated in step 1 is checked for conformance against the Traces files
using a model-to-model transformation conformanceCheck written in QVTo.

23

Chapter 4. Overview of Plugins
This section presents the overview of plugins in Eclipse LSAT™.

4.1. Machine

Name Description

org.eclipse.lsat.machine.dsl Contains the metamodel of machine.

org.eclipse.lsat.machine.dsl.edit Contains generic reusable classes for building
editors for EMF models of machine.

org.eclipse.lsat.machine.teditor Contains the Xtext grammar definition of
machine and all related components such as
parser, lexer, linker. validation, etc.

org.eclipse.lsat.machine.teditor.ide Contains the Xtext language-specific text editor.

org.eclipse.lsat.machine.teditor.ui Contains advanced functionalities such as
content assist, outline tree and quick fix.

org.eclipse.lsat.machine.design Contains Sirius modeling projects and
representations.

4.2. Settings

Name Description

org.eclipse.lsat.setting.dsl Contains the metamodel of settings.

org.eclipse.lsat.setting.teditor Contains the Xtext grammar definition of
settings and all related components such as
parser, lexer, linker. validation, etc.

org.eclipse.lsat.setting.teditor.ide Contains the Xtext language-specific text editor.

org.eclipse.lsat.setting.teditor.ui Contains advanced functionalities such as
content assist, outline tree and quick fix.

org.eclipse.lsat.setting.design Contains Sirius modeling projects and
representations.

4.3. Activities

Name Description

org.eclipse.lsat.activity.dsl Contains the metamodel of activities.

org.eclipse.lsat.activity.teditor Contains the Xtext grammar definition of
activities and all related components such as
parser, lexer, linker. validation, etc.

org.eclipse.lsat.activity.teditor.ide Contains the Xtext language-specific text editor.

24

Name Description

org.eclipse.lsat.activity.teditor.ui Contains advanced functionalities such as
content assist, outline tree and quick fix.

org.eclipse.lsat.activity.diagram.design Contains Sirius modeling projects and
representations.

org.eclipse.lsat.activity.diagram.layout Contains Eclipse Layout Kernel (ELK) definitions
and algorithms.

4.4. Logistics

Name Description

org.eclipse.lsat.dispatching.dsl Contains the metamodel of logistics.

org.eclipse.lsat.dispatching.teditor Contains the Xtext grammar definition of
activities and all related components such as
parser, lexer, linker. validation, etc.

org.eclipse.lsat.dispatching.teditor.ide Contains the Xtext language-specific text editor.

org.eclipse.lsat.dispatching.teditor.ui Contains advanced functionalities such as
content assist, outline tree and quick fix.

4.5. Directed Graph

Name Description

org.eclipse.lsat.common.graph.directed Contains the metamodel of directed graph.

org.eclipse.lsat.common.graph.directed.editable Contains the metamodel of editable directed
graph.

4.6. MaxPlus

Name Description

org.eclipse.lsat.common.mpt.dsl Contains the metamodel of maxplus.

org.eclipse.lsat.common.mpt.dsl.edit Contains generic reusable classes for building
editors for EMF models of maxplus.

org.eclipse.lsat.common.mpt.dsl.editor Contains a maxplus editor.

org.eclipse.lsat.mpt.api Contains algorithms for computing optimal
makespan/throughput.

org.eclipse.lsat.mpt.feature

org.eclipse.lsat.mpt.ui Contains ui features for computing optimal
makespan/throughput.

25

Name Description

org.eclipse.lsat.mpt.transformation Contains transformations for computing optimal
makespan/throughput explained in Section
Optimal Makespan/Throughput Scheduling.

