The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
zscorer
The main function in the zscorer
package is addWGSR()
.
To demonstrate its usage, we will use the accompanying dataset in zscorer
called anthro3
. We inspect the dataset as follows:
which returns:
#> psu age sex weight height muac oedema
#> 1 1 10 1 5.7 64.2 125 2
#> 2 1 10 2 5.8 64.4 121 2
#> 3 1 9 2 6.5 62.2 139 2
#> 4 1 11 9 6.5 64.9 129 2
#> 5 1 24 2 6.5 72.9 120 2
#> 6 1 12 2 6.6 69.4 126 2
anthro3
contains anthropometric data from a Rapid Assessment Method (RAM) survey from Burundi.
Anthropometric indices (e.g. weight-for-height z-scores) have not been calculated and added to the data.
We will use the addWGSR()
function to add weight-for-height (wfh) z-scores to the example data:
svy <- addWGSR(data = anthro3, sex = "sex", firstPart = "weight",
secondPart = "height", index = "wfh")
#> ===========================================================================
A new column named wfhz has been added to the dataset:
#> psu age sex weight height muac oedema wfhz
#> 1 1 10 1 5.7 64.2 125 2 -2.73
#> 2 1 10 2 5.8 64.4 121 2 -2.04
#> 3 1 9 2 6.5 62.2 139 2 0.13
#> 4 1 11 9 6.5 64.9 129 2 NA
#> 5 1 24 2 6.5 72.9 120 2 -3.44
#> 6 1 12 2 6.6 69.4 126 2 -2.26
The wfhz
column contains the weight-for-height (wfh) z-scores calculated from the sex
, weight
, and height
columns in the anthro3
dataset. The calculated z-scores are rounded to two decimals places unless the digits
option is used to specify a different precision (run ?addWGSR
to see description of various parameters that can be specified in the addWGSR()
function).
The addWGSR()
function takes up to nine parameters to calculate each index separately, depending on the index required. These are described in the Help files of the zscorer
package which can be accessed as follows:
The standing parameter specifies how “stature” (i.e. length or height) was measured. If this is not specified, and in some special circumstances, height and age rules will be applied when calculating z-scores. These rules are described in the table below.
index | standing | age | height | Action |
---|---|---|---|---|
hfa or lfa | standing | < 731 days | index = lfa height = height + 0.7 cm | |
hfa or lfa | supine | < 731 days | index = lfa | |
hfa or lfa | unknown | < 731 days | index = lfa | |
hfa or lfa | standing | ≥ 731 days | index = hfa | |
hfa or lfa | supine | ≥ 731 days | index = hfa height = height - 0.7 cm | |
hfa or lfa | unknown | ≥ 731 days | index = hfa | |
wfh or wfl | standing | < 65 cm | index = wfl height = height + 0.7 cm | |
wfh or wfl | standing | ≥ 65 cm | index = wfh | |
wfh or wfl | supine | ≤ 110 cm | index = wfl | |
wfh or wfl | supine | more than 110 cm | index = wfh height = height - 0.7 cm | |
wfh or wfl | unknown | < 87 cm | index = wfl | |
wfh or wfl | unknown | ≥ 87 cm | index = wfh | |
bfa | standing | < 731 days | height = height + 0.7 cm | |
bfa | standing | ≥ 731 days | height = height - 0.7 cm |
The addWGSR()
function will not produce error messages unless there is something very wrong with the data or the specified parameters. If an error is encountered in a record then the value NA is returned. Error conditions are listed in the table below.
Error condition | Action |
---|---|
Missing or nonsense value in standing parameter |
Set standing to 3 (unknown) and apply appropriate height or age rules. |
Unknown index specified |
Return NA for z-score. |
Missing sex |
Return NA for z-score. |
Missing firstPart |
Return NA for z-score. |
Missing secondPart |
Return NA for z-score. |
sex is not male (1 ) or female (2 ) |
Return NA for z-score. |
firstPart is not numeric |
Return NA for z-score. |
secondPart is not numeric |
Return NA for z-score. |
Missing thirdPart when index = "bfa" |
Return NA for z-score. |
thirdPart is not numeric when index = "bfa" |
Return NA for z-score. |
secondPart is out of range for specified index |
Return NA for z-score. |
We can see this error behaviour using the example data:
We can display the problem record:
The problem is due to the value 9 in the sex
column, which should be coded 1 (for male) and 2 (for female). Z-scores are only calculated for records with sex specified as either 1 (male) or 2 (female). All other values, including NA, will return NA.
