The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of whitewater is to provide sequential and parallel
processing for USGS stations in a tidy-style format. This package allows
user to plan()
their choice of parallel processing and then
use the argument parallel = TRUE
in whitewater function
calls. The package also puts every output in a tibble
with
data munging of sites, parameter and stat codes, which results in a
tidy style data frame.
Due to potentially crashing (USGS Water Services)[https://waterservices.usgs.gov/] REST services parallel processing is kept to 120 requests/min. By following this rate limit, we can still benefit from parallel processing but also being mindful/respectful to the USGS Water Services via {dataRetrieval} and REST services. Thank you!
You can install the development version of whitewater from GitHub with:
# install.packages("devtools")
::install_github("joshualerickson/whitewater") devtools
This is a basic example which shows you how to solve a common problem: get daily values of discharge for multiple sites (all active sites in Pacific Northwest (Region 17)) using parallel processing. Please see furrr and future for more details on parallel processing methods.
library(whitewater)
library(tidyverse)
library(sf)
library(future)
library(dataRetrieval)
<- dataRetrieval::whatNWISdata(huc = 17,
huc17_sites siteStatus = 'active',
service = 'dv',
parameterCd = '00060',
drainAreaMax = 2000)
cat("# of sites: ", nrow(huc17_sites))
#> # of sites: 675
st_as_sf(huc17_sites, coords = c('dec_long_va', 'dec_lat_va')) %>%
ggplot() +
geom_sf() +
borders('state', xlim = c(-130, -110), ylim = c(20, 50)) +
theme_bw()
#need to call future::plan()
##### Remember, please use 10 or less workers #####
plan(multisession(workers = 11))
#running on 11 cores
system.time({
<- ww_dvUSGS(huc17_sites$site_no,
pnw_dv parameter_cd = '00060',
wy_month = 10,
parallel = TRUE,
verbose = FALSE)
})#> user system elapsed
#> 39.96 2.47 559.56
nrow(pnw_dv)
#> [1] 11752061
pnw_dv#> # A tibble: 11,752,061 x 28
#> Station site_no drainage_area lat long altitude agency_cd Date Flow
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <date> <dbl>
#> 1 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-01 160
#> 2 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-02 166
#> 3 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-03 173
#> 4 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-04 180
#> 5 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-05 187
#> 6 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-06 232
#> 7 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-07 207
#> 8 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-08 182
#> 9 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-09 157
#> 10 DONNER~ 103960~ 124. 42.8 -119. 4254 USGS 1911-04-10 132
#> # ... with 11,752,051 more rows, and 19 more variables: Flow_cd <chr>,
#> # STILLING.WELL_Flow <dbl>, STILLING.WELL_Flow_cd <chr>,
#> # .Estimated.By.Regression._Flow <dbl>,
#> # .Estimated.By.Regression._Flow_cd <chr>, ..2.._Flow <dbl>,
#> # ..2.._Flow_cd <chr>, .Discharge.1921.to.1952._Flow <dbl>,
#> # .Discharge.1921.to.1952._Flow_cd <chr>, year <dbl>, month <dbl>, day <int>,
#> # doy <dbl>, wy_doy <dbl>, month_day <chr>, wy <int>, month_abb <fct>, ...
Now we can use other ww_
functions to filter the data by
water year, month, water year and month, as well as stat reporting
(percentiles comparing current readings).
Same as above, we can just call parallel = TRUE
to run
in parallel since we’ll be getting peak flows from
dataRetrieval::readNWISpeak()
.