4.7. Scheduling Activities including Gantt Chart
Visualization

Name Description

org.eclipse.lsat.scheduler.graph.dsl Contains the metamodel of scheduler graph.

org.eclipse.lsat.scheduler.ui Contains ui features for scheduling.

org.eclipse.lsat.scheduler Contains transformations for scheduling
explained in Section Scheduling activities
including Gantt chart visualization.

org.eclipse.lsat.scheduler.etf Contains transformations from a schedule to
Eclipse TRACE4CPS.

org.eclipse.lsat.motioncalculator.api Contains the API for computing timings for
different motion types, e.g., point-to-point and
distance moves, and motion profiles settings.

org.eclipse.lsat.motioncalculator.json(.native) Contains support classes to easily implement a
native motion calculator.

org.eclipse.lsat.timing Contains algorithms for computing timings for
different motion types, e.g., point-to-point and
distance moves, and motion profiles settings,
e.g., normal distribution, triangular distribution,
and Pert distribution.

org.eclipse.lsat.timinganalysis.ui Contains ui features for computing timings e.g.,
playing and exporting animations.

4.8. Conformance Checking

Name Description

org.eclipse.lsat.petri_net.dsl Contains the metamodel of Petri Net.

org.eclipse.lsat.petri_net.design Contains Sirius modeling projects and
representations.

org.eclipse.lsat.conformance Contains transformations for conformance
checking of traces explained in Section
Conformance Checking.

org.eclipse.lsat.conformance.ui Contains ui functions for conformance checking
of traces.

26

4.9. Throughput per Resource

Name Description

org.eclipse.lsat.resource_throughput.ui Returns ui functions and algorithms for
calculating throughput per resource.

4.10. Documentation

Name Description

org.eclipse.lsat.documentation Contains AsciiDoc files of the Eclipse LSAT™ user
guide.

org.eclipse.lsat.design Contains AsciiDoc files of this Eclipse LSAT™
design documentation.

org.eclipse.lsat.intro Contains help files of Eclipse LSAT™.

27

Chapter 5. Developing

5.1. Development environment setup
Follow these instructions to set up an Eclipse LSAT™ development environment.

To create a development environment (first time only):

• Get the Eclipse Installer:

◦ Go to https://www.eclipse.org/ in a browser.

◦ Click on the big [ Download ] button at the top right.

◦ Download Eclipse Installer, 64 bit edition, using the [ Download x86_64 ] button.

• Start the Eclipse Installer that you downloaded.

• Use the hamburger menu at the top right to switch to advanced mode.

• For Windows:

◦ When asked to keep the installer in a permanent location, choose to do so. Select a directory
of your choosing.

◦ The Eclipse installer will start automatically in advanced mode, from the new permanent
location.

• For Linux:

◦ The Eclipse installer will restart in advanced mode.

• Continue with non-first time instructions for setting up a development environment.

To create a development environment:

• Ensure you are using the latest version of the Eclipse Installer:

◦ One option is to download it again, as per the 'first time' instructions above.

◦ Another option is to update your existing Eclipse Installer. In the Eclipse Installer, when in
advanced mode, click the 'Install available updates' button. This button with the two-arrows
icon is located at the bottom-left part of the window, next to the version number. Wait for
the update to complete and the Eclipse Installer to restart. If the button is disabled (grey),
you are already using the latest version.

• In the first wizard window:

◦ Select Eclipse IDE for Eclipse Comitters from the big list at the top.

◦ Select 2020-06 for Product Version.

◦ For Java 1.8+ VM select a JRE 1.8 that is installed on your local machine. Use the button to the
right of the dropdown to manage the installed virtual machines on your system. The JDK can
be downloaded from e.g. Oracle or Adoptium.

◦ Choose whether you want a P2 bundle pool (recommended).

28

https://www.eclipse.org/
https://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
https://adoptium.net/archive.html?variant=openjdk8&jvmVariant=hotspot

◦ Click [ Next ].

• In the second wizard window:

◦ Use the green '+' icon at the top right to add the Oomph setup.

▪ For Catalog, choose Eclipse Projects.

▪ For Resource URIs, enter https://gitlab.eclipse.org/eclipse/lsat/lsat/-
/raw/develop/lsat.setup and make sure there are no spaces before or after the URL.

▪ Click [ OK ].

◦ Check the checkbox for Eclipse LSAT™, from the big list. It is under Eclipse Projects / <User>.

◦ At the bottom right, select the develop stream.

◦ Click [ Next ].

• In the third wizard window:

◦ Enable the Show all variables option to show all options.

◦ Choose a Root install folder and Installation folder name. The new development environment
will be put at <root_installation_folder>/<installation_folder_name>.

◦ Fill in the Eclipse LSAT™ Git clone URL:

▪ Committers with write access to the Eclipse LSAT™ official GitLab repository can use the
default URL https://gitlab.eclipse.org/eclipse/lsat/lsat.git.

▪ Contributors can use the same URL, but as they don’t have write access, they will not be
able to push to the remote repository. They can instead make a fork of the official Git
repository. Then they can fill in the URL of their clone instead, i.e.
https://gitlab.eclipse.org/<username>/<cloned_repo_name>.git, with <username> replaced
by their Eclipse Foundation account username, and <cloned_repo_name> replaced by the
name of the cloned repistory, which defaults to lsat.

◦ For Eclipse Foundation account full name fill in your full name (first and last name) matching
the full name in your Eclipse Foundation account. This will be used as name for Git commits.

◦ For Eclipse Foundation account email address fill in the email address associated with your
Eclipse Foundation account. This will be used as email for Git commits.

◦ Click [ Next ].

• In the fourth wizard window:

◦ Select [ Finish ].

• Wait for the setup to complete and the development environment to be launched.

◦ If asked, accept any licenses and certificates.

• Press [ Finish ] in the Eclipse Installer to close the Eclipse Installer.

• In the new development environment, observe Oomph executing the startup tasks (such as Git
clone, importing projects, etc). If this is not automatically shown, click the rotating arrows icon
in the status bar (bottom right) of the new development environment.

• Wait for the startup tasks to finish successfully.

29

If you don’t open the Oomph dialog, the status bar icon may disappear when
the tasks are successfully completed.

If you have any issues during setting up the development environment, consider the following:

• You can set the following environment variables to force the use of IPv4, in case of any issues
accessing/downloading remote files:

_JAVA_OPTIONS=-Djava.net.preferIPv4Stack=true
_JPI_VM_OPTIONS=-Djava.net.preferIPv4Stack=true

After setting them, make sure to fully close the Eclipse Installer and then start it again, for the
changes to be picked up.

In your new development environment, consider changing the following settings:

• For the Package Explorer view:

◦ Enable the Link with Editor setting, using the icon.

◦ Enable showing resources (files/folders) with names starting with a period. Open the View
Menu () and choose Filters… (). Uncheck the .* resources option and click [ OK ].

◦ Group projects into working sets.

▪ Open the View Menu () and choose Top Level Elements › Working Sets.

▪ Open the View Menu () and choose Configure Working Sets…. Use [ Select All ] to
select all working sets and click [ OK ].

5.2. Building with Maven

Eclipse LSAT™ should be built using a Java 1.8 VM. The JDK can be downloaded
from e.g. Oracle or Adoptium.
To test which Java version is used by Maven, type mvn -version in a command
shell.

To build Eclipse LSAT™ with Maven execute the following command in the root:

Linux

./build.sh

Windows

.\build.cmd

Other

mvn
-Dtycho.pomless.aggregator.names=documentation,features,maxplustool,plugins,common,releng,sc
heduler,product,tests

30

https://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
https://adoptium.net/archive.html?variant=openjdk8&jvmVariant=hotspot

 In the remainder of this document this command will be referred to as build.sh

5.3. License header
The Maven build uses license-maven-plugin to determine if the correct license headers are used for
source files. If the header is incorrect the build fails.

Handy commands:

• To only run the check execute: ./build.sh license:check.

• To automatically add/update execute: ./build.sh license:format.

5.4. Third party notice
Whenever dependencies change, NOTICE.asciidoc has to be updated.

31

https://github.com/mycila/license-maven-plugin
https://gitlab.eclipse.org/eclipse/lsat/lsat/-/blob/develop/releng/org.eclipse.lsat.license/license_header.txt
https://gitlab.eclipse.org/eclipse/lsat/lsat/-/blob/develop/NOTICE.asciidoc

Appendix A: How to implement your own
custom motion profile

Before you start, a fully setup LSAT development environment in Eclipse is
required.

Create a new motion calculator

In order to benefit fully from this explanation, you must be at least familiar with
Eclipse Plugin Development. If this is not the case, please have a look Eclipse
Plugin Development tutorial and Eclipse Extension Points and Extensions -
Tutorial

1. Create a new Eclipse plugin project. This project will implement your custom motion profile.
Make sure the box for making changes to the UI is not checked.