The addWGSR()
function requires that data are recorded using the required units or required codes (see ?addWGSR
to check units required by the different function parameters).
The addWGSR()
function will return incorrect values if the data are not recorded using the required units. For example, this attempt to add weight-for-age z-scores to the example data:
svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
secondPart = "age", index = "wfa")
#> ===========================================================================
will give incorrect results:
summary(svy$wfaz)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 3.450 7.692 9.840 9.684 11.430 15.900 1
The odd range of values is due to age being recorded in months rather than days.
It is simple to convert all ages from months to days:
svy$age <- svy$age * (365.25 / 12)
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz
#> 1 1 304.3750 1 5.7 64.2 125 2 -2.73 3.45
#> 2 1 304.3750 2 5.8 64.4 121 2 -2.04 3.95
#> 3 1 273.9375 2 6.5 62.2 139 2 0.13 5.12
#> 4 1 334.8125 9 6.5 64.9 129 2 NA NA
#> 5 1 730.5000 2 6.5 72.9 120 2 -3.44 3.82
#> 6 1 365.2500 2 6.6 69.4 126 2 -2.26 5.01
before calculating and adding weight-for-age z-scores:
svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
secondPart = "age", index = "wfa")
#> ===========================================================================
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz
#> 1 1 304.3750 1 5.7 64.2 125 2 -2.73 -4.13
#> 2 1 304.3750 2 5.8 64.4 121 2 -2.04 -3.19
#> 3 1 273.9375 2 6.5 62.2 139 2 0.13 -1.97
#> 4 1 334.8125 9 6.5 64.9 129 2 NA NA
#> 5 1 730.5000 2 6.5 72.9 120 2 -3.44 -4.61
#> 6 1 365.2500 2 6.6 69.4 126 2 -2.26 -2.56
summary(svy$wfaz)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> -4.610 -1.873 -1.085 -1.154 -0.480 2.600 1
The muac column in the example dataset is recorded in millimetres (mm). We need to convert this to centimetres (cm):
svy$muac <- svy$muac / 10
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz
#> 1 1 304.3750 1 5.7 64.2 12.5 2 -2.73 -4.13
#> 2 1 304.3750 2 5.8 64.4 12.1 2 -2.04 -3.19
#> 3 1 273.9375 2 6.5 62.2 13.9 2 0.13 -1.97
#> 4 1 334.8125 9 6.5 64.9 12.9 2 NA NA
#> 5 1 730.5000 2 6.5 72.9 12.0 2 -3.44 -4.61
#> 6 1 365.2500 2 6.6 69.4 12.6 2 -2.26 -2.56
before using the addWGSR()
function to calculate MUAC-for-age z-scores:
svy <- addWGSR(svy, sex = "sex", firstPart = "muac",
secondPart = "age", index = "mfa")
#> ===========================================================================
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz mfaz
#> 1 1 304.3750 1 5.7 64.2 12.5 2 -2.73 -4.13 -1.97
#> 2 1 304.3750 2 5.8 64.4 12.1 2 -2.04 -3.19 -1.88
#> 3 1 273.9375 2 6.5 62.2 13.9 2 0.13 -1.97 -0.14
#> 4 1 334.8125 9 6.5 64.9 12.9 2 NA NA NA
#> 5 1 730.5000 2 6.5 72.9 12.0 2 -3.44 -4.61 -2.70
#> 6 1 365.2500 2 6.6 69.4 12.6 2 -2.26 -2.56 -1.46
As a last example we will use the addWGSR()
function to add body mass index-for-age (bfa) z-scores to the data to create a new variable called bmiAgeZ with a precision of 4 decimal places as:
svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
secondPart = "height", thirdPart = "age", index = "bfa",
output = "bmiAgeZ", digits = 4)
#> ===========================================================================
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz mfaz bmiAgeZ
#> 1 1 304.3750 1 5.7 64.2 12.5 2 -2.73 -4.13 -1.97 -2.6928
#> 2 1 304.3750 2 5.8 64.4 12.1 2 -2.04 -3.19 -1.88 -2.0005
#> 3 1 273.9375 2 6.5 62.2 13.9 2 0.13 -1.97 -0.14 0.0405
#> 4 1 334.8125 9 6.5 64.9 12.9 2 NA NA NA NA
#> 5 1 730.5000 2 6.5 72.9 12.0 2 -3.44 -4.61 -2.70 -2.8958
#> 6 1 365.2500 2 6.6 69.4 12.6 2 -2.26 -2.56 -1.46 -2.0796
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.