The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Here you’ll find a series of example of calls to
yf_get()
. Most arguments are self-explanatory, but you can
find more details at the help files.
The steps of the algorithm are:
library(yfR)
# set options for algorithm
<- 'GM'
my_ticker <- Sys.Date() - 30
first_date <- Sys.Date()
last_date
# fetch data
<- yf_get(tickers = my_ticker,
df_yf first_date = first_date,
last_date = last_date)
# output is a tibble with data
head(df_yf)
## # A tibble: 6 × 11
## ticker ref_date price_open price_h…¹ price…² price…³ volume price…⁴ ret_ad…⁵
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GM 2023-01-17 36.5 37.1 36.2 36.6 1.39e7 36.6 NA
## 2 GM 2023-01-18 37.1 37.5 36.4 36.4 1.13e7 36.4 -0.00464
## 3 GM 2023-01-19 35.7 36.0 35.1 35.7 1.14e7 35.7 -0.0195
## 4 GM 2023-01-20 35.7 36.0 35.3 35.3 1.72e7 35.3 -0.0106
## 5 GM 2023-01-23 35.7 36.6 35.5 36.4 1.70e7 36.4 0.0308
## 6 GM 2023-01-24 36 36.7 35.8 36.2 1.21e7 36.2 -0.00659
## # … with 2 more variables: ret_closing_prices <dbl>,
## # cumret_adjusted_prices <dbl>, and abbreviated variable names ¹price_high,
## # ²price_low, ³price_close, ⁴price_adjusted, ⁵ret_adjusted_prices
library(yfR)
library(ggplot2)
<- c('TSLA', 'GM', 'MMM')
my_ticker <- Sys.Date() - 100
first_date <- Sys.Date()
last_date
<- yf_get(tickers = my_ticker,
df_yf_multiple first_date = first_date,
last_date = last_date)
<- ggplot(df_yf_multiple, aes(x = ref_date, y = price_adjusted,
p color = ticker)) +
geom_line()
p
library(yfR)
library(ggplot2)
library(dplyr)
<- 'GE'
my_ticker <- '2005-01-01'
first_date <- Sys.Date()
last_date
<- yf_get(tickers = my_ticker,
df_dailly
first_date, last_date, freq_data = 'daily') %>%
mutate(freq = 'daily')
<- yf_get(tickers = my_ticker,
df_weekly
first_date, last_date, freq_data = 'weekly') %>%
mutate(freq = 'weekly')
<- yf_get(tickers = my_ticker,
df_monthly
first_date, last_date, freq_data = 'monthly') %>%
mutate(freq = 'monthly')
<- yf_get(tickers = my_ticker,
df_yearly
first_date, last_date, freq_data = 'yearly') %>%
mutate(freq = 'yearly')
# bind it all together for plotting
<- bind_rows(
df_allfreq list(df_dailly, df_weekly, df_monthly, df_yearly)
%>%
) mutate(freq = factor(freq,
levels = c('daily',
'weekly',
'monthly',
'yearly'))) # make sure the order in plot is right
<- ggplot(df_allfreq, aes(x = ref_date, y = price_adjusted)) +
p geom_line() +
facet_grid(freq ~ ticker) +
theme_minimal() +
labs(x = '', y = 'Adjusted Prices')
print(p)
library(yfR)
library(ggplot2)
<- c('TSLA', 'GM', 'MMM')
my_ticker <- Sys.Date() - 100
first_date <- Sys.Date()
last_date
<- yf_get(tickers = my_ticker,
df_yf_multiple first_date = first_date,
last_date = last_date)
print(df_yf_multiple)
## # A tibble: 204 × 11
## ticker ref_date price_open price_…¹ price…² price…³ volume price…⁴ ret_ad…⁵
## * <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GM 2022-11-08 39.5 39.5 38.5 39.0 1.09e7 39.0 NA
## 2 GM 2022-11-09 38.5 38.9 38.0 38.1 1.05e7 38.0 -0.0254
## 3 GM 2022-11-10 39.2 40.6 38.9 39.7 2.02e7 39.7 0.0441
## 4 GM 2022-11-11 39.9 41.6 39.8 41.1 1.30e7 41.0 0.0347
## 5 GM 2022-11-14 41.0 41.2 39.9 39.9 1.50e7 39.8 -0.0289
## 6 GM 2022-11-15 40.7 41.4 40.0 40.2 1.24e7 40.2 0.00776
## 7 GM 2022-11-16 39.8 39.9 38.5 38.5 1.20e7 38.4 -0.0440
## 8 GM 2022-11-17 38.0 39.6 37.5 38.6 2.60e7 38.6 0.00442
## 9 GM 2022-11-18 39.5 40.0 39.0 39.8 2.28e7 39.7 0.0292
## 10 GM 2022-11-21 39.4 39.7 39 39.5 1.23e7 39.4 -0.00629
## # … with 194 more rows, 2 more variables: ret_closing_prices <dbl>,
## # cumret_adjusted_prices <dbl>, and abbreviated variable names ¹price_high,
## # ²price_low, ³price_close, ⁴price_adjusted, ⁵ret_adjusted_prices
<- yf_convert_to_wide(df_yf_multiple)
l_wide
names(l_wide)
## [1] "price_open" "price_high" "price_low"
## [4] "price_close" "volume" "price_adjusted"
## [7] "ret_adjusted_prices" "ret_closing_prices" "cumret_adjusted_prices"
<- l_wide$price_adjusted
prices_wide head(prices_wide)
## # A tibble: 6 × 4
## ref_date GM MMM TSLA
## <date> <dbl> <dbl> <dbl>
## 1 2022-11-08 39.0 124. 191.
## 2 2022-11-09 38.0 122. 178.
## 3 2022-11-10 39.7 128. 191.
## 4 2022-11-11 41.0 131. 196.
## 5 2022-11-14 39.8 130. 191.
## 6 2022-11-15 40.2 130. 194.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.