32

https://www.vogella.com/tutorials/EclipsePlugin/article.html
https://www.vogella.com/tutorials/EclipsePlugin/article.html
https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html
https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

2. Add an extension point of type org.eclipse.lsat.timing.calculator in the plugin.xml file. This
extension point is needed to define the capabilities of your new motion calculator. When asked
if you want to add the project as a dependency, select yes.

3. Add a MotionProfile for each supported motion profile in the Extensions tab. Fill in the name
of the new profile and the required key that will be used in the specification. For each motion
profile, declare their motion Parameters. A graphical and textual example of the plugin.xml
are shown below.

Our custom motion calculator also supports the default third order point-to-
point motion profile.

33

Figure 21. Example with a custom (Linear) motion profile and the default (Third order point-to-point)
motion profile.

You can also modify the plugin.xml file of your motion calculator plugin to
define motion profiles and parameters.

34

Listing 1. plugin.xml showing the motion profile and parameter specifications

 <MotionProfile
 key="Linear"
 name="Linear (constant velocity)">
 <Parameter
 key="V"
 name="Velocity"
 required="true">
 </Parameter>
 </MotionProfile>
 <MotionProfile
 key="ThirdOrderP2P"
 defaultProfile="true"
 name="Third order point-to-point">
 <Parameter
 key="V"
 name="Velocity"
 required="true">
 </Parameter>
 <Parameter
 key="A"
 name="Acceleration"
 required="true">
 </Parameter>
 <Parameter
 key="J"
 name="Jerk"
 required="true">
 </Parameter>
 <Parameter
 key="S"
 name="Settling"
 required="false"> ①
 </Parameter>
 </MotionProfile>

① Parameters can specified to be optional, but default values cannot be specified for these
parameters. The defaults must be part of the implementation

4. Select the extension point and create a motion calculator class by clicking the class:* hyperlink.
Below you can see an example of our CustomMotionCalculator class.

Do not name your class MotionCalculator as it can lead to name clashes. Use a
name like e.g CustomMotionCalculator.

35

Make sure to implement the
org.eclipse.lsat.timing.calculator.MotionCalculator interface and optionally
extend the org.eclipse.lsat.timing.calculator.PointToPointMotionCalculator
if you want your motion calculator to support the default third order point-to-
point motion profile, like our CustomMotionCalculator.

Listing 2. CustomMotionCalculator.java as an example of the motion calculator implementations.

public class CustomMotionCalculator extends PointToPointMotionCalculator implements
MotionCalculator { ①
 protected static final String LINEAR_MOTION_PROFILE_KEY = "Linear";

 @Override
 public void validate(List<MotionSegment> segments) throws
MotionValidationException { ②
 if (MotionSegmentUtilities.isMotionProfile(segments,
THIRD_ORDER_POINT_TO_POINT_MOTION_PROFILE_KEY)) {
 super.validate(segments); ③
 } else if (MotionSegmentUtilities.isMotionProfile(segments,
LINEAR_MOTION_PROFILE_KEY)) {
 // Add your custom motion validations here
 if (segments.size() > 1) {
 throw new MotionValidationException(
 "Event-on-the-fly (move passing) is not supported by
CustomMotionCalculator", segments);
 }
 if (MotionSegmentUtilities.getSettledSetPointIds(segments).size() > 0)
{
 throw new MotionValidationException("Settling is not supported by
CustomMotionCalculator", segments);
 }
 } else {
 throw new MotionValidationException(
 "Mixing motion profiles in one move is not supported by
CustomMotionCalculator", segments);
 }
 }

 @Override
 public List<Double> calculateTimes(List<MotionSegment> segments) throws
MotionException { ④
 if (MotionSegmentUtilities.isMotionProfile(segments,
THIRD_ORDER_POINT_TO_POINT_MOTION_PROFILE_KEY)) {
 return super.calculateTimes(segments);
 }

 // Validate method already validated that motion profile equals
LINEAR_MOTION_PROFILE_KEY in this case
 // Validate method already validated that the segments array contains
exactly 1 element

36

 return Arrays.asList(calculateLinearTime(segments.iterator().next())
.doubleValue());
 }

 @Override
 public Collection<PositionInfo> getPositionInfo(List<MotionSegment> segments)
throws MotionException { ⑤
 if (MotionSegmentUtilities.isMotionProfile(segments,
THIRD_ORDER_POINT_TO_POINT_MOTION_PROFILE_KEY)) {
 return super.getPositionInfo(segments);
 }

 // Validate method already validated that motion profile equals
LINEAR_MOTION_PROFILE_KEY in this case
 // Validate method already validated that the segments array contains
exactly 1 element
 MotionSegment segment = segments.iterator().next();

 BigDecimal segmentTime = calculateLinearTime(segment);
 List<PositionInfo> result = new ArrayList<>();
 BigDecimal position = BigDecimal.valueOf(0);
 for (MotionSetPoint motionSetPoint: segment.getMotionSetpoints()) {
 BigDecimal setPointTime = calculateLinearTime(motionSetPoint);

 PositionInfo positionInfo = new PositionInfo(motionSetPoint.getId());
 position = MotionSetPointUtilities.getFrom(motionSetPoint, position);
 positionInfo.addTimePosition(0d, position.doubleValue());
 position = MotionSetPointUtilities.getFrom(motionSetPoint, position.
add(motionSetPoint.getDistance()));
 positionInfo.addTimePosition(setPointTime.doubleValue(), position
.doubleValue());
 // If setPoint arrives early at To, add a third sample
 if (setPointTime.compareTo(segmentTime) < 0) {
 positionInfo.addTimePosition(segmentTime.doubleValue(), position
.doubleValue());
 }
 result.add(positionInfo);
 }
 return Collections.unmodifiableCollection(result);
 }

 private BigDecimal calculateLinearTime(MotionSegment segment) {
 BigDecimal maxTime = BigDecimal.ZERO;
 for (MotionSetPoint motionSetPoint: segment.getMotionSetpoints()) {
 maxTime = maxTime.max(calculateLinearTime(motionSetPoint));
 }
 return maxTime;
 }

 private BigDecimal calculateLinearTime(MotionSetPoint motionSetPoint) {
 if (!motionSetPoint.doesMove()) {

37

 return BigDecimal.ZERO;
 }
 BigDecimal velocity = motionSetPoint.getMotionProfileArgument
(VELOCITY_PARAMETER_KEY);
 return motionSetPoint.getDistance().abs().divide(velocity, 6, RoundingMode
.HALF_UP);
 }
}

① To reuse the built in default motion calculator of Eclipse LSAT™ extend your newly created
class with PointToPointMotionCalculator.

② Start with the implementation of the validate method. The constraints can be on an
individual level or combined.

③ If you are reusing the PointToPointMotionCalculator, you can reuse the validate from the
super class.

④ Continue with the implementation of calculateTimes. This method is called after validation.
It is mandatory and its purpose is to determine the duration of the move.

⑤ Finally implement the getPositionInfo. This method is called after validation when a motion
plot is created and calculates for each setpoint its position over time. For incremental
development this function could first be left empty, till the calculator works. Additionally,
getPositionInfo is used to visualizes the profile. For more info, check out Plotting a move in
Chapter 3 from the user guide.

Implementor notes

• The motion calculator always calculates a move for a single peripheral from standstill to
standstill.

• A move consists of one or more (in case of a passing move) MotionSegments.

• The default PointToPointMotionCalculator only supports a passing move, when for all
MotionSegments the motion profile is the same and its parameter values are the same.

• Each MotionSegment contains a MotionSetPoint for every setpoint of the peripheral.

• A MotionSetPoint indicates where the movement comes from and where it needs to go.

Test your new motion calculator
1. Start the Eclipse LSAT™ runtime environment from within the development environment by

means of the predefined Eclipse LSAT™ launch target.

2. Select your custom motion calculator via the Window › Preferences › Logistics › Motion
Calculator menu.

38

3. Open the .settings file of an Eclipse LSAT™ specification.

a. Go to the Axis and then Profiles section.

b. Put your mouse cursor the existing profile e.g normal.

c. Press Ctrl + Space. Select the previously defined motion profile, Linear in our code example.

39

d. Finish by defining the values for the parameters that the custom motion profile requires.

40

Appendix B: How to implement a custom
motion calculator with Json
Eclipse LSAT™ provides a customisable API to translate specified motion profiles into duration
times or time/position info.

The API is used to analyse throughput in timing analysis and to plot moves in an activity diagram.

Third parties have the possibility to implement their own Motion Calculator in their own
programming language of choice using Json. This appendix describes what needs to be done for
that.

Terminology

Term Description Remark

Motion profile A set of parameters for a
motion calculator
implementation to calculate
times or position info.

A motion profile can be
supplied by third parties. For
example a Third order profile
with parameters Velocity,
Acceleration, Jerk If more than
one profile is supplied then
exactly one profile must have
defaultProfile set to true.

Motion Segment Specifies a move from position
A to B along one or more
specified axes. Each axis
movement is specified in a
Motion SetPoint.

Motion Segment Array A concatenated set of moves
from position to position where
in between segments specify
passing positions while moving.
The first segment starts with
velocity 0 and the last segment
ends with velocity 0. This is
typically called a point-to-point
move.

Motion Setpoint A movement along one axis
containing the from, to position
or distance and the profile
parameter values.

A setpoint has an id which
typically represents an axis If a
motion segment contains more
than one setpoint they are all
moving at the same moment in
time.

41

Term Description Remark

Supported Profiles The list of one or more profiles
supported by a Motion
Calculator.

Validate Validates if the given data can
be handled without errors by a
Motion Calculator.

Calculate Times Calculate duration of a set of
(concatenated) moves. An array
with times in seconds for each
motion segment is returned.
The value is the delta time
against beginning of the move.

Get Position Info Get the position info per of a set
of (concatenated) moves. An
array containing (absolute)
times (duration since start in
seconds) and (absolute) position
(in meter) per set point id is
returned

Json Interface
Json data is transported using a synchronous shared library function call.

Third parties should implement this function and offer it in a shared library.

42

Listing 3. Json server.

#ifndef JSON_SERVER_H
#define JSON_SERVER_H

/*
 Interface call to a Motion Calculator Json server.
 See the LSAT design documentation for the json data to be exchanged.

 request contains the UTF-8 encoded Json request data
 response is a buffer of size response_size that can be used to write
 the json response to. response must be UTF-8 encoded.

 the function should return 0 except when the response does not fit
 into the response buffer then it should return a non 0 value.

 errormessages not related to `buffer overflows` should be return into
 the json response.
*/
extern "C" int request(char* response, const char* request, size_t response_size);

#endif // JSON_SERVER_H

Configuring the shared library

The shared library can be configured in Eclipse LSAT™ preferences. Make sure the library is visible
in the execution path of Eclipse LSAT™

43

44

Json Schema for request and response

The schema can be used to validate Json and/or to bind to a specific language like c, cpp, c#, ada, etc.

Listing 4. Request schema.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "requestType": {
 "type": "string",
 "enum": ["Validate", "CalculateTimes","PositionInfo","SupportedProfiles"]
 },
 "segments": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "setPoints": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "from": {
 "type": "number"
 },
 "to": {
 "type": "number"
 },
 "distance": {
 "type": "number"
 },
 "settling": {
 "type": "boolean"
 },
 "motionProfileId": {
 "type": "string"
 },
 "arguments": {}
 },
 "required": [
 "id",
 "distance",
 "motionProfile"
]

45

 }
]
 },
 "id": {
 "type": "string"
 }
 },
 "required": [
 "setPoints",
 "id"
]
 }
]
 }
 },
 "required": [
 "requestType"
]
}

Listing 5. Response schema.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "requestType": {
 "type": "string",
 "enum": ["Validate", "CalculateTimes","PositionInfo","SupportedProfiles"]
 },
 "times": {
 "type": "array",
 "items": [
 {
 "type": "number"
 }
]
 },
 "positionInfo": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "setPointId": {
 "type": "string"
 },
 "timePositions": {
 "type": "array",
 "items": [
 {