system.time({
<- suppressMessages(ww_wyUSGS(pnw_dv,
pnw_wy parallel = TRUE,
verbose = FALSE))
})#> user system elapsed
#> 16.86 0.72 418.25
pnw_wy#> # A tibble: 32,663 x 27
#> Station site_no wy peak_va peak_dt drainage_area lat long altitude
#> <chr> <chr> <int> <dbl> <date> <dbl> <dbl> <dbl> <dbl>
#> 1 ABIQUA C~ 142007~ 2014 NA NA 45.3 45.0 -123. 193
#> 2 ABIQUA C~ 142007~ 2015 3330 2014-12-21 45.3 45.0 -123. 193
#> 3 ABIQUA C~ 142007~ 2016 5980 2015-12-07 45.3 45.0 -123. 193
#> 4 ABIQUA C~ 142007~ 2017 3740 2017-03-09 45.3 45.0 -123. 193
#> 5 ABIQUA C~ 142007~ 2018 4290 2017-10-22 45.3 45.0 -123. 193
#> 6 ABIQUA C~ 142007~ 2019 3700 2019-04-07 45.3 45.0 -123. 193
#> 7 ABIQUA C~ 142007~ 2020 2600 2020-01-28 45.3 45.0 -123. 193
#> 8 ABIQUA C~ 142007~ 2021 5360 2020-12-20 45.3 45.0 -123. 193
#> 9 ABIQUA C~ 142007~ 2022 NA NA 45.3 45.0 -123. 193
#> 10 AHTANUM ~ 125025~ 1904 NA NA 107. 46.5 -120. 940
#> # ... with 32,653 more rows, and 18 more variables: obs_per_wy <int>,
#> # wy_count <int>, Flow_sum <dbl>, Flow_max <dbl>, Flow_min <dbl>,
#> # Flow_mean <dbl>, Flow_median <dbl>, Flow_stdev <dbl>, Flow_coef_var <dbl>,
#> # Flow_max_dnorm <dbl>, Flow_min_dnorm <dbl>, Flow_mean_dnorm <dbl>,
#> # Flow_med_dnorm <dbl>, Flow_max_sdnorm <dbl>, Flow_min_sdnorm <dbl>,
#> # Flow_mean_sdnorm <dbl>, Flow_med_sdnorm <dbl>, Flow_sd_norm <dbl>
If you just want a few sites (or one) and not use parallel
processing, go for it! You’ll still get the advantages of filtering and
stats. In addition, You don’t always have to pipe a
ww_dvUSGS()
object into the ww_*()
and can
just use the sites
argument. In the example below I’ll do
this but IMO its nice to start with a ww_dvUSGS()
object
because you’ll likely come back to it.
<- ww_wyUSGS(sites="02319394",
withlacoochee_temp_and_flow parameter_cd = c("00010", "00060"))
#> v 'water year' was successfully downloaded.
#> > now starting to gather peak flows using dataRetrieval::readNWISpeak
#> v 02319394 'peak flows' were successfully downloaded.
%>%
withlacoochee_temp_and_flow pivot_longer(c('Wtemp_max', 'Flow_max')) %>%
ggplot(aes(wy, value)) +
geom_point() +
geom_line() +
theme_bw() +
labs(x = 'Water Year') +
facet_wrap(~name, scale = 'free')
Sometimes you just want to compare the current flow (water year or
past week, whatever you want) to historical flows. The
ww_statsUSGS()
function does this for you! It takes the
historical values for your parameter (flow in this example) and returns
percentiles (dataRetrieval::readNWISstat()
) but also
combines the current values.
<- ww_dvUSGS('12304500')
yaak_river_dv #> v Yaak River near Troy MT 'daily' was successfully downloaded.
<- ww_statsUSGS(yaak_river_dv,
yaak_daily_report temporalFilter = 'daily',
days = 365)
#> v Yaak River near Troy MT 'NWIS Stat' for Temporal Filter (daily) was successfully downloaded.
%>%
yaak_daily_report pivot_longer(c('Flow', 'p25_va', 'p75_va')) %>%
ggplot() +
geom_line(aes(Date, value, color = name, alpha = name %in% c('p25_va', 'p75_va'))) +
scale_color_manual(values = c('black', 'red', 'blue')) +
scale_alpha_manual(values = c(1,.5), guide = 'none') +
labs(y = 'Discharge (cfs)', color = '', title = 'Comparing current flow to 25th and 75th percentiles') +
theme_bw()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.