46

 "type": "array",
 "items": [
 {
 "type": "number"
 },
 {
 "type": "number"
 }
]
 },
 {
 "type": "array",
 "items": [
 {
 "type": "number"
 },
 {
 "type": "number"
 }
]
 }
]
 }
 },
 "required": [
 "id",
 "positions"
]
 }
]
 }
 },
 "motionProfiles": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "key": {
 "type": "string"
 },
 "name": {
 "type": "string"
 },
 "defaultProfile": {
 "type": "boolean"
 },
 "url": {
 "type": "string"
 },
 "parameters": {

47

 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "key": {
 "type": "string"
 },
 "name": {
 "type": "string"
 },
 "required": {
 "type": "boolean"
 }
 },
 "required": [
 "key",
 "name",
 "required"
]
 }
]
 }
 },
 "required": [
 "key",
 "name",
 "parameters"
]
 }
]
 },
 "required": [
 "requestType"
]
}

48

Examples of Json messages

Supported Profiles

{
 "requestType": "SupportedProfiles"
}

{
 "requestType": "SupportedProfiles",
 "motionProfiles": [
 {
 "key": "test",
 "name": "test",
 "defaultProfile": true,
 "parameters": [
 {
 "key": "V",
 "name": "V",
 "required": true
 },
 {
 "key": "A",
 "name": "A",
 "required": true
 },
 {
 "key": "J",
 "name": "J",
 "required": true
 }
]
 }
]
}

Validate

49

{
 "requestType": "Validate",
 "segments": [
 {
 "setPoints": [
 {
 "id": "X",
 "from": 0.3,
 "distance": 0,
 "settling": false,
 "motionProfileId": "ThirdOrderP2P",
 "arguments": {
 "A": 0.5,
 "S": 0.1,
 "V": 0.5,
 "J": 0.5
 }
 },
 {
 "id": "Y",
 "from": 0.15,
 "distance": -0.3,
 "settling": true,
 "motionProfileId": "ThirdOrderP2P",
 "arguments": {
 "A": 0.5,
 "S": 0.1,
 "V": 0.5,
 "J": 0.5
 }
 }
],
 "id": "nodeto A1"
 }
]
}

{
 "requestType": "Validate"
}

Calculate Times

50

{
 "requestType": "CalculateTimes",
 "segments": [
 {
 "setPoints": [
 {
 "id": "X",
 "from": 0.3,
 "distance": 0,
 "settling": false,
 "motionProfileId": "ThirdOrderP2P",
 "arguments": {
 "A": 0.5,
 "S": 0.1,
 "V": 0.5,
 "J": 0.5
 }
 },
 {
 "id": "Y",
 "from": 0.15,
 "distance": -0.3,
 "settling": true,
 "motionProfileId": "ThirdOrderP2P",
 "arguments": {
 "A": 0.5,
 "S": 0.1,
 "V": 0.5,
 "J": 0.5
 }
 }
],
 "id": "nodeto A1"
 }
]
}

{
 "requestType": "CalculateTimes",
 "times": [
 2.777731800328678
]
}

Position Info

51

{
 "requestType": "PositionInfo",
 "segments": [
 {
 "setPoints": [
 {
 "id": "X",
 "from": 0.3,
 "distance": 0,
 "settling": false,
 "motionProfileId": "ThirdOrderP2P",
 "arguments": {
 "A": 0.5,
 "S": 0.1,
 "V": 0.5,
 "J": 0.5
 }
 },
 {
 "id": "Y",
 "from": 0.15,
 "distance": -0.3,
 "settling": true,
 "motionProfileId": "ThirdOrderP2P",
 "arguments": {
 "A": 0.5,
 "S": 0.1,
 "V": 0.5,
 "J": 0.5
 }
 }
],
 "id": "nodeto A1"
 }
]
}

52

{
 "requestType": "PositionInfo",
 "positionInfo": [
 {
 "setPointId": "X",
 "timePositions": [
 [
 0.0,
 0.3
],
 [
 2.777731800328678,
 0.3
]
]
 },
 {
 "setPointId": "Y",
 "timePositions": [
 [
 0.0,
 0.15
],
 [
 0.4244,
 0.14362992010133332
]
]
 }
]
}

Error Response

{
 "requestType": "PositionInfo",
 "errorMessage": "anErrorMessage",
 "errorSegments": [
 "move passing",
 "move"
]
}

53

Background Eclipse LSAT™ Internal motion calculator
API

 This background is only for informational purposes.

Internally the motion calculator API in Eclipse LSAT™ consists of 2 interfaces:

Listing 6. MotionCalculator.java the regular API called by Eclipse LSAT™.

public interface MotionCalculator {
 /**
 * Validates if this {@link MotionCalculator} is able to calculate the motion as
specified by <tt>segments</tt>.
 *
 * @param segments the specified motion.
 * @throws MotionException If this motion calculator is not able to calculate this
motion
 */
 void validate(List<MotionSegment> segments) throws MotionValidationException;

 /**
 * Calculate the motion times for the an array of concatenated segments.

 * IMPORTANT: The time in the array is the end-time of the motion segment
measured from the start of the
 * concatenated move.
 *
 * @param segments
 * @return A list of {@link Double}s representing time in seconds where the index
of the array corresponds with the
 * index of the motion segment in the provided segment list.
 * @throws MotionException
 */
 List<Double> calculateTimes(List<MotionSegment> segments) throws MotionException;

 /**
 * Calculates the position information for all set-points in an array of
concatenated segments.
 *
 * @param segments
 * @return The PositionInfo per set point.
 * @throws MotionException
 */
 Collection<PositionInfo> getPositionInfo(List<MotionSegment> segments) throws
MotionException;
}

54

Listing 7. MotionProfileProvider.java can be used to specify customised profiles that can be used in settings.

public interface MotionProfileProvider {
 /**
 * Provides the supported profiles and its parameters.
 *
 * <p>
 * MotionCalculator providers that also implement this API can expect that only
supported profiles will be used
 * </p>
 * Example of a profile: <pre>
 * {@link MotionProfile}
 * key="ThirdOrderP2P"
 * name="Third order point-to-point"
 * url="optional url to online specification"
 * {@link MotionProfileParameter} key="V" name="V" required="true"
 * {@link MotionProfileParameter} key="A" name="A" required="true"
 * {@link MotionProfileParameter} key="J" name="J" required="true"
 * {@link MotionProfileParameter} key="S" name="S" required="false"
 * </pre>
 *
 * @return The supported profiles for an implementation
 * @throws MotionException
 */
 Set<MotionProfile> getSupportedProfiles() throws MotionException;
}

55

	Logistics Specification and Analysis Tool (Eclipse LSAT™) Design Documentation
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Tools

	Chapter 2. Architecture
	2.1. Domain Languages
	2.1.1. Machine
	2.1.2. Settings
	2.1.3. Activities
	2.1.4. Logistics

	2.2. Analysis Languages
	2.2.1. DirectedGraph Metamodel
	2.2.2. EditableDirectedGraph Metamodel
	2.2.3. Scheduler Metamodel
	2.2.4. PetriNet Metamodel
	2.2.5. MaxPlus Metamodel

	Chapter 3. Workflows for aspect models
	3.1. Scheduling activities including Gantt chart visualization
	3.2. Optimal Makespan/Throughput Scheduling
	3.2.1. Introduction
	3.2.2. Workflow

	3.3. Conformance Checking

	Chapter 4. Overview of Plugins
	4.1. Machine
	4.2. Settings
	4.3. Activities
	4.4. Logistics
	4.5. Directed Graph
	4.6. MaxPlus
	4.7. Scheduling Activities including Gantt Chart Visualization
	4.8. Conformance Checking
	4.9. Throughput per Resource
	4.10. Documentation

	Chapter 5. Developing
	5.1. Development environment setup
	5.2. Building with Maven
	5.3. License header
	5.4. Third party notice

	Appendix A: How to implement your own custom motion profile
	Create a new motion calculator
	Test your new motion calculator

	Appendix B: How to implement a custom motion calculator with Json
	Terminology
	Json Interface
	Configuring the shared library
	Json Schema for request and response

	Examples of Json messages
	Supported Profiles
	Validate
	Calculate Times
	Position Info
	Error Response

	Background Eclipse LSAT™ Internal motion calculator